1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Leitão LPC, Monte N, Rodrigues JCG, de Freitas LM, Ribeiro-Dos-Santos AM, Ribeiro-Dos-Santos Â, Santos S, de Souza SJ, Fernandes MR, Dos Santos NPC. Severe toxicities in amazonian populations and the role of precision medicine in acute lymphoblastic leukemia treatment. Sci Rep 2024; 14:29344. [PMID: 39592679 PMCID: PMC11599904 DOI: 10.1038/s41598-024-80393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Corticosteroids, such as prednisone or dexamethasone, constitute integral components of antineoplastic regimens for Acute Lymphoblastic Leukemia (ALL) therapy, albeit accompanied by significant adverse effects. The multifactorial nature of interindividual variability in drug response, encompassing genetic polymorphisms, underscores the complexity of pharmacotherapy outcomes. However, pharmacogenetic investigations hitherto have predominantly focused on cohorts of European and North American descent, thus limiting the generalizability of findings to populations with minimal representation. Indigenous populations in Brazil, particularly those inhabiting the Amazon region, exhibit a distinctive genetic heritage, predominantly characterized by Native American ancestry. These populations frequently manifest suboptimal therapeutic responses and elevated mortality rates following ALL treatment. Therefore, delineating the molecular signatures of genes implicated in the corticosteroid pathway within these indigenous cohorts assumes paramount importance. This study identified novel variants within genes associated with the glucocorticoid pathway in indigenous Amazonian populations and conducted comparative analyses of variant frequencies across diverse global populations. The findings underscore the genetic uniqueness of indigenous groups and highlight the potential impact of genetic factors on adverse responses to ALL treatment. Precision medicine approaches tailored to the genetic peculiarities of indigenous populations emerge as imperative strategies for optimizing therapeutic efficacy and mitigating treatment-related toxicities in these communities.
Collapse
Affiliation(s)
- Luciana Pereira Colares Leitão
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil.
- Afya Faculdade de Ciências Médicas de Palmas, Palmas 77.017-004, Tocantins, Brazil.
| | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Lilian Marques de Freitas
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 01, PA, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 01, PA, Brazil
| | | | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| | - Ney Pereira Carneiro Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, 4487, PA, Brazil
| |
Collapse
|
3
|
Mladenić T, Wagner J, Kadivnik M, Pereza N, Ostojić S, Peterlin B, Dević Pavlić S. Protective Effect of EBF Transcription Factor 1 ( EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study. Int J Mol Sci 2024; 25:11192. [PMID: 39456973 PMCID: PMC11508472 DOI: 10.3390/ijms252011192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the potential role of specific single-nucleotide polymorphisms (SNPs) in the genes Astrotactin 1 (ASTN1), EBF Transcription Factor 1 (EBF1), Eukaryotic Elongation Factor, Selenocysteine-tRNA Specific (EEFSEC), Microtubule-Associated Serine/Threonine Kinase 1 (MAST1), and Tumor Necrosis Factor Alpha (TNF-α) to assess whether these genetic variants contribute to the risk of spontaneous preterm birth (sPTB). A case-control study was conducted involving 573 women from Croatia and Slovenia: 248 with sporadic sPTB (positive personal and negative family history of sPTB before 37 weeks' gestation), 44 with familial sPTB (positive personal and family history of sPTB before 37 weeks' gestation), and 281 control women. The analysis of ASTN1 rs146756455, EBF1 rs2963463, EBF1 rs2946169, EEFSEC rs201450565, MAST1 rs188343966, and TNF-α rs1800629 SNPs was performed using TaqMan real-time PCR. p-values were Bonferroni-adjusted for multiple comparisons. EBF1 SNP rs2963463 was significantly associated with sPTB (p adj = 0.03). Women carrying the CC genotype had a 3-4-times lower risk of sPTB (p adj < 0.0001). In addition, a significant difference in the frequency of the minor C allele was observed when comparing familial sPTB cases with controls (p adj < 0.0001). All other associations were based on unadjusted p-values. The minor T allele of EBF1 SNP rs2946169 was more frequent in sPTB cases overall than in controls, especially in sporadic sPTB (p = 0.045). Similarly, the CC genotype of ASTN1 SNP rs146756455 was more frequent in sporadic sPTB cases compared to controls (p = 0.019). Finally, the TNF-α SNP rs1800629 minor A allele and AA genotype were more common in the familial sPTB group compared to sporadic sPTB and controls (p < 0.05). The EBF1 SNP rs2963463 polymorphism showed a protective effect in the pathogenesis of sPTB, particularly in women carrying the CC genotype. Moreover, EBF1 SNP rs2946169 and ASTN1 SNP rs146756455, as well as TNF-α SNP rs1800629, were associated with an increased risk of sPTB, representing suggestive potential risk factors for sporadic and familial sPTB, respectively.
Collapse
Affiliation(s)
- Tea Mladenić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia;
| | - Mirta Kadivnik
- Department of Obstetrics and Gynecology, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia;
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Nina Pereza
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (N.P.); (S.O.); (S.D.P.)
| |
Collapse
|
4
|
Cereja-Pantoja KBC, de Brito Azevedo TC, Vinagre LWMS, de Moraes FCA, da Costa Nunes GG, Monte N, de Alcântara AL, Cohen-Paes A, Fernandes MR, Batista Dos Santos SE, de Assumpção PP, Ribeiro Dos Santos ÂK, Burbano RMR, Guerrero RC, Carracedo Á, Carneiro Dos Santos NP. Alterations in pharmacogenetic genes and their implications for imatinib resistance in Chronic Myeloid Leukemia patients from an admixed population. Cancer Chemother Pharmacol 2024; 94:387-395. [PMID: 38888766 DOI: 10.1007/s00280-024-04689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Imatinib is the tyrosine kinase inhibitor used as the gold standard for the treatment of Chronic Myeloid Leukemia. However, about 30% of patients do not respond well to this therapy. Variants in drug administration, distribution, metabolism and excretion (ADME) genes play an important role in drug resistance especially in admixed populations. We investigated 129 patients diagnosed with Chronic Myeloid Leukemia treated with imatinib as first choice therapy. The participants of the study are highly admixed, populations that exhibit genetic diversity and complexity due to the contributions of multiple ancestral groups. Thus, the aim of this work was to investigate the association of 30 SNVs in genes related to response to treatment with Imatinibe in CML. Our results indicated that for the rs2290573 of the ULK3 gene, patients with the recessive AA genotype are three times more likely to develop resistance over time (secondary resistance) (p = 0.019, OR = 3.19, IC 95%= 1.21-8.36). Finally, we performed interaction analysis between the investigated variants and found several associations between SNVs and secondary resistance. We concluded that the variant rs2290573 of the ULK3 gene may be relevant for predicting treatment response of CML with imatinib, as well as possible treatment resistance. The use of predictive biomarkers is an important tool for therapeutic choice of patients, improving their quality of life and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | - Amanda Cohen-Paes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | | | | | | | | | - Raquel Cruz Guerrero
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ángel Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | |
Collapse
|
5
|
Kadivnik M, Plečko D, Kralik K, Arvaj N, Wagner J. Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth. J Clin Med 2024; 13:2429. [PMID: 38673702 PMCID: PMC11051338 DOI: 10.3390/jcm13082429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: The association of gene variants for interleukin 6 (IL-6) (rs1800796), interleukin 10 (IL-10) (rs1800896) and tumor necrosis factorα (TNFα (rs1800629) with the occurrence of spontaneous preterm birth (PTB) was investigated to determine whether these genetic variants are a risk factor. Methods: A total of 199 blood samples from pregnant women who had given birth prematurely and 200 control blood samples were analyzed to determine single nucleotide polymorphisms (SNPs) of genes for IL-6 (rs1800796), IL-10 (rs1800896) and TNFα (rs1800629). The control samples were samples from pregnant women with term delivery. The isolation of DNA was performed on mini-spin columns according to the manufacturer's protocol. The quality and purity of the isolated DNA were tested using a Qubit 3 fluorometer. Genotyping was performed with an ABI PRISM 7500 SDS using TaqMan SNP genotyping assays. The genotypes obtained were analyzed using the 7500 Software v2.3 package. Results: Carriers of the A/A genotype for the rs1800629 SNP of the TNFα gene have a 4.81 times greater chance of late-onset PTB compared to carriers of the G/G and A/G genotypes in the recessive inheritance model. The presence of the G/G genotype in the recessive inheritance model compared with the G/A and A/A genotypes for the rs1800896 SNP of the IL-10 gene represents a potentially protective factor, with mothers in the term-birth group having an almost 2-fold lower odds of PTB in general and an almost 10-fold lower odds of early PTB. On the other hand, carriers of the A/G genotype of rs1800896 have a 1.54-fold higher chance of preterm birth in general and a 1.6-fold higher chance of late preterm birth in the superdominant inheritance model compared to the A/A and G/G genotypes in the group of mothers with PTB. In this study, no association was found between PTB and the rs1800796 SNP of the IL-6 gene. Conclusions: rs1800629 in mothers was associated with PTB. rs1800896 shows a potentially protective effect for the occurrence of PTB in this study. No association was found between PTB and rs1800796.
Collapse
Affiliation(s)
- Mirta Kadivnik
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, J. Huttlera 4, 31000 Osijek, Croatia
| | - Deni Plečko
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, J. Huttlera 4, 31000 Osijek, Croatia; (D.P.)
| | - Kristina Kralik
- Department of Medical Statistics and Informatics, Faculty of Medicine, J.J. Strossmayer University, J. Huttlera 4, 31000 Osijek, Croatia
| | - Nena Arvaj
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, J. Huttlera 4, 31000 Osijek, Croatia; (D.P.)
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, J. Huttlera 4, 31000 Osijek, Croatia; (D.P.)
| |
Collapse
|
6
|
Gondane P, Kumbhakarn S, Maity P, Kapat K. Recent Advances and Challenges in the Early Diagnosis and Treatment of Preterm Labor. Bioengineering (Basel) 2024; 11:161. [PMID: 38391647 PMCID: PMC10886370 DOI: 10.3390/bioengineering11020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Preterm birth (PTB) is the primary cause of neonatal mortality and long-term disabilities. The unknown mechanism behind PTB makes diagnosis difficult, yet early detection is necessary for controlling and averting related consequences. The primary focus of this work is to provide an overview of the known risk factors associated with preterm labor and the conventional and advanced procedures for early detection of PTB, including multi-omics and artificial intelligence/machine learning (AI/ML)- based approaches. It also discusses the principles of detecting various proteomic biomarkers based on lateral flow immunoassay and microfluidic chips, along with the commercially available point-of-care testing (POCT) devices and associated challenges. After briefing the therapeutic and preventive measures of PTB, this review summarizes with an outlook.
Collapse
Affiliation(s)
- Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| |
Collapse
|
7
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
8
|
Sena-Dos-Santos C, Cavalcante GC, Marques D, Silva CS, de Moraes MR, Pinto P, Santana-da-Silva MN, Ferraz RS, Costa SPT, Ventura AMR, Póvoa MM, Cunha MG, Ribeiro-Dos-Santos Â. Association of apoptosis-related variants to malaria infection and parasite density in individuals from the Brazilian Amazon. Malar J 2023; 22:295. [PMID: 37794476 PMCID: PMC10552311 DOI: 10.1186/s12936-023-04729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In malaria infection, apoptosis acts as an important immunomodulatory mechanism that leads to the elimination of parasitized cells, thus reducing the parasite density and controlling immune cell populations. Here, it was investigated the association of INDEL variants in apoptotic genes-rs10562972 (FAS), rs4197 (FADD), rs3834129 and rs59308963 (CASP8), rs61079693 (CASP9), rs4647655 (CASP3), rs11269260 (BCL-2), and rs17880560 (TP53)-and the influence of genetic ancestry with susceptibility to malaria and parasite density in an admixed population from the Brazilian Amazon. METHODS Total DNA was extracted from 126 malaria patients and 101 uninfected individuals for investigation of genetic ancestries and genotypic distribution of apoptosis-related variants by Multiplex PCR. Association analyses consisted of multivariate logistic regressions, considering the following comparisons: (i) DEL/DEL genotype vs. INS/DEL + INS/INS; and (ii) INS/INS vs. INS/DEL + DEL/DEL. RESULTS Individuals infected by Plasmodium falciparum had significantly higher African ancestry proportions in comparison to uninfected controls, Plasmodium vivax, and mixed infections. The INS/INS genotype of rs3834129 (CASP8) seemed to increase the risk for P. falciparum infection (P = 0.038; OR = 1.867; 95% CI 0.736-3.725), while the DEL/DEL genotype presented a significant protective effect against infection by P. falciparum (P = 0.049; OR = 0.446; 95% CI 0.185-0.944) and mixed infection (P = 0.026; OR = 0.545; 95% CI 0.281-0.996), and was associated with lower parasite density in P. falciparum malaria (P = 0.009; OR = 0.383; 95% CI 0.113-1.295). Additionally, the INS/INS genotype of rs10562972 (FAS) was more frequent among individuals infected with P. vivax compared to P. falciparum (P = 0.036; OR = 2.493; 95% CI 1.104-4.551), and the DEL/DEL genotype of rs17880560 (TP53) was significantly more present in patients with mono-infection by P. vivax than in individuals with mixed infection (P = 0.029; OR = 0.667; 95% CI 0.211-1.669). CONCLUSIONS In conclusion, variants in apoptosis genes are associated with malaria susceptibility and parasite density, indicating the role of apoptosis-related genetic profiles in immune responses against malaria infection.
Collapse
Affiliation(s)
- Camille Sena-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Diego Marques
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Caio S Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Milene Raiol de Moraes
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Dermatoimmunology, Federal University of Pará (UFPA), Marituba, Brazil
| | - Mayara Natália Santana-da-Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Rafaella S Ferraz
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Ana Maria R Ventura
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Marinete M Póvoa
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Maristela G Cunha
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil.
- Program of Oncology and Medical Sciences, Oncology Research Center, Belém, Brazil.
| |
Collapse
|
9
|
Monte N, Carla Gomes Rodrigues J, Wallacy Morikawa Souza Vinagre L, Favacho Pastana L, Leite de Alcântara A, Pereira Colares Leitão L, Maurício Ribeiro-Dos-Santos A, Rodrigues Fernandes M, Ribeiro-Dos-Santos Â, Farias Guerreiro J, Pimentel Assumpção P, Santos S, José de Souza S, Pereira Carneiro Dos Santos N. Epidemiological-molecular profile of variants associated with type 2 diabetes mellitus in indigenous populations from the Brazilian Amazon. Diabetes Res Clin Pract 2023; 199:110641. [PMID: 36966975 DOI: 10.1016/j.diabres.2023.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
AIMS While lifestyle factors are strongly associated with Type 2 diabetes (T2DM), genetic characteristics also play a role. However, much of the research on T2DM genetics focuses on European and Asian populations, leaving underrepresented groups, such as indigenous populations with high diabetes prevalence, understudied. METHODS We characterized the molecular profile of 10 genes involved in T2DM risk through complete exome sequencing of 64 indigenous individuals belonging to 12 different Amazonian ethnic groups. RESULTS The analysis revealed 157 variants, including four exclusive variants in the indigenous population located in the NOTCH2 and WFS1 genes with a modifier or moderate impact on protein effectiveness. Furthermore, a high impact variant in NOTCH2 was also found. Additionally, the frequency of 10 variants in the indigenous group showed significant differences when compared to other global populations that were evaluated. CONCLUSION Our study identified 4 novel variants associated with T2DM in the NOTCH2 and WFS1 genes in the Amazonian indigenous populations we studied. In addition, a variant with a high predicted impact in NOTCH2 was also observed. These findings represent a valuable starting point for conducting further association and functional studies, which could help to improve our understanding of the unique characteristics of this population.
Collapse
Affiliation(s)
- Natasha Monte
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil.
| | - Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | - Lui Wallacy Morikawa Souza Vinagre
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | - Lucas Favacho Pastana
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | - Angélica Leite de Alcântara
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | - Luciana Pereira Colares Leitão
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | | | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil; Hospital Ophir Loyola, 992, Belém, PA, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, 01, Belém, PA, Brazil.
| | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, 01, Belém, PA, Brazil.
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil.
| | | | - Ney Pereira Carneiro Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Bio,lógicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, 4487, Belém, PA, Brazil
| |
Collapse
|
10
|
Ramos BRA, Tronco JA, Carvalho M, Felix TF, Reis PP, Silveira JC, Silva MG. Circulating Extracellular Vesicles microRNAs Are Altered in Women Undergoing Preterm Birth. Int J Mol Sci 2023; 24:ijms24065527. [PMID: 36982598 PMCID: PMC10058006 DOI: 10.3390/ijms24065527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Preterm labor (PTL) and preterm premature rupture of membranes (PPROM) lead to high perinatal morbidity/mortality rates worldwide. Small extracellular vesicles (sEV) act in cell communication and contain microRNAs that may contribute to the pathogenesis of these complications. We aimed to compare the expression, in sEV from peripheral blood, of miRNAs between term and preterm pregnancies. This cross-sectional study included women who underwent PTL, PPROM, and term pregnancies, examined at the Botucatu Medical School Hospital, SP, Brazil. sEV were isolated from plasma. Western blot used to detect exosomal protein CD63 and nanoparticle tracking analysis were performed. The expression of 800 miRNAs was assessed by the nCounter Humanv3 miRNA Assay (NanoString). The miRNA expression and relative risk were determined. Samples from 31 women—15 preterm and 16 term—were included. miR-612 expression was increased in the preterm groups. miR-612 has been shown to increase apoptosis in tumor cells and to regulate the nuclear factor κB inflammatory pathway, processes involved in PTL/PPROM pathogenesis. miR-1253, miR-1283, miR378e, and miR-579-3p, all associated with cellular senescence, were downregulated in PPROM compared with term pregnancies. We conclude that miRNAs from circulating sEV are differentially expressed between term and preterm pregnancies and modulate genes in pathways that are relevant to PTL/PPROM pathogenesis.
Collapse
Affiliation(s)
- Bruna Ribeiro Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
- Faculty of Medicine—Jaú Campus, University of Western São Paulo (UNOESTE), Jaú 17213-700, SP, Brazil
- Correspondence: ; Tel.: +55-(14)-3624-1109
| | - Júlia Abbade Tronco
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Márcio Carvalho
- Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Tainara Francini Felix
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Patrícia Pintor Reis
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Juliano Coelho Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Márcia Guimarães Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| |
Collapse
|
11
|
Cohen-Paes A, de Alcântara AL, de Souza Menezes E, Moreira FC, Fernandes MR, Guerreiro JF, Ribeiro-Dos-Santos Â, Dos Santos SEB, dos Santos NPC. Characterization of DNA Polymerase Genes in Amazonian Amerindian Populations. Genes (Basel) 2022; 14:53. [PMID: 36672794 PMCID: PMC9859017 DOI: 10.3390/genes14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their continuing geographic isolation, the Amerindian populations of the Brazilian Amazon present a different genetic profile when compared to other continental populations. Few studies have investigated genetic variants present in these populations, especially in the context of next-generation sequencing. Knowledge of the molecular profile of a population is one of the bases for inferences about human evolutionary history, in addition, it has the ability to assist in the validation of molecular biomarkers of susceptibility to complex and rare diseases, and in the improvement of specific precision medicine protocols applied to these populations and to populations with high Amerindian ancestry, such as Brazilians. DNA polymerases play essential roles in DNA replication, repair, recombination, or damage repair, and their influence on various clinical phenotypes has been demonstrated in the specialized literature. Thus, the aim of this study is to characterize the molecular profile of POLA1, POLE, POLG, POLQ, and REV3L genes in Amerindian populations from the Brazilian Amazon, comparing these findings with genomic data from five continental populations described in the gnomAD database, and with data from the Brazilian population described in ABraOM. We performed the whole exome sequencing (WES) of 63 Indigenous individuals. Our study described for the first time the allele frequency of 45 variants already described in the other continental populations, but never before described in the investigated Amerindian populations. Our results also describe eight unique variants of the investigated Amerindians populations, with predictions of moderate, modifier and high clinical impact. Our findings demonstrate the unique genetic profile of the Indigenous population of the Brazilian Amazon, reinforcing the need for further studies on these populations, and may contribute to the creation of public policies that optimize not only the quality of life of this population, but also of the Brazilian population.
Collapse
Affiliation(s)
- Amanda Cohen-Paes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, PA, Brazil
| | | | - Elisa de Souza Menezes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, PA, Brazil
| | | | | | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, PA, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Sidney Emanuel Batista Dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, PA, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | |
Collapse
|
12
|
Cao XL, Zhou XY, Xu NX, Chen SC, Xu CM. Association of IL-4 and IL-10 Polymorphisms With Preterm Birth Susceptibility: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:917383. [PMID: 35860261 PMCID: PMC9289468 DOI: 10.3389/fimmu.2022.917383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePreterm birth (PTB) is a typical inflammatory disease with unclear pathogenesis. The studies investigating the relationship between anti-inflammatory factors IL-4 and IL-10 gene polymorphisms and PTB produced conflicting results. This systematic review and meta-analysis aimed to summarize the effects of IL-4 and IL-10 gene polymorphisms and clarify their possible association with PTB.MethodsA systematic literature review was conducted using PubMed, Web of Science, and Cochrane library (up to 02 April 2022). The MeSH terms, related entry terms, and other names in “Gene” database were used to find relevant articles. A fixed- or random-effects model was used to calculate the significance of IL-4 and IL-10 gene polymorphisms, depending on study heterogeneity. The odds ratios (OR) and 95% confidence intervals (CIs) were calculated in the allele, recessive, dominant, co-dominant, and over-dominant models. The Eggers publication bias plot was used to graphically represent the publication bias.ResultsPolymorphisms in two interleukins (IL-4-590C/T (rs2243250) = 5 and IL-10-592A/C (rs1800872), -819T/C (rs1800871) and -1082A/G (rs1800896) = 16) were found in 21 articles. Overall, only the over-dominant gene model AA + GG vs. AG revealed significant association between IL-10-1082A/G (rs1800896) and PTB (OR [95% CI] = 0.87 [0.76, 0.99], p = 0.04). However, in the allele model, recessive model, dominant model, co-dominant model, and over-dominant model, the polymorphisms for IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), and IL-10-819T/C (rs1800871) were not found to be associated with the risk of PTB. In gene models, no statistically significant association was found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), IL-10-819T/C (rs1800871), and IL-10-1082A/G (rs1800896) polymorphisms and PTB in subgroup analyses by racial or control group Hardy-Weinberg Equilibrium (HWE) p-value. Eggers’s publication bias plot and heterogeneity test (I2<50%, p = 0.05) of IL-10-1082A/G (rs1800896) suggested that the funnel asymmetry could be due to publication bias rather than heterogeneity.ConclusionThe current study suggests that the over-dominant gene model AA + GG vs. AG of IL-10-1082A/G (rs1800896) polymorphism may be associated with genetic susceptibility to PTB and may have a protective function against PTB risk. There was unclear association found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872) and IL-10-819T/C (rs1800871) polymorphisms and PTB. Due to the limitations of included studies and the risk of publication bias, additional research is required to confirm our findings.Systematic Review Registrationhttps://inplasy.com/inplasy-2022-4-0044, identifier INPLASY202240044.
Collapse
Affiliation(s)
- Xian-Ling Cao
- Obstetrics and Gynecology Hospital of Fudan University, School of Medicine, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xuan-You Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nai-Xin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Chang Chen
- Obstetrics and Gynecology Hospital of Fudan University, School of Medicine, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chen-Ming Xu
- Obstetrics and Gynecology Hospital of Fudan University, School of Medicine, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Chen-Ming Xu, ; orcid.org/0000-0003-0433-8909
| |
Collapse
|
13
|
Rodrigues JCG, Fernandes MR, Ribeiro-dos-Santos AM, de Araújo GS, de Souza SJ, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, dos Santos NPC, Santos S. Pharmacogenomic Profile of Amazonian Amerindians. J Pers Med 2022; 12:jpm12060952. [PMID: 35743738 PMCID: PMC9224798 DOI: 10.3390/jpm12060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Given the role of pharmacogenomics in the large variability observed in drug efficacy/safety, an assessment about the pharmacogenomic profile of patients prior to drug prescription or dose adjustment is paramount to improve adherence to treatment and prevent adverse drug reaction events. A population commonly underrepresented in pharmacogenomic studies is the Native American populations, which have a unique genetic profile due to a long process of geographic isolation and other genetic and evolutionary processes. Here, we describe the pharmacogenetic variability of Native American populations regarding 160 pharmacogenes involved in absorption, distribution, metabolism, and excretion processes and biological pathways of different therapies. Data were obtained through complete exome sequencing of individuals from 12 different Amerindian groups of the Brazilian Amazon. The study reports a total of 3311 variants; of this, 167 are exclusive to Amerindian populations, and 1183 are located in coding regions. Among these new variants, we found non-synonymous coding variants in the DPYD and the IFNL4 genes and variants with high allelic frequencies in intronic regions of the MTHFR, TYMS, GSTT1, and CYP2D6 genes. Additionally, 332 variants with either high or moderate (disruptive or non-disruptive impact in protein effectiveness, respectively) significance were found with a minimum of 1% frequency in the Amazonian Amerindian population. The data reported here serve as scientific basis for future design of specific treatment protocols for Amazonian Amerindian populations as well as for populations admixed with them, such as the Northern Brazilian population.
Collapse
Affiliation(s)
- Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Correspondence: ; Tel.: +55-(91)-983973173
| | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - André Maurício Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Gilderlanio Santana de Araújo
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | | | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Ândrea Ribeiro-dos-Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - Ney Pereira Carneiro dos Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - Sidney Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| |
Collapse
|
14
|
The Search for Cancer Biomarkers: Assessing the Distribution of INDEL Markers in Different Genetic Ancestries. Curr Issues Mol Biol 2022; 44:2275-2286. [PMID: 35678683 PMCID: PMC9164054 DOI: 10.3390/cimb44050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is a multifactorial group of diseases, being highly incident and one of the leading causes of death worldwide. In Brazil, there is a great variation in cancer incidence and impact among the different geographic regions, partly due to the genetic heterogeneity of the population in this country, composed mainly by European (EUR), Native American (NAM), African (AFR), and Asian (ASN) ancestries. Among different populations, genetic markers commonly present diverse allelic frequencies, but in admixed populations, such as the Brazilian population, data is still limited, which is an issue that might influence cancer incidence. Therefore, we analyzed the allelic and genotypic distribution of 12 INDEL polymorphisms of interest in populations from the five Brazilian geographic regions and in populations representing EUR, NAM, AFR, and ASN, as well as tissue expression in silico. Genotypes were obtained by multiplex PCR and the statistical analyses were done using R, while data of tissue expression for each marker was extracted from GTEx portal. We highlight that all analyzed markers presented statistical differences in at least one of the population comparisons, and that we found 39 tissues to be differentially expressed depending on the genotype. Here, we point out the differences in genotype distribution and gene expression of potential biomarkers for risk of cancer development and we reinforce the importance of this type of study in populations with different genetic backgrounds.
Collapse
|
15
|
Gupta JK, Alfirevic A. Systematic review of preterm birth multi-omic biomarker studies. Expert Rev Mol Med 2022; 24:1-24. [PMID: 35379367 PMCID: PMC9884789 DOI: 10.1017/erm.2022.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Preterm birth (PTB) is one of the leading causes of deaths in infants under the age of five. Known risk factors of PTB include genetic factors, lifestyle choices or infection. Identification of omic biomarkers associated with PTB could aid clinical management of women at high risk of early labour and thereby reduce neonatal morbidity. This systematic literature review aimed to identify and summarise maternal omic and multi-omic (genomics, transcriptomics, proteomics and metabolites) biomarker studies of PTB. Original research articles were retrieved from three databases: PubMed, Web of Science and Science Direct, using specified search terms for each omic discipline. PTB studies investigating genomics, transcriptomics, proteomics or metabolomics biomarkers prior to onset of labour were included. Data were collected and reviewed independently. Pathway analyses were completed on the biomarkers from non-targeted omic studies using Reactome pathway analysis tool. A total of 149 omic studies were identified; most of the literature investigated proteomic biomarkers. Pathway analysis identified several cellular processes associated with the omic biomarkers reported in the literature. Study heterogeneity was observed across the research articles, including the use of different gestation cut-offs to define PTB. Infection/inflammatory biomarkers were identified across majority of papers using a range of targeted and non-targeted approaches.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| |
Collapse
|
16
|
Impact of Variants in the ATIC and ARID5B Genes on Therapeutic Failure with Imatinib in Patients with Chronic Myeloid Leukemia. Genes (Basel) 2022; 13:genes13020330. [PMID: 35205374 PMCID: PMC8872593 DOI: 10.3390/genes13020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm derived from the balanced reciprocal translocation of chromosomes 9 and 22 t (9q34 and 22q11), which leads to the formation of the Philadelphia chromosome and fusion of the BCR-ABL genes. The first-line treatment for CML is imatinib, a tyrosine kinase inhibitor that acts on the BCR-ABL protein. However, even though it is a target-specific drug, about 25% of patients do not respond to this treatment. The resistance mechanisms involved in this process have been investigated and studies have shown that germinal alterations can influence this mechanism. The aim of this work was to investigate 32 polymorphisms in 24 genes of carcinogenic pathway to verify the influence of these genetic variants on the response to treatment with imatinib. Our results demonstrated that individuals with the recessive GG genotype for the rs2372536 variant in the ATIC gene are approximately three times more likely to experience treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI = 0.9986–7.441), as well as individuals with the TT genotype for the rs10821936 variant in the ARID5B gene, who also have a higher risk for treatment failure with imatinib over time (p = 0.02, HR = 0.4053, IC 95% = 0.1802–0.911). In conclusion, we show that variants in the ATIC and ARIDB5 gene, never screened in previous studies, could potentially influence the therapeutic response to imatinib in patients treated for CML.
Collapse
|
17
|
Genome and transcriptome profiling of spontaneous preterm birth phenotypes. Sci Rep 2022; 12:1003. [PMID: 35046466 PMCID: PMC8770724 DOI: 10.1038/s41598-022-04881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
Preterm birth (PTB) occurs before 37 weeks of gestation. Risk factors include genetics and infection/inflammation. Different mechanisms have been reported for spontaneous preterm birth (SPTB) and preterm birth following preterm premature rupture of membranes (PPROM). This study aimed to identify early pregnancy biomarkers of SPTB and PPROM from the maternal genome and transcriptome. Pregnant women were recruited at the Liverpool Women’s Hospital. Pregnancy outcomes were categorised as SPTB, PPROM (≤ 34 weeks gestation, n = 53), high-risk term (HTERM, ≥ 37 weeks, n = 126) or low-risk (no history of SPTB/PPROM) term (LTERM, ≥ 39 weeks, n = 188). Blood samples were collected at 16 and 20 weeks gestation from which, genome (UK Biobank Axiom array) and transcriptome (Clariom D Human assay) data were acquired. PLINK and R were used to perform genetic association and differential expression analyses and expression quantitative trait loci (eQTL) mapping. Several significant molecular signatures were identified across the analyses in preterm cases. Genome-wide significant SNP rs14675645 (ASTN1) was associated with SPTB whereas microRNA-142 transcript and PPARG1-FOXP3 gene set were associated with PPROM at week 20 of gestation and is related to inflammation and immune response. This study has determined genomic and transcriptomic candidate biomarkers of SPTB and PPROM that require validation in diverse populations.
Collapse
|
18
|
Donda KT, Torres BA, Khashu M, Maheshwari A. Single Nucleotide Polymorphisms in Neonatal Necrotizing Enterocolitis. Curr Pediatr Rev 2022; 18:197-209. [PMID: 35040407 DOI: 10.2174/1573396318666220117091621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
The etiopathogenesis of necrotizing enterocolitis (NEC) remains unclear, but increasing information suggests that the risk and severity of NEC may be influenced by single nucleotide polymorphisms in many genes. In this article, we have reviewed gene variations that have either been specifically identified in NEC or have been noted in other inflammatory bowel disorders with similar histopathological abnormalities. We present evidence from our own peer-reviewed laboratory studies and data from an extensive literature search in the databases PubMed, EMBASE, and Scopus. To avoid bias in the identification of existing studies, search keywords were short-listed both from our own studies and from PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Keyur T Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, FL, USA
| | - Benjamin A Torres
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, FL, USA
| | - Minesh Khashu
- Poole Hospital NHS Foundation Trust and Bournemouth University, Poole, United Kingdom
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, ML, USA
| |
Collapse
|
19
|
Fernandes MR, Rodrigues JCG, Dobbin EAF, Pastana LF, da Costa DF, Barra WF, Modesto AAC, de Assumpção PB, da Costa Silva AL, Dos Santos SEB, Burbano RMR, de Assumpção PP, Dos Santos NPC. Influence of FPGS, ABCC4, SLC29A1, and MTHFR genes on the pharmacogenomics of fluoropyrimidines in patients with gastrointestinal cancer from the Brazilian Amazon. Cancer Chemother Pharmacol 2021; 88:837-844. [PMID: 34331561 DOI: 10.1007/s00280-021-04327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Fluoropyrimidines are one of the most used drug class to treat cancer patients, although they show high levels of associated toxicity. This study analyzed 33 polymorphisms in 17 pharmacogenes involved with the pharmacogenomics of fluoropyrimidines, in gastrointestinal cancer patients undergoing fluoropyrimidine-based treatment in the Brazilian Amazon. METHODS The study population was composed of 216 patients, 92 of whom have an anatomopathological diagnosis of gastric cancer and 124 of colorectal cancer. The single nucleotide polymorphisms (SNP) were genotyped by allelic discrimination using the TaqMan OpenArray Genotyping technology, with a panel of 32 customized assays, run in a QuantStudio ™ 12K Flex Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad USA). Ancestry analysis was performed using 61 autosomal ancestry informative markers (AIMs). RESULTS The study population show mean values of 48.1% European, 31.1% Amerindian, and 20.8% African ancestries. A significant risk association for general and severe toxicity was found in the rs4451422 of FPGS (p = 0.001; OR 3.40; CI 95% 1.65-7.00 and p = 0.006; OR 4.63; CI 95% 1.56-13.72, respectively) and the rs9524885 of ABCC4 (p = 0.023; OR 2.74; CI 95% 1.14-6.65 and p = 0.024; OR 5.36; IC 95% 1.24-23.11, respectively) genes. The rs760370 in the SLC29A1 gene (p = 0.009; OR 6.71; CI 95% 1.16-8.21) and the rs1801133 in the MTHFR toxicity (p = 0.023; OR 3.09; CI 95% 1.16-8.21) gene also demonstrated to be significant, although only for severe toxicity. The results found in this study did not have statistics analysis correction. CONCLUSION Four polymorphisms of the ABCC4, FPGS, SLC29A1, and MTHFR genes are likely to be potential predictive biomarkers for precision medicine in fluoropyrimidine-based treatments in the population of the Brazilian Amazon, which is constituted by a unique genetic background.
Collapse
Affiliation(s)
- Marianne Rodrigues Fernandes
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | - Artur Luiz da Costa Silva
- Centro de Genômica E Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | | | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | |
Collapse
|
20
|
Monte N, Pantoja KBCC, Rodrigues JCG, de Carvalho DC, Azevedo TCB, Pereira EEB, de Assumpção PP, Dos Santos SEB, Fernandes MR, Dos Santos NPC. Polymorphisms in the CYP2A6 and ABCC4 genes are associated with a protective effect on chronic myeloid leukemia in the Brazilian Amazon population. Mol Genet Genomic Med 2021; 9:e1694. [PMID: 34050721 PMCID: PMC8372092 DOI: 10.1002/mgg3.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Susceptibility to Chronic Myeloid Leukemia (CML) may be modulated by genetic variables. However, the majority of previous investigations have focused on genetically homogeneous populations, resulting in a lack of evidence on how genetic factors may influence the development of CML in miscegenated populations. We analyzed 30 polymorphisms in genes related to DNA repair, folate metabolism, transmembrane transport, xenobiotic metabolism, and pyrimidine synthesis in relation to their potential role in the susceptibility of the individual to CML. METHODS This case-control study included 126 healthy individuals and 143 patients diagnosed with CML from the admixed population of the Brazilian Amazon. The samples were genotyped by real-time PCR and the genetic ancestry analysis was based on a panel of 61 ancestry informative markers. RESULTS The results indicated a protective effect against the development of CML in carriers of the C allele of the rs28399433 (CYP2A6) gene and the CC genotype of the rs3742106 (ABCC4) gene. CONCLUSION Our findings suggest that the rs3742106 (ABCC4) and rs28399433 (CYP2A6) polymorphisms may modulate susceptibility to CML in a population of the Brazilian Amazon region.
Collapse
Affiliation(s)
- Natasha Monte
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Karla B C C Pantoja
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Juliana C G Rodrigues
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Darlen C de Carvalho
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | | | - Esdras E B Pereira
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Paulo P de Assumpção
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Sidney E B Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Marianne R Fernandes
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil.,Departamento de Oncohematologia, Hospital Ophir Loyola, Belém, Brazil
| | - Ney P C Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| |
Collapse
|
21
|
Steckle V, Shynlova O, Lye S, Bocking A. Low-intensity physical activity may protect pregnant women against spontaneous preterm labour: a prospective case-control study. Appl Physiol Nutr Metab 2021; 46:337-345. [DOI: 10.1139/apnm-2019-0911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune system plays a significant role in onset of parturition. Maternal antenatal physical activity can influence immune function and timing of labour. We examined physical activity patterns and concentration of 19 cytokines at 16 and 27 weeks gestational age (GA), in peripheral plasma of 28 asymptomatic women who later had spontaneous preterm labour (SPTL, <37 weeks GA) and 52 women who later delivered at term (TL; ≥37 weeks GA). This nested case-control study used data from the Ontario Birth Study cohort. Exercise was assessed using the International Physical Activity Questionnaire, and cytokines were analyzed using Luminex assays. There was no significant difference in exercise patterns between SPTL and TL subjects. Plasma concentration of interleukin (IL)-10 was significantly higher in SPTL women at 16 and 27 weeks, while tumour necrosis factor alpha (TNF-α), IL-8, and monocyte chemoattractant protein (MCP)-1 concentrations were increased at 27 weeks GA (p < 0.05). Concentration of IL-10 was negatively correlated with the amount of reported walking (ρ = −0.264, p = 0.03). Women should be encouraged to partake in low-intensity exercise throughout pregnancy, as it may confer a protective effect against SPTL through IL-10–mediated pathways. Additionally, plasma cytokine analysis at 27 weeks GA may be useful for predicting SPTL in asymptomatic women. Novelty: In women that delivered preterm, plasma levels of anti-inflammatory cytokine IL-10 were significantly elevated at 16 and 27 weeks of gestation. Plasma levels of IL-10 were negatively correlated with the amount of reported walking. Concentration of IL-8, MCP-1 and TNF-α were increased in plasma of asymptomatic women that subsequently deliver preterm.
Collapse
Affiliation(s)
- Valerie Steckle
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| | - Alan Bocking
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
22
|
Identification of Variants (rs11571707, rs144848, and rs11571769) in the BRCA2 Gene Associated with Hereditary Breast Cancer in Indigenous Populations of the Brazilian Amazon. Genes (Basel) 2021; 12:genes12020142. [PMID: 33499154 PMCID: PMC7911168 DOI: 10.3390/genes12020142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/09/2022] Open
Abstract
Estimates show that 5–10% of breast cancer cases are hereditary, caused by genetic variants in autosomal dominant genes; of these, 16% are due to germline mutations in the BRCA1 and BRCA2 genes. The comprehension of the mutation profile of these genes in the Brazilian population, particularly in Amazonian Amerindian groups, is scarce. We investigated fifteen polymorphisms in the BRCA1 and BRCA2 genes in Amazonian Amerindians and compared the results with the findings of global populations publicly available in the 1000 Genomes Project database. Our study shows that three variants (rs11571769, rs144848, and rs11571707) of the BRCA2 gene, commonly associated with hereditary breast cancer, had a significantly higher allele frequency in the Amazonian Amerindian individuals in comparison with the African, American, European, and Asian groups analyzed. These data outline the singular genetic profiles of the indigenous population from the Brazilian Amazon region. The knowledge about BRCA1 and BRCA2 variants is critical to establish public policies for hereditary breast cancer screening in Amerindian groups and populations admixed with them, such as the Brazilian population.
Collapse
|
23
|
de Castro ANCL, Fernandes MR, de Carvalho DC, de Souza TP, Rodrigues JCG, Andrade RB, Modesto AAC, Santos S, Assumpção PP, dos Santos NPC. Polymorphisms of xenobiotic-metabolizing and transporter genes, and the risk of gastric and colorectal cancer in an admixed population from the Brazilian Amazon. Am J Transl Res 2020; 12:6626-6636. [PMID: 33194059 PMCID: PMC7653561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Colorectal (CRC) and gastric (GC) cancers are associated with increased morbidity and mortality. Single nucleotide polymorphisms (SNPs) of xenobiotic metabolism and transporter genes may play a role in the individual responses to exposure to substances implicated in susceptibility to cancer. The investigation of the genetic variation related to the activation and detoxification of xenobiotics may thus help to clarify the prevalence of neoplasms. We analyzed the role of 30 SNPs in xenobiotic-metabolizing and transporter genes in susceptibility to CRC and GC. The study included individuals diagnosed with CRC (n = 121) and GC (n = 95), and 141 controls (non-cancer patients) from the population of Belém, in the Brazilian Amazon. The results indicated an association between the polymorphisms rs2231142 (P = 0.013; OR = 3.01; 95% CI = 1.26-7.13), in the ABCG2 gene, and rs1801159 (P = 0.03; OR = 2.35; 95% CI = 1.14-5.05), in DPYD gene, with the risk of developing GC. The polymorphism rs17116806 of the DPYD gene was found to be associated with a lower risk of developing gastric (P≤0.0001; OR = 0.043; 95% CI = 0.015-0.12) or colorectal (P≤0.0001; OR = 0.076; 95% CI = 0.33-0.18) cancers, indicating that the same variant may play a similar role in different types of cancer tissue. Additionally, the carriers of the TT genotype of the polymorphism in the ABCB1 gene (rs1128503) presented a reduced probability of developing CRC (P = 0.0001; OR = 0.16; 95% CI = 0.06-0.41) as well as GC (P = 0.007; OR = 0.27; 95% CI = 0.1-0.7). Our findings indicate that polymorphisms in xenobiotic-metabolizing and transporter genes may modulate susceptibility to colorectal and gastric cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonio Andre Conde Modesto
- Oncology Research Center, Universidade Federal do ParáBelém, Brazil
- Laboratory of Human and Medical Genetics, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Sidney Santos
- Oncology Research Center, Universidade Federal do ParáBelém, Brazil
- Laboratory of Human and Medical Genetics, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | | | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, Universidade Federal do ParáBelém, Brazil
- Laboratory of Human and Medical Genetics, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
24
|
Ribeiro de Andrade Ramos B, Cosi Bento GF, Navascues Bernardino RA, Miot HA, Guimarães da Silva M. Influence of single nucleotide polymorphisms (SNPs) in immunoregulatory genes in the morbidity of preterm newborns. J Matern Fetal Neonatal Med 2019; 34:3684-3689. [PMID: 31744360 DOI: 10.1080/14767058.2019.1689946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Prematurity is the main cause of perinatal and neonatal morbidity and mortality worldwide. Single nucleotide polymorphisms (SNPs) have been associated with the pathogenesis of morbidities in preterm neonates. We aimed to investigate the association between SNPs in regulatory genes of innate immune response IL1B, IL6, IL6R, IL10, TNFA, TNFRII, TLR2 and TLR4 and neonatal/infant morbidities in preterm newborns.Methods: Oral swabs were collected from 272 newborns (91 preterm and 181 at term) seen at Botucatu Medical School, Unesp, between 2013 and 2014 and SNPs were identified using Taqman® Genotyping Assays. Medical records were examined to obtain data regarding neonatal/infant morbidity. Stepwise binomial logistic regression models were used to explain the morbidities.Results: Minor neonatal morbidity was influenced by the clinical parameters of maternal age and newborn weight at birth and by the presence of the allele IL6R2 C (rs2228145) while major neonatal morbidity was only influenced by gestational age. Minor infant morbidity was associated with the allele TLR2 T (rs4696480) and major infant morbidity was associated with gestational age and presence of IL6R2 C.Conclusion: The presence of SNPs that exacerbate the inflammatory response increases the susceptibility to neonatal and infant morbidity.
Collapse
Affiliation(s)
| | | | | | - Hélio Amante Miot
- Department of Dermathology, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | | |
Collapse
|
25
|
de Souza AM, Resende SS, de Sousa TN, de Brito CFA. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol 2019; 42:495-508. [PMID: 31188926 PMCID: PMC6905439 DOI: 10.1590/1678-4685-gmb-2018-0076] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic background of the Brazilian population is mainly characterized by three parental populations: European, African, and Native American. The aim of this study was to overview the genetic ancestry estimates for different Brazilian geographic regions and analyze factors involved in these estimates. In this systematic scoping review were included 51 studies, comprehending 81 populations of 19 states from five regions of Brazil. To reduce the potential of bias from studies with different sampling methods, we calculated the mean genetic ancestry weighted by the number of individuals. The weighted mean proportions of European, African, and Native American ancestries were 68.1%, 19.6%, and 11.6%, respectively. At the regional level, the highest European contribution occurred in the South, while the highest African and Native American contributions occurred in the Northeastern and Northern regions, respectively. Among states in the Northeast region, Bahia and Ceará showed significant differences, suggesting distinct demographic histories. This review contributes for a broader understanding of the Brazilian ancestry and indicates that the ancestry estimates are influenced by the type of molecular marker and the sampling method.
Collapse
Affiliation(s)
- Aracele Maria de Souza
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Sarah Stela Resende
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Taís Nóbrega de Sousa
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
26
|
A systematic literature review on the European, African and Amerindian genetic ancestry components on Brazilian health outcomes. Sci Rep 2019; 9:8874. [PMID: 31221977 PMCID: PMC6586659 DOI: 10.1038/s41598-019-45081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
The variables such as race, skin colour and ethnicity have become intensely discussed in medicine research, as a response to the rising debate over the importance of the ethnic-racial dimension in the scope of health-disease processes. The aim of this study was to identify the European (EUR), African (AFR) and Amerindian (AMR) ancestries on Brazilian health outcomes through a systematic literature review. This study was carried out by searching in three electronic databases, for studies published between 2005 and 2017. A total of 13 papers were eligible. The search identified the following health outcomes: visceral leishmaniosis, malaria, Alzheimer’s disease, neuromyelitis optica, multiple sclerosis, prostate cancer, non-syndromic cleft lip/palate, chronic heart failure, sickle cell disease, primary congenital glaucoma, preterm labour, preterm premature rupture of membranes, systemic lupus erythematosus and type 1 diabetes mellitus. Research paper assessments were guided by the STROBE instrument, and agreements between results were determined by comparing the points attributed by two authors. Increased EUR ancestry was identified from preterm labour (PTL), type 1 diabetes (T1D) and non-syndromic cleft lip with or without cleft palate (NSCL), as well as in patients presenting aggressive prostate cancer prognoses. On the other hand, the highest AFR ancestral component was verified from systemic lupus erythematosus (SLE) and primary congenital glaucoma (PCG) cases, presenting worse prognoses. AMR ancestry may be a protective factor in the development of Alzheimer’s disease (AD). The worst hemodynamic parameters in cases of heart failure (HF) were identified among individuals with greater AMR and AFR ancestry indices.
Collapse
|
27
|
The potential European genetic predisposition for non-contact anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2018; 26:3532-3536. [PMID: 29728743 DOI: 10.1007/s00167-018-4974-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Previous research has provided evidence of a hereditary predisposition for anterior cruciate ligament (ACL) injury. The purpose of this study was to evaluate the association between ancestral population genetics and risk of non-contact ACL injuries. METHODS Blood samples were collected from 177 individuals with a history of non-contact ACL injury and 556 non-injured control individuals for analysis of the genetic material through the use of a panel of 48 INDELs ancestry genetic markers from three ancestral origins. RESULTS Among patients with non-contact ACL injury, 82% were male and 18% were female. In the control group, 78% were male, and 22% were female. The mean age of the non-contact ACL injury group was 31.7 years (± 10.2), and the control group was 33.8 years (± 13.2). The individual genetic contribution from INDELs of each ancestral origin varied considerably: ranging between 1.5-94.8% contribution for INDELs of African origin (mean of 21.4% of INDELs); between 2 and 96.1% contribution for INDELs of European origin (mean of 66.7% of INDELs); and between 1.3-96.4% contribution for INDELs of Amerindian origin (mean of 11.7% of INDELs). When comparing paired subjects from the non-contact ACL and control groups, the genetic analysis showed that the European ancestry score was higher in the non-contact ACL group than control group (0.70 ± 0.21 vs 0.63 ± 0.22 respectively, p < 0.001), whereas African ancestry scores (ACL group 0.18 ± 0.18 vs control group 0.24 ± 0.21, p < 0.001) and Amerindian ancestry scores (ACL group 0.11 ± 0.09 vs control group 0.12 ± 0.10, n.s.) were lower among the non-contact ACL group than in controls. CONCLUSION European INDELs markers were found to represent a potential genetic predisposition for non-contact ACL injuries when compared to African and Amerindian INDELs. This study has the potential to correlate a measurable and distinct genetic marker with risk of a non-contact ACL injury. Thus, it increases knowledge base and volume of molecular and genetical factors associated with this pathology. Furthermore, this study provides guidance and evidence for the development of genetic risk-screening panels for non-contact ACL injury. LEVEL OF EVIDENCE Level III Diagnostic Study.
Collapse
|
28
|
Arrifano GPF, Martín-Doimeadios RCR, Jiménez-Moreno M, Fernández-Trujillo S, Augusto-Oliveira M, Souza-Monteiro JR, Macchi BM, Alvarez-Leite JI, do Nascimento JLM, Amador MT, Santos S, Ribeiro-Dos-Santos Â, Silva-Pereira LC, Oriá RB, Crespo-Lopez ME. Genetic Susceptibility to Neurodegeneration in Amazon: Apolipoprotein E Genotyping in Vulnerable Populations Exposed to Mercury. Front Genet 2018; 9:285. [PMID: 30100920 PMCID: PMC6073741 DOI: 10.3389/fgene.2018.00285] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 01/24/2023] Open
Abstract
Human exposure to mercury is a serious problem of public health in Amazon. As in other vulnerable populations throughout the world, Amazonian riverine populations are chronically exposed to this metal and some symptoms of mercury intoxication were already detected in these populations. However, studies on the genetic susceptibility to mercury toxicity in the Amazon are scarce, and they tested a limited number of individuals. In this context, apolipoprotein E gene (APOE) is a key element with a well-established association among their alleles and the neurodegenerative consequences of mercury intoxication. However, no studies have addressed APOE genotyping in Amazonian exposed populations. Additionally, epidemiological studies with APOE genotyping in Amazon have been restricted to indigenous populations. Therefore, this work analyzed for the first time the genotypic and allelic profiles of APOE in Amazonian riverine populations chronically exposed to mercury. Eight hundred and twenty three individuals were enrolled in our study donating blood (794) and/or hair (757). APOE genotyping was analyzed by real-time PCR. Total mercury and mercury species were quantified by ICP-MS and GC-pyro-AFS, respectively. Genomic ancestry markers were evaluated by multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. The 𝜀3 and 𝜀3/𝜀3 were the most frequent allele and genotype, respectively, followed by 𝜀4 allele and 𝜀3/𝜀4 genotype. Only 𝜀2/𝜀2 genotype was not found, suggesting that the absence of this genotype is a generalized phenomenon in Amazon. Also, our data supported an association between the presence of APOE4 and the Amerindian origin in these populations. Fifty-nine individuals were identified at maximum risk with levels of mercury above 10 μg/g and the presence of APOE4. Interestingly, among individuals with high mercury content, APOE4-carriers had high mercury levels than APOE2-carriers, pointing to a different heavy metal accumulation according to the APOE allele. These data suggest that APOE4, in addition to a possible pharmacodynamic effect, may influence pharmacokinetically the mercury exposure causing its higher accumulation and leading to worse deleterious consequences. Our results may aid in the development of prevention strategies and health policy decision-making regarding these at-risk vulnerable populations.
Collapse
Affiliation(s)
- Gabriela P F Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Rosa C R Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Sergio Fernández-Trujillo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Marcus Augusto-Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção (Hospital Universitário João de Barros Barreto), Universidade Federal do Pará, Belém, Brazil
| | - José R Souza-Monteiro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Barbarella M Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - José L M do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Neuroscience Research Group, CEUMA University, São Luís, Brazil
| | - Marcos T Amador
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Reinaldo B Oriá
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Departamento de Morfologia e Instituto de Biomedicina, Escola de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria E Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
29
|
Toson B, Dos Santos EJ, Adelino JE, Sandrin-Garcia P, Crovella S, Louzada-Júnior P, Oliveira RDR, Pedroza LSRA, de Fátima Lobato Cunha Sauma M, de Lima CPS, Barbosa FB, Brenol CV, Xavier RM, Chies JAB, Veit TD. CCR5Δ32 and the genetic susceptibility to rheumatoid arthritis in admixed populations: a multicentre study. Rheumatology (Oxford) 2018; 56:495-497. [PMID: 28082621 DOI: 10.1093/rheumatology/kew398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bruno Toson
- Laboratório de Imunogenética, Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Eduardo José Dos Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém.,Serviço de Reumatologia, Centro Universitário do Estado do Pará- CESUPA, Belém
| | | | | | - Sergio Crovella
- Departamento de Genética, Universidade Federal de Pernambuco, Recife
| | - Paulo Louzