1
|
Zhang H, Xu L, Ai Z, Wang L, Wang L, Li L, Zhang R, Xue R, Wang Z. The brain topological alterations in the structural connectome and correlations with clinical characteristics in type 1 narcolepsy. Neuroimage Clin 2024; 44:103697. [PMID: 39509991 PMCID: PMC11574789 DOI: 10.1016/j.nicl.2024.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE To explore topological alterations of white matter (WM) structural connectome, and their associations with clinical characteristics in type 1 narcolepsy (NT1). METHODS 46 NT1 patients and 34 age- and sex-matched healthy controls were recruited for clinical data and diffusion tensor imaging collection. Using graph theory analysis, the topology metrics of structural connectome, rich club organization, and connectivity properties were compared between two groups. Furthermore, partial correlation analysis was performed between the network characteristics of 90 nodes or weakened edges and clinical data using Pearson or Spearman correlation, controlling by age and sex. RESULTS Between-group comparison reflected that NT1 patients exhibited sleep disorders with comorbidities of impaired cognition and psychological problems. In patients, the global efficiency, local efficiency, and average clustering coefficient were significantly lower, whereas characteristic path length was larger compared to healthy control. Pertinently, nodal path length of left middle frontal gyrus was positively correlated with Pittsburgh Sleep Quality Index scores. The rich club analysis identified six affected nodes: bilateral dorsolateral superior frontal gyrus, bilateral supplementary motor area, left hippocampus, and left pallidum. Furthermore, six significantly weakened structural connections seeding from these rich club nodes have shown significant correlations with clinical index or polysomnography parameters. CONCLUSION In NT1 patients, WM structural connectome has shown to be disrupted, which were primarily distributed in frontal-parietal cortex, subcortical regions, and particularly cingulate, potentially affecting their clinical manifestations.
Collapse
Affiliation(s)
- Huiqin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077, China
| | - Lili Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Kumari S, Rana B, Senthil Kumaran S, Chaudhary S, Jain S, Srivastava AK, Rajan R. Gray Matter Atrophy in a 6-OHDA-induced Model of Parkinson's Disease. Neuroscience 2024; 551:217-228. [PMID: 38843989 DOI: 10.1016/j.neuroscience.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) based brain morphometric changes in unilateral 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) model can be elucidated using voxel-based morphometry (VBM), study of alterations in gray matter volume and Machine Learning (ML) based analyses. METHODS We investigated gray matter atrophy in 6-OHDA induced PD model as compared to sham control using statistical and ML based analysis. VBM and atlas-based volumetric analysis was carried out at regional level. Support vector machine (SVM)-based algorithms wherein features (volume) extracted from (a) each of the 150 brain regions (b) statistically significant features (only) and (c) volumes of each cluster identified after application of VBM (VBM_Vol) were used for training the decision model. The lesion of the 6-OHDA model was validated by estimating the net contralateral rotational behaviour by the injection of apomorphine drug and motor impairment was assessed by rotarod and open field test. RESULTS AND DISCUSSION In PD, gray matter volume (GMV) atrophy was noted in bilateral cortical and subcortical brain regions, especially in the internal capsule, substantia nigra, midbrain, primary motor cortex and basal ganglia-thalamocortical circuits in comparison with sham control. Behavioural results revealed an impairment in motor performance. SVM analysis showed 100% classification accuracy, sensitivity and specificity at both 3 and 7 weeks using VBM_Vol. CONCLUSION Unilateral 6-OHDA induced GMV changes in both hemispheres at 7th week may be associated with progression of the disease in the PD model. SVM based approaches provide an increased classification accuracy to elucidate GMV atrophy.
Collapse
Affiliation(s)
- Sadhana Kumari
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bharti Rana
- Department of Computer Science, University of Delhi, Delhi 110007, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Achal Kumar Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
3
|
Otaiku AI. Distressing dreams in childhood and risk of cognitive impairment or Parkinson's disease in adulthood: a national birth cohort study. EClinicalMedicine 2023; 57:101872. [PMID: 37064510 PMCID: PMC10102896 DOI: 10.1016/j.eclinm.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/28/2023] Open
Abstract
Background Distressing dreams in middle-aged and older adults have been associated with an increased risk of developing cognitive impairment (including dementia) and Parkinson's disease (PD). Whether distressing dreams in younger people might be associated with an increased risk of developing these conditions is unknown. This study investigated the association between distressing dreams in childhood and the risk of developing cognitive impairment or PD by age 50. Methods Data from the 1958 British Birth Cohort Study - a prospective birth cohort which included all people born in Britain during a single week in 1958, were used in this longitudinal analysis. Information on distressing dreams were obtained prospectively from the children's mothers at ages 7 (1965) and 11 (1969). Cognitive impairment and PD at age 50 (2008) were determined by cognitive assessment and doctor-diagnosis respectively. The association between distressing dreams at ages 7 and 11 (no time point, 1 time point, 2 time points) and cognitive impairment or PD at age 50, was evaluated using multivariable Firth logistic regression, with adjustment for potential confounders. Findings Among 6991 children (50.6% female) with follow-up available at age 50, 267 (3.8%) developed cognitive impairment or PD. After adjustment for all covariates, having more regular distressing dreams during childhood was linearly and statistically significantly associated with higher risk of developing cognitive impairment or PD by age 50 (P for trend = 0.037). Compared with children who never had distressing dreams (no time point), children who had persistent distressing dreams (2 time points) had an 85% increased risk of developing cognitive impairment or PD by age 50 (adjusted odds ratio = 1.85; 95% CI: 1.10, 3.11). Interpretation Having persistent distressing dreams during childhood may be associated with an increased risk of developing cognitive impairment or PD in adulthood. Future studies are needed to confirm these findings and to determine whether treating distressing dreams during early life may lower the risk of dementia and PD. Funding The study received no external funding.
