1
|
Khadhraoui E, Nickl-Jockschat T, Henkes H, Behme D, Müller SJ. Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer. Front Aging Neurosci 2024; 16:1459652. [PMID: 39291276 PMCID: PMC11405240 DOI: 10.3389/fnagi.2024.1459652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
BackgroundDementia can be caused by numerous different diseases that present variable clinical courses and reveal multiple patterns of brain atrophy, making its accurate early diagnosis by conventional examinative means challenging. Although highly accurate and powerful, magnetic resonance imaging (MRI) currently plays only a supportive role in dementia diagnosis, largely due to the enormous volume and diversity of data it generates. AI-based software solutions/algorithms that can perform automated segmentation and volumetry analyses of MRI data are being increasingly used to address this issue. Numerous commercial and non-commercial software solutions for automated brain segmentation and volumetry exist, with FreeSurfer being the most frequently used.ObjectivesThis Review is an account of the current situation regarding the application of automated brain segmentation and volumetry to dementia diagnosis.MethodsWe performed a PubMed search for “FreeSurfer AND Dementia” and obtained 493 results. Based on these search results, we conducted an in-depth source analysis to identify additional publications, software tools, and methods. Studies were analyzed for design, patient collective, and for statistical evaluation (mathematical methods, correlations).ResultsIn the studies identified, the main diseases and cohorts represented were Alzheimer’s disease (n = 276), mild cognitive impairment (n = 157), frontotemporal dementia (n = 34), Parkinson’s disease (n = 29), dementia with Lewy bodies (n = 20), and healthy controls (n = 356). The findings and methods of a selection of the studies identified were summarized and discussed.ConclusionOur evaluation showed that, while a large number of studies and software solutions are available, many diseases are underrepresented in terms of their incidence. There is therefore plenty of scope for targeted research.
Collapse
Affiliation(s)
- Eya Khadhraoui
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, University Hospital, Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Magdeburg, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Katharinen-Hospital, Klinikum-Stuttgart, Stuttgart, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
- Stimulate Research Campus Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
2
|
Amrami A, Singh NA, Ali F, Pham NTT, Stephens YC, Josephs KA, Whitwell JL. Clinical Utility of Tectal Plate Measurements on Magnetic Resonance Imaging in Progressive Supranuclear Palsy. Mov Disord 2024; 39:1402-1407. [PMID: 38586905 PMCID: PMC11341258 DOI: 10.1002/mds.29806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), observed in PSP-Richardson's syndrome (PSP-RS) and to a lesser extent PSP-parkinsonism (PSP-P). OBJECTIVE Our aim was to critically evaluate the utility of manual magnetic resonance imaging measurements of the midbrain tectal plate as a diagnostic biomarker in PSP. METHODS Length of the tectal plate and width of the superior and inferior colliculi were measured in 40 PSP (20 PSP-RS and 20 PSP-P) patients and compared with 20 Parkinson's disease and 20 healthy control subjects. RESULTS Tectal plate length was reduced in both PSP groups compared with Parkinson's disease and control subjects and was most abnormal in PSP-RS followed by PSP-P. Reduced tectal plate length was associated with worse PSP Rating Scale scores. CONCLUSIONS Simple manual measurements of tectal plate length show utility as a diagnostic biomarker in PSP, particularly for PSP-RS.
Collapse
Affiliation(s)
- Abigail Amrami
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester-55905, MN, USA
| | | | - Farwa Ali
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester-55905, MN, USA
| | - Nha Trang Thu Pham
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester-55905, MN, USA
| | | | - Keith A. Josephs
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester-55905, MN, USA
| | | |
Collapse
|
3
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
4
|
Brinia ME, Kapsali I, Giagkou N, Constantinides VC. Planimetric and Volumetric Brainstem MRI Markers in Progressive Supranuclear Palsy, Multiple System Atrophy, and Corticobasal Syndrome. A Systematic Review and Meta-Analysis. Neurol Int 2023; 16:1-19. [PMID: 38392951 PMCID: PMC10892270 DOI: 10.3390/neurolint16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Various MRI markers-including midbrain and pons areas (Marea, Parea) and volumes (Mvol, Pvol), ratios (M/Parea, M/Pvol), and composite markers (magnetic resonance imaging Parkinsonism Indices 1,2; MRPI 1,2)-have been proposed as imaging markers of Richardson's syndrome (RS) and multiple system atrophy-Parkinsonism (MSA-P). A systematic review/meta-analysis of relevant studies aiming to compare the diagnostic accuracy of these imaging markers is lacking. METHODS Pubmed and Scopus were searched for studies with >10 patients (RS, MSA-P or CBS) and >10 controls with data on Marea, Parea, Mvol, Pvol, M/Parea, M/Pvol, MRPI 1, and MRPI 2. Cohen's d, as a measure of effect size, was calculated for all markers in RS, MSA-P, and CBS. RESULTS Twenty-five studies on RS, five studies on MSA-P, and four studies on CBS were included. Midbrain area provided the greatest effect size for differentiating RS from controls (Cohen's d = -3.10; p < 0.001), followed by M/Parea and MRPI 1. MSA-P had decreased midbrain and pontine areas. Included studies exhibited high heterogeneity, whereas publication bias was low. CONCLUSIONS Midbrain area is the optimal MRI marker for RS, and pons area is optimal for MSA-P. M/Parea and MRPIs produce smaller effect sizes for differentiating RS from controls.
Collapse
Affiliation(s)
| | | | | | - Vasilios C. Constantinides
- First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (M.-E.B.); (I.K.)
| |
Collapse
|
5
|
Wen Y, Yang Q, Jiao B, Zhang W, Lin J, Zhu Y, Xu Q, Zhou H, Weng L, Liao X, Zhou Y, Wang J, Guo J, Yan X, Jiang H, Tang B, Shen L. Clinical features of progressive supranuclear palsy. Front Aging Neurosci 2023; 15:1229491. [PMID: 37711994 PMCID: PMC10498458 DOI: 10.3389/fnagi.2023.1229491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Background Progressive supranuclear palsy (PSP) is a clinically heterogenous atypical parkinsonian syndrome. Therefore, early recognition and correct diagnosis of PSP is challenging but essential. This study aims to characterize the clinical manifestations, magnetic resonance imaging (MRI), and longitudinal MRI changes of PSP in China. Method Clinical and MRI presentations were compared among 150 cases with PSP. Then the longitudinal MRI changes among 20 patients with PSP were further explored. Additionally, a series of midbrain-based MRI parameters was compared between PSP-P and PD. Results Throughout the course of the disease, there were differences in the symptoms of the fall and hand tremor between the PSP-RS and PSP-P. There were significant differences in the six midbrain-based MRI parameters between the PSP-RS and the PSP-P, including hummingbird sign, midbrain diameter, midbrain to pons ratio (MTPR), midbrain area, midbrain area to pons area ratio (Ma/Pa), and midbrain tegmental length (MBTegm). Longitudinal MRI studies revealed that the annual rel.ΔMTPR and rel.Δ (Ma/Pa) for PSP were 5.55 and 6.52%, respectively; additionally, PSP-RS presented a higher decline rate than PSP-P. Moreover, MTPR ≤0.56, midbrain diameter ≤ 0.92, midbrain area ≤ 1.00, and third ventricle width ≤ 0.75 could identify PSP-P from PD. Conclusion PSP-P differs from PSP-RS regarding clinical manifestations, MRI, and longitudinal MRI changes. MRI parameters could be potential imaging markers to identify PSP-P from PD.
Collapse
Affiliation(s)
- Yafei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
6
|
Xie T, Wills AM, Liao C, Dale ML, Ramsden DB, Padmanaban M, Abou Chaar W, Pantelyat A, Golbe LI. Using Downgaze Palsy Progression Rate to Model Survival in Progressive Supranuclear Palsy-Richardson Syndrome. Mov Disord 2023; 38:304-312. [PMID: 36573662 DOI: 10.1002/mds.29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Rapid development of downgaze palsy, the most specific symptom of progressive supranuclear palsy (PSP), has been associated with shorter survival in small studies. OBJECTIVE We hypothesized that the progression rate of downgaze palsy and other disease features could predict survival if assessed soon after the onset of downgaze palsy in a large data set. METHODS We used a longitudinal database of 414 patients with probable PSP-Richardson syndrome from 1994 to 2020. The data set comprised demographics and, for each visit, 28 PSP Rating Scale (PSPRS) items and PSP stage scores. We calculated the rate of progression of each PSPRS item as its item score when the downgaze item first reached 1 or more (on a 0-4 scale) divided by disease duration at that point. Multivariate Cox regression was applied to identify variables independently associated with survival. We also explored the progression pattern of total PSPRS and downgaze palsy scores with disease course. RESULTS Independently associated with shorter survival were older onset age and faster progression of downgaze palsy, dysphagia for liquids, difficulty in returning to seat, and PSP stage. Patients with survival duration within 1 year of the median survival (6.58 years) showed approximately linear progression of the PSPRS score and downgaze palsy score during years 2 through 6 of the disease course. CONCLUSIONS Older onset age and faster progression of downgaze palsy and several axial features are associated with shorter survival. The disease typically progresses in approximately linear fashion during years 2 through 6. These results may aid study design and patient counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chuanhong Liao
- Biostatistics Laboratory, Department of Public Health Sciences, University of Chicago Medicine, Chicago, Illinois, USA
| | - Marian L Dale
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - David B Ramsden
- Institute of Metabolism and Systems Research of Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Widad Abou Chaar
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Riley KJ, Graner BD, Veronesi MC. The tauopathies: Neuroimaging characteristics and emerging experimental therapies. J Neuroimaging 2022; 32:565-581. [PMID: 35470528 PMCID: PMC9545715 DOI: 10.1111/jon.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.
Collapse
Affiliation(s)
- Kalen J Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian D Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael C Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Xie T, Yuen CA, Kang W, Padmanaban M, Hain TC, Nichols J. Severity of Downgaze Palsy in the Context of Disease Duration Could Estimate Survival Duration in Patients With Progressive Supranuclear Palsy. Front Neurol 2021; 12:736784. [PMID: 34650511 PMCID: PMC8505535 DOI: 10.3389/fneur.2021.736784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
It is an unmet need to estimate survival duration for patients with progressive supranuclear palsy (PSP). The objective of this study was to identify factors associated with the survival duration in patients with PSP. We followed up 23 patients with probable PSP-RS (Richardson syndrome) or PSP-P (parkinsonism) in our PSP center until death from 2011 to 2019. We prospectively and quantitatively rated their downgaze palsy whenever first noticed in our clinic. This was utilized along with the disease duration, motor function, medication use for parkinsonism, sex, age at onset of PSP, comorbid pulmonary and cardiovascular diseases, and the total survival duration from the onset of PSP to death for prediction analysis. A well-fitted linear regression model and a multivariant Cox model were applied to identify predicting factors for total survival duration. All patients had the specific hummingbird sign on brain MRI for PSP when downgaze palsy was documented. We found that the severity of downgaze palsy and the disease duration at the assessment were consistently correlated with the total survival duration in both models. The total survival duration could be further estimated by a formed regression equation. We conclude that severity and time to develop downgaze palsy could help to estimate the total survival duration in patients with probable PSP-RS and PSP-P, the major forms of PSP, which has significant clinical applications in clinical counseling and trial enrollment.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Carlen A Yuen
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States.,Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Wenjun Kang
- Center of Research Informatics, University of Chicago, Chicago, IL, United States
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Timothy C Hain
- Chicago Dizziness and Hearing, Northwestern University, Chicago, IL, United States
| | - Jeffrey Nichols
- Department of Ophthalmology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
9
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Picillo M, Abate F, Ponticorvo S, Tepedino MF, Erro R, Frosini D, Del Prete E, Cecchi P, Cosottini M, Ceravolo R, Salle GD, Salle FD, Esposito F, Pellecchia MT, Manara R, Barone P. Association of MRI Measures With Disease Severity and Progression in Progressive Supranuclear Palsy. Front Neurol 2020; 11:603161. [PMID: 33281738 PMCID: PMC7688910 DOI: 10.3389/fneur.2020.603161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: To verify the association of midbrain-based MRI measures as well as cortical volumes with disease core features and progression in patients with Progressive Supranuclear Palsy (PSP). Methods: Sixty-seven patients (52.2% with Richardson's syndrome) were included in the present analysis. Available midbrain-based MRI morphometric assessments as well as cortical lobar volumes were computed. Ocular, gait and postural involvement at the time of MRI was evaluated with the PSP rating scale. Specific milestones or death were used to estimate disease progression up to 72 months follow up. Hierarchical regression models and survival analysis were used for analyzing cross-sectional and longitudinal data, respectively. Results: Multivariate models showed vertical supranuclear gaze palsy was associated with smaller midbrain area (OR: 0.02, 95% CI 0.00-0.175, p = 0.006). Cox regression adjusted for age, disease duration, and phenotype demonstrated that lower midbrain area (HR: 0.122, 95% CI 0.030-0.493, p = 0.003) and diameter (HR: 0.313, 95% CI 0.112-0.878, p = 0.027), higher MR Parkinsonism Index (HR: 6.162, 95% CI 1.790-21.209, p = 0.004) and larger third ventricle width (HR: 2.755, 95% CI 1.068-7.108, p = 0.036) were associated with higher risk of dependency on wheelchair. Conclusions: Irrespective of disease features and other MRI parameters, reduced midbrain size is significantly associated with greater ocular motor dysfunction at the time of MRI and more rapid disease progression over follow up. This is the first comprehensive study to systematically assess the association of available midbrain-based MRI measures and cortical volumes with disease severity and progression in a large cohort of patients with PSP in a real-world setting.
Collapse
Affiliation(s)
- Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Filomena Abate
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Sara Ponticorvo
- Department of Medicine, Surgery & Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Maria Francesca Tepedino
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Roberto Erro
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Daniela Frosini
- Dipartimento di Medicina Clinica e Sperimentale Università di Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Dipartimento di Medicina Clinica e Sperimentale Università di Pisa, Pisa, Italy
| | - Paolo Cecchi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Mirco Cosottini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Dipartimento di Medicina Clinica e Sperimentale Università di Pisa, Pisa, Italy
| | | | - Francesco Di Salle
- Department of Medicine, Surgery & Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery & Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,Department of Diagnostic Imaging, University Hospital A.O.U. OO.RR. San Giovanni di Dio e Ruggi D'Aragona, Scuola Medica Salernitana, Salerno, Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Renzo Manara
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Fisciano, Italy
| |
Collapse
|