Collapse
Affiliation(s)
- Abidemi I. Otaiku
- Department of Neurology, Birmingham City Hospital, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Seo K, Matunari I, Yamamoto T. Cerebral cortical thinning in Parkinson's disease depends on the age of onset. PLoS One 2023; 18:e0281987. [PMID: 36809440 PMCID: PMC9942965 DOI: 10.1371/journal.pone.0281987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Patients with older-onset Parkinson's disease (PD) have more severe motor symptoms, faster progression, and a worse prognosis. The thinning of the cerebral cortex is one of the causes of these issues. Patients with older-onset PD manifest more extended neurodegeneration associated with α-synuclein deposition in the cerebral cortex; however, the cortical regions that undergo thinning are unclear. We aimed to identify cortical regions with different thinning depending on the age of onset in patients with PD. Sixty-two patients with PD were included in this study. Patients with PD onset at <63 years old were included in the early or middle-onset PD group, and those with PD onset at >63 years old were included in the late-onset PD (LOPD) group. Brain magnetic resonance imaging data of these patients were processed using FreeSurfer to measure their cortical thickness. The LOPD group displayed less cortical thickness in the superior frontal gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus, temporal pole, paracentral lobule, superior parietal lobule, precuneus, and occipital lobe than the early or middle-onset PD group. Compared with patients with early and middle-onset PD, elderly patients displayed extended cortical thinning with disease progression. Differences in the clinical manifestations of PD according to the age of onset were partly due to variations in the morphological changes in the brain.
Collapse
Affiliation(s)
- Kazuhide Seo
- Department of Neurology, Saitama Medical University, Saitama, Japan
- * E-mail:
| | - Ichiro Matunari
- Department of Radiology, Division of Nuclear Medicine, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
5
|
Deng JH, Zhang HW, Liu XL, Deng HZ, Lin F. Morphological changes in Parkinson's disease based on magnetic resonance imaging: A mini-review of subcortical structures segmentation and shape analysis. World J Psychiatry 2022; 12:1356-1366. [PMID: 36579355 PMCID: PMC9791612 DOI: 10.5498/wjp.v12.i12.1356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra, resulting in clinical symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. The pathophysiological changes in PD are inextricably linked to the subcortical structures. Shape analysis is a method for quantifying the volume or surface morphology of structures using magnetic resonance imaging. In this review, we discuss the recent advances in morphological analysis techniques for studying the subcortical structures in PD in vivo. This approach includes available pipelines for volume and shape analysis, focusing on the morphological features of volume and surface area.
Collapse
Affiliation(s)
- Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Hua-Zhen Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
6
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives. Diagnostics (Basel) 2022; 12:2708. [PMID: 36359550 PMCID: PMC9689408 DOI: 10.3390/diagnostics12112708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
According to the World Health Organization (WHO), Parkinson's disease (PD) is a neurodegenerative disease of the brain that causes motor symptoms including slower movement, rigidity, tremor, and imbalance in addition to other problems like Alzheimer's disease (AD), psychiatric problems, insomnia, anxiety, and sensory abnormalities. Techniques including artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been established for the classification of PD and normal controls (NC) with similar therapeutic appearances in order to address these problems and improve the diagnostic procedure for PD. In this article, we examine a literature survey of research articles published up to September 2022 in order to present an in-depth analysis of the use of datasets, various modalities, experimental setups, and architectures that have been applied in the diagnosis of subjective disease. This analysis includes a total of 217 research publications with a list of the various datasets, methodologies, and features. These findings suggest that ML/DL methods and novel biomarkers hold promising results for application in medical decision-making, leading to a more methodical and thorough detection of PD. Finally, we highlight the challenges and provide appropriate recommendations on selecting approaches that might be used for subgrouping and connection analysis with structural magnetic resonance imaging (sMRI), DaTSCAN, and single-photon emission computerized tomography (SPECT) data for future Parkinson's research.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, Uttarakhand, India
- Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| |
Collapse
|
7
|
Otaiku AI. Distressing dreams, cognitive decline, and risk of dementia: A prospective study of three population-based cohorts. EClinicalMedicine 2022; 52:101640. [PMID: 36313147 PMCID: PMC9596309 DOI: 10.1016/j.eclinm.2022.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022] Open
Abstract
Background Distressing dreams are associated with faster cognitive decline and increased dementia risk in people with Parkinson's disease (PD). Whether distressing dreams might be associated with cognitive decline and dementia in people without PD is unknown. This study investigated the association between self-reported distressing dream frequency and the risk of cognitive decline and incident dementia in community-dwelling men and women without cognitive impairment or PD. Methods Risk of cognitive decline was evaluated in 605 middle-aged adults (mean age = 50 years [IQR 44-57]; 55·7% female) from the Midlife in the United States (MIDUS) study, who were cognitively normal at baseline, and were followed-up for a maximum of 13 years (IQR 9-10). Cognitive decline was defined as having an annual rate of decline in global cognitive function (measured using five cognitive tests) ≥ 1 standard deviation faster than the mean decline rate from baseline to follow-up. Risk of incident all-cause dementia was evaluated in 2600 older adults (mean age = 83 years [IQR 81-84]; 56·7% female) pooled from the Osteoporotic Fractures in Men Study (MrOS) and the Study of Osteoporotic Fractures (SOF), who were dementia-free at baseline, and were followed-up for up a maximum of 7 years (IQR 4-5). Incident dementia was based on doctor-diagnosis. Frequency of distressing dreams was assessed in all cohorts at baseline (January 2002 - March 2012) using item 5h of the Pittsburgh Sleep Quality Index. The association between self-reported distressing dream frequency ("never", "less than weekly", "weekly") and later cognitive outcomes, was evaluated using multivariable logistic regression in both the middle-aged and pooled older adult cohorts. Findings After adjustment for all covariates, a higher frequency of distressing dreams was linearly and statistically significantly associated with higher risk of cognitive decline amongst middle-aged adults (P for trend = 0·016), and higher risk of incident all-cause dementia amongst older adults (P for trend <0·001). Compared with middle-aged adults who reported having no distressing dreams at baseline, those who reported having weekly distressing dreams had a 4-fold risk of experiencing cognitive decline (adjusted odds ratio [aOR] = 3·99; 95% CI: 1·07, 14·85). Amongst older adults, the difference in dementia risk was 2·2-fold (aOR = 2·21; 95% CI: 1·35, 3·62). In sex-stratified analyses, the associations between distressing dreams and both cognitive outcomes were only statistically significant amongst men. Interpretation Distressing dreams predict cognitive decline and all-cause dementia in middle-aged and older adults without cognitive impairment or PD - especially amongst men. These findings may help to identify individuals at risk of dementia and could facilitate early prevention strategies. Funding The study received no external funding.
Collapse
Affiliation(s)
- Abidemi I. Otaiku
- Department of Neurology, Birmingham City Hospital, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
9
|
Otaiku DAI. Distressing dreams and risk of Parkinson's disease: A population-based cohort study. EClinicalMedicine 2022; 48:101474. [PMID: 35783487 PMCID: PMC9249554 DOI: 10.1016/j.eclinm.2022.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Parkinson's disease (PD) is associated with alterations to the phenomenology of dreaming - including an increased frequency of distressing dreams. Whether distressing dreams may precede the development of PD is unknown. This study investigated the association between frequent distressing dreams and the risk of incident PD. Methods 3818 men aged 67 years or older from the Osteoporotic Fractures in Men Study (MrOS), a population-based cohort from the USA, who were free from PD at baseline (December 2003 - April 2011) and completed item 5h of the Pittsburgh Sleep Quality Index - which probes the frequency of distressing dreams in the past month, were included in this analysis. Incident PD was based on doctor diagnosis. Multivariable logistic regression was used to estimate odds ratios (OR) for incident PD according to distressing dream frequency, with adjustment for potential confounders. Findings During a mean follow-up of 7·3 years, 91 (2·4%) cases of incident PD were identified. Participants with frequent distressing dreams at baseline had a 2-fold risk for incident PD (OR, 2·01; 95% CI, 1·1-3·6, P = 0.02). When stratified by follow-up time, frequent distressing dreams were associated with a greater than 3-fold risk for incident PD during the first 5 years after baseline (OR, 3·38; 95% CI, 1·3-8·7; P = 0·01), however no effect was found during the subsequent 7 years (OR, 1·55; 95% CI, 0·7-3·3; P = 0·26). Interpretation In this prospective cohort, frequent distressing dreams were associated with an increased risk for incident PD. The association was only significant within the 5 years prior to diagnosis, which suggests that frequent distressing dreams may be a prodromal symptom of PD. Funding The study received no external funding.
Collapse
Affiliation(s)
- Dr Abidemi I. Otaiku
- Department of Neurology, Birmingham City Hospital, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Geng C, Wang S, Li Z, Xu P, Bai Y, Zhou Y, Zhang X, Li Y, Zhang J, Zhang H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front Aging Neurosci 2022; 14:844483. [PMID: 35431890 PMCID: PMC9012114 DOI: 10.3389/fnagi.2022.844483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study investigates the topological properties of brain functional networks in patients with isolated rapid eye movement sleep behavior disorder (iRBD).Participants and MethodsA total of 21 patients with iRBD (iRBD group) and 22 healthy controls (HCs) were evaluated using resting-state functional MRI (rs-fMRI) and neuropsychological measures in cognitive and motor function. Data from rs-fMRI were analyzed using graph theory, which included small-world properties, network efficiency, network local efficiency, nodal shortest path, node efficiency, and network connectivity, as well as the relationship between behavioral characteristics and altered brain topological features.ResultsRey-Osterrieth complex figure test (ROCFT-copy), symbol digital modalities test (SDMT), auditory verbal learning test (AVLT)-N1, AVLT-N2, AVLT-N3, and AVLT-N1-3 scores were significantly lower in patients with iRBD than in HC (P < 0.05), while trail making test A (TMT-A), TMT-B, and Unified Parkinson’s Disease Rating Scale Part-III (UPDRS-III) scores were higher in patients with iRBD (P < 0.05). Compared with the HCs, patients with iRBD had no difference in the small-world attributes (P > 0.05). However, there was a significant decrease in network global efficiency (P = 0.0052) and network local efficiency (P = 0.0146), while an increase in characteristic path length (P = 0.0071). There was lower nodal efficiency in occipital gyrus and nodal shortest path in frontal, parietal, temporal lobe, and cingulate gyrus. Functional connectivities were decreased between the nodes of occipital with the regions where they had declined nodal shortest path. There was a positive correlation between TMT-A scores and the nodal efficiency of the right middle occipital gyrus (R = 0.602, P = 0.014).ConclusionThese results suggest that abnormal behaviors may be associated with disrupted brain network topology and functional connectivity in patients with iRBD and also provide novel insights to understand pathophysiological mechanisms in iRBD.
Collapse
Affiliation(s)
- Chaofan Geng
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shenghui Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Pengfei Xu
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yingying Bai
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Zhou
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xinyu Zhang
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
| | - Yongli Li
- Department of Functional Imaging, Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongju Zhang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
- *Correspondence: Hongju Zhang,
| |
Collapse
|
11
|
Personalized Assessment of Insomnia and Sleep Quality in Patients with Parkinson's Disease. J Pers Med 2022; 12:jpm12020322. [PMID: 35207811 PMCID: PMC8875986 DOI: 10.3390/jpm12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Sleep disturbances are more common in patients with Parkinson’s disease (PD) than in the general population and are considered one of the most troublesome symptoms by these patients. Insomnia represents one of the most common sleep disturbances in PD, and it correlates significantly with poor quality of life. There are several known causes of insomnia in the general population, but the complex manifestations that might be associated with PD may also induce insomnia and impact the quality of sleep. The treatment of insomnia and the strategies needed to improve sleep quality may therefore represent a challenge for the neurologist. A personalized approach to the PD patient with insomnia may help the clinician to identify the factors and comorbidities that should also be considered in order to establish a better individualized therapeutic plan. This review will focus on the main characteristics and correlations of insomnia, the most common risk factors, and the main subjective and objective methods indicated for the assessment of insomnia and sleep quality in order to offer a concise guide containing the main steps needed to approach the PD patient with chronic insomnia in a personalized manner.
Collapse
|
12
|
Magnetic Resonance Parkinsonism Index Is Associated with REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci 2022; 12:brainsci12020202. [PMID: 35203966 PMCID: PMC8870674 DOI: 10.3390/brainsci12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the association between the Magnetic Resonance Parkinsonism Index (MRPI) and REM sleep behavior disorder (RBD). We included 226 de novo PD patients (82 PD-RBD and 144 PD-noRBD) and 19 idiopathic RBD patients. Furthermore, 3T T1-weighted MR images were used for automated brainstem calculations. MRPI values were higher in the PD-RBD (p = 0.004) compared to PD-noRBD patients. Moreover, MRPI proved to be a significant predictor of REM Behavior Disorder Screening Questionnaire scores in PD (β = 0.195, p = 0.007) and iRBD patients (β = 0.582, p = 0.003). MRPI can be used as an imaging marker of RBD in patients with de novo PD and iRBD.
Collapse
|
13
|
Otaiku AI. Dream Content Predicts Motor and Cognitive Decline in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1041-1051. [PMID: 34631940 DOI: 10.1002/mdc3.13318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Dream content alterations in Parkinson's disease (PD) are associated with motor and cognitive dysfunction cross-sectionally. Although recent studies suggest abnormal dream content in PD might also predict cognitive decline, the relationship between dream content and motor decline in PD remains unknown. Objective To investigate whether abnormal dream content in PD predicts both motor and cognitive decline. Methods Data were obtained from the Parkinson's Progression Markers Initiative cohort study. Patients were evaluated at baseline and at the 60-month follow-up, with validated clinical scales, including the REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), Montreal Cognitive Assessment (MoCA), and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III). Patients were dichotomized using RBDSQ item 2, which inquires whether they frequently experience aggression in their dreams. Regression analyses were used to assess whether frequent aggressive dreams at baseline predicted longitudinal changes in MDS-UPDRS III and MoCA scores as well as progression to Hoehn and Yahr stage 3 (H&Y ≥ 3) and cognitive impairment. Results Of the patients, 58/224 (25.9%) reported frequent aggressive dreams at baseline. Aggressive dreams predicted a faster increase in MDS-UPDRS III scores (β = 4.64; P = 0.007) and a faster decrease in MoCA scores (β = -1.49; P = 0.001). Furthermore, they conferred a 6-fold and 2-fold risk for progressing to H&Y ≥ 3 (odds ratio [OR] = 5.82; P = 0.005) and cognitive impairment (OR, 2.35; P = 0.023) within 60 months. These associations remained robust when adjusting for potential confounders. Conclusions This study demonstrates for the first time that frequent aggressive dreams in newly diagnosed PD may independently predict early motor and cognitive decline.
Collapse
Affiliation(s)
- Abidemi I Otaiku
- Department of Neurology Queen Elizabeth Hospital Birmingham Birmingham United Kingdom.,Centre for Human Brain Health University of Birmingham Birmingham United Kingdom
| |
Collapse
|
14
|
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021; 37:1010-1024. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which manifests with both motor and non-motor symptoms. Circadian rhythm dysregulation, as one of the most challenging non-motor features of PD, usually appears long before obvious motor symptoms. Moreover, the dysregulated circadian rhythm has recently been reported to play pivotal roles in PD pathogenesis, and it has emerged as a hot topic in PD research. In this review, we briefly introduce the circadian rhythm and circadian rhythm-related genes, and then summarize recent research progress on the altered circadian rhythm in PD, ranging from clinical features to the possible causes of PD-related circadian disorders. We believe that future comprehensive studies on the topic may not only help us to explore the mechanisms of PD, but also shed light on the better management of PD.
Collapse
Affiliation(s)
- Yufei Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Long Niu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xinyao Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
15
|
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology 2021; 300:260-278. [PMID: 34100679 DOI: 10.1148/radiol.2021203341] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson disease is characterized by dopaminergic cell loss in the substantia nigra of the midbrain. There are various imaging markers for Parkinson disease. Recent advances in MRI have enabled elucidation of the underlying pathophysiologic changes in the nigral structure. This has contributed to accurate and early diagnosis and has improved disease progression monitoring. This article aims to review recent developments in nigral imaging for Parkinson disease and other parkinsonian syndromes, including nigrosome imaging, neuromelanin imaging, quantitative iron mapping, and diffusion-tensor imaging. In particular, this article examines nigrosome imaging using 7-T MRI and 3-T susceptibility-weighted imaging. Finally, this article discusses volumetry and its clinical importance related to symptom manifestation. This review will improve understanding of recent advancements in nigral imaging of Parkinson disease. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Chul-Ho Sohn
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Ji-Hyun Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Beomseok Jeon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
16
|
Sleep Disorders and Cognitive Dysfunctions in Parkinson's Disease: A Meta-Analytic Study. Neuropsychol Rev 2021; 31:643-682. [PMID: 33779875 DOI: 10.1007/s11065-020-09473-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
A relationship between sleep disorders and cognitive dysfunctions was reported in Parkinson's Disease (PD), however, some studies did not confirm the link. A meta-analytic study was performed to investigate the relationship between sleep disorders and cognitive dysfunctions, and to clarify the evolution of cognitive status in PD patients with sleep disorders.The systematic literature search was performed up to November 2020 using PubMed, Scopus, and PsycINFO databases. We included studies published in peer-reviewed journals in English providing results about neuropsychological comparison between patients with or without sleep disorders. Meta-analysis on cross-sectional data included 54 studies for REM Sleep Behavior Disorder (RBD), 22 for Excessive Daytime Sleepiness (EDS), 7 for Obstructive Sleep Apnea (OSA), 13 for Restless Legs Syndrome (RLS), and 5 for insomnia, the meta-analysis on longitudinal data included 7 studies.RBD was related to deficits of global cognitive functioning, memory, executive functions, attention/working memory, language, and visuospatial abilities. EDS was associated with deficits of global cognitive functioning and attention and working memory abilities, whereas RLS and OSA were related to global cognitive dysfunction. Moreover, we revealed that PD patients with RBD and those with EDS performed worse than PD patients without sleep disorders at follow-up rather than baseline evaluation. Our results suggest that sleep disorders are associated with cognitive deficits supporting indirectly that these, especially the REM Sleep Behavior Disorder, reflect abnormalities of frontal networks and posterior cortical areas. Sleep disorders in patients with PD seem to also increase the risk for long-term cognitive decline.
Collapse
|
17
|
Donahue EK, Murdos A, Jakowec MW, Sheikh-Bahaei N, Toga AW, Petzinger GM, Sepehrband F. Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease. Mov Disord 2021; 36:1126-1136. [PMID: 33470460 DOI: 10.1002/mds.28473] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The glymphatic system, including the perivascular space (PVS), plays a critical role in brain homeostasis. Although mounting evidence from Alzheimer's disease has supported the potential role of PVS in neurodegenerative disorders, its contribution in Parkinson's disease (PD) has not been fully elucidated. Although idiopathic (IPD) and familial PD (FPD) share similar pathophysiology in terms of protein aggregation, the differential impact of PVS on PD subtypes remains unknown. Our objective was to examine the differences in PVS volume fraction in IPD and FPD compared to healthy controls (HCs) and nonmanifest carriers (NMCs). METHODS A total of 470 individuals were analyzed from the Parkinson's Progression Markers Initiative database, including (1) IPD (n = 179), (2) FPD (LRRK2 [leucine-rich repeat kinase 2], glucocerebrosidase, or α-synuclein) (n = 67), (3) NMC (n = 101), and (4) HCs (n = 84). Total PVS volume fraction (%) was compared using parcellation and quantitation within greater white matter volume at global and regional levels in all cortical and subcortical white matter. RESULTS There was a significant increase in global and regional PVS volume fraction in PD versus non-PD, particularly in FPD versus NMC and LRRK2 FPD versus NMC. Regionally, FPD and NMC differed in the medial orbitofrontal region, as did LRRK2 FPD versus NMC. Non-PD and PD differed in the medial orbitofrontal region and the banks of the superior temporal regions. IPD and FPD differed in the cuneus and lateral occipital regions. CONCLUSIONS Our findings support the role of PVS in PD and highlight a potentially significant contribution of PVS to the pathophysiology of FPD, particularly LRRK2. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Erin K Donahue
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Amjad Murdos
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Giselle M Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Farshid Sepehrband
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
18
|
Haddad R, Denys P, Arlandis S, Giannantoni A, Del Popolo G, Panicker JN, De Ridder D, Pauwaert K, Van Kerrebroeck PE, Everaert K. Nocturia and Nocturnal Polyuria in Neurological Patients: From Epidemiology to Treatment. A Systematic Review of the Literature. Eur Urol Focus 2020; 6:922-934. [PMID: 32192920 DOI: 10.1016/j.euf.2020.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/12/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Nocturia is among the most common and bothersome lower urinary tract symptoms (LUTS), but there is no clear consensus on how to identify and manage this symptom in the neurological population. OBJECTIVE To systematically review the literature about nocturia in neurological patients. EVIDENCE ACQUISITION Studies were identified by electronic search of Cochrane and Medline databases. The studies were included if their participants had acquired neurological pathology among multiple sclerosis (MS), Parkinson's disease (PD), stroke, spinal cord injury (SCI), and reported data on the epidemiology, aetiology, diagnosis, or treatment of nocturia. An independent extraction of the articles was performed by two authors using predetermined datasets, including quality-of-study indicators. EVIDENCE SYNTHESIS A total of 132 studies were included; 46 evaluated the epidemiology of nocturia, 28 the possible aetiologies, 10 the diagnostic tools, and 60 the treatments. Nocturia prevalence ranged from 15% to 96% depending on the pathology and definition used. It was one of the most frequently reported LUTS in PD and stroke patients. Several validated questionnaires were found to screen for nocturia in this population. Causalities were numerous: LUT, renal, sleep, cardiovascular dysfunctions, etc. Treatments targeted these mechanisms, with an overall risk of bias assessed as high or serious. The highest level of evidence was seen in MS patients: pelvic floor muscle training, cannabinoids, and desmopressin were effective, but not melatonin. In stroke patients, transcutaneous sacral and transcutaneous tibial nerve stimulation (TTNS) improved nocturia; in PD patients, TTNS, solifenacin, and rotigotine did not. CONCLUSIONS Nocturia is highly prevalent in patients with neurological disorders. Causalities and treatments are not different from the general population, but are poorly studied in neurological patients. PATIENT SUMMARY In this report, we looked at the published studies about nocturia-the fact of waking to void during the hours of sleep-in patients with neurological diseases. We found that nocturia is very frequent in this population, that the causes are the same as in the general population but may be combined, and that treatments are also the same but have an overall weak level of evidence. We conclude that more research is needed on this topic.
Collapse
Affiliation(s)
- Rebecca Haddad
- Urology Department, Ghent University Hospital, Ghent, Belgium.
| | - Pierre Denys
- Neuro-Urology Unit, PMR Department, Université de Versailles Saint Quentin, APHP, Raymond Poincaré Hospital, Garches, France
| | - Salvador Arlandis
- Urology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Antonella Giannantoni
- Department of Medical and Surgical Sciences and Neurosciences, Functional and Surgical Urology Unit, University of Siena, Siena, Italy
| | - Giulio Del Popolo
- Neuro-Urology & Spinal Unit Department, Careggi University Hospital, Firenze, Italy
| | - Jalesh N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Queen Square Institute of Neurology, London, UK
| | - Dirk De Ridder
- Urology, University Hospitals KU Leuven, Leuven, Belgium
| | - Kim Pauwaert
- Urology Department, Ghent University Hospital, Ghent, Belgium
| | | | - Karel Everaert
- Urology Department, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
19
|
Chen X, Hou X, Luo X, Zhou S, Liu X, Liu B, Chen J. Altered Intra- and Inter-regional Functional Connectivity of the Anterior Cingulate Gyrus in Patients With Tremor-Dominant Parkinson's Disease Complicated With Sleep Disorder. Front Aging Neurosci 2019; 11:319. [PMID: 31824298 PMCID: PMC6881235 DOI: 10.3389/fnagi.2019.00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate changes in brain function at the regional and whole-brain levels in patients with tremor-dominant Parkinson's disease (TDPD) complicated by sleep disorder (SD) by regional homogeneity (ReHo) and functional connectivity (FC) analysis of whole-brain resting-state functional magnetic resonance images. Materials and Methods: ReHo and seed-based FC analyses were conducted among 32 patients with TDPD and SD (TDPD-SD), 24 with TDPD and no SD (TDPD-NSD), and 23 healthy controls (HCs) to assess spontaneous brain activity and network-level brain function. Correlation analyses were used to examine the associations between brain activity and the clinical data. Results: Anterior cingulate gyrus (ACC) ReHo values differed significantly among the groups. ACC ReHo values were increased in TDPD-SD vs. HC and TDPD-SD vs. TDPD-NSD. ACC ReHo values were reduced in TDPD-NSD vs. HC. TDPD-SD ReHo values were positively correlated with Pittsburgh Sleep Quality Index (PSQI) scores (r = 0.41, p = 0.020) but negatively correlated with Parkinson's Disease Sleep Scale (PDSS) scores (r = -0.38, p = 0.030). FC analysis using ACC as a mask showed that FC of the left olfactory cortex (L-OC), right straight gyrus (R-SG), right superior parietal gyrus (R-SPG), and right precuneus differed significantly among the groups. FC values between R-SG and ACC were significantly lower in TDPD-SD than in TDPD-NSD, while the FC of L-OC and R-OC with ACC was significantly lower in TDPD-SD than in HC. FC between ACC and L-OC, R-SPG, and the right precuneus was lower in TDPD-NSD than in HC. There was no correlation between the FC values and other clinical data in any of the groups. Conclusion: Localized abnormal activity in TDPD-SD was chiefly triggered by ACC. The change in the ReHo of ACC is closely related to the severity of TDPD-associated SD, revealing the role of this region as a regulator of the sleep mechanism in TDPD. Significant abnormal FC was found between R-SG and ACC in TDPD-SD but was not shown to correlate with clinical data.
Collapse
Affiliation(s)
- Xinjie Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sifan Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, ZHUHAI Branch of Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, China
| |
Collapse
|
20
|
Onofrj M, Espay AJ, Bonanni L, Delli Pizzi S, Sensi SL. Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov Disord 2019; 34:1100-1111. [PMID: 31307115 DOI: 10.1002/mds.27781] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hallucinations, delusions, and functional neurological manifestations (conversion and somatic symptom disorders) of Parkinson's disease (PD) and dementia with Lewy bodies increase in frequency with disease progression, predict the onset of cognitive decline, and eventually blend with and are concealed by dementia. These symptoms share the absence of reality constraints and can be considered comparable elements of the PD-dementia with Lewy bodies psychosis. We propose that PD-dementia with Lewy bodies psychotic disorders depend on thalamic dysfunction promoting a theta burst mode and subsequent thalamocortical dysrhythmia with focal cortical coherence to theta electroencephalogram rhythms. This theta electroencephalogram activity, also called fast-theta or pre-alpha, has been shown to predict cognitive decline and fluctuations in Parkinson's disease with dementia and dementia with Lewy bodies. These electroencephalogram alterations are now considered a predictive marker for progression to dementia. The resulting thalamocortical dysrhythmia inhibits the frontal attentional network and favors the decoupling of the default mode network. As the default mode network is involved in integration of self-referential information into conscious perception, unconstrained default mode network activity, as revealed by recent imaging studies, leads to random formation of connections that link strong autobiographical correlates to trivial stimuli, thereby producing hallucinations, delusions, and functional neurological disorders. The thalamocortical dysrhythmia default mode network decoupling hypothesis provides the rationale for the design and testing of novel therapeutic pharmacological and nonpharmacological interventions in the context of PD, PD with dementia, and dementia with Lewy bodies. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, California, USA
| |
Collapse
|
21
|
Specketer K, Zabetian CP, Edwards KL, Tian L, Quinn JF, Peterson-Hiller AL, Chung KA, Hu SC, Montine TJ, Cholerton BA. Visuospatial functioning is associated with sleep disturbance and hallucinations in nondemented patients with Parkinson's disease. J Clin Exp Neuropsychol 2019; 41:803-813. [PMID: 31177941 DOI: 10.1080/13803395.2019.1623180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction: Cognitive impairment is a common symptom of Parkinson's disease (PD) associated with reduced quality of life and a more severe disease state. Previous research has shown an association between visuospatial dysfunction and worse disease course; however, it is not clear whether this is separable from executive dysfunction and/or dementia. This study sought to determine whether distinct cognitive factors could be measured in a large PD cohort, and if those factors were differentially associated with other PD-related features, specifically to provide insight into visuospatial dysfunction. Methods: Non-demented participants with PD from the Pacific Udall Center were enrolled (n = 197). Co-participants (n = 104) completed questionnaires when available. Principal components factor analysis (PCFA) was utilized to group the neuropsychological test scores into independent factors by considering those with big factor loading (≥.40). Linear and logistic regression analyses were performed to examine the relationship between the cognitive factors identified in the PCFA and other clinical features of PD. Results: Six factors were extracted from the PCFA: 1) executive/processing speed, 2) visual learning & memory/visuospatial, 3) auditory working memory, 4) contextual verbal memory, 5) semantic learning & memory, and 6) visuospatial. Motor severity (p = 0.001), mood (p < 0.001), and performance on activities of daily living scores (informant: p < 0.001, patient: p = 0.009) were primarily associated with frontal and executive factors. General sleep disturbance (p < 0.006) and hallucinations (p = 0.002) were primarily associated with visuospatial functioning and visual learning/memory. Conclusions: Motor symptoms, mood, and performance on activities of daily living were primarily associated with frontal/executive factors. Sleep disturbance and hallucinations were associated with visuospatial functioning and visual learning/memory only, over and above executive functioning and regardless of cognitive disease severity. These findings support that visuospatial function in PD may indicate a more severe disease course, and that symptom management should be guided accordingly.
Collapse
Affiliation(s)
- Krista Specketer
- a Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA
| | - Cyrus P Zabetian
- a Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,b Department of Neurology, University of Washington School of Medicine , Seattle , WA , USA
| | - Karen L Edwards
- c Department of Epidemiology, University of California, Irvine, School of Medicine , Irvine , CA , USA
| | - Lu Tian
- d Department of Biomedical Data Science, Stanford University School of Medicine , Palo Alto , CA , USA
| | - Joseph F Quinn
- e Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center , Portland , OR , USA.,f Department of Neurology, Oregon Health and Science University , Portland , OR , USA
| | - Amie L Peterson-Hiller
- e Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center , Portland , OR , USA.,f Department of Neurology, Oregon Health and Science University , Portland , OR , USA
| | - Kathryn A Chung
- e Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center , Portland , OR , USA.,f Department of Neurology, Oregon Health and Science University , Portland , OR , USA
| | - Shu-Ching Hu
- a Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,b Department of Neurology, University of Washington School of Medicine , Seattle , WA , USA
| | - Thomas J Montine
- g Department of Pathology, Stanford University School of Medicine , Palo Alto , CA , USA
| | - Brenna A Cholerton
- g Department of Pathology, Stanford University School of Medicine , Palo Alto , CA , USA
| |
Collapse
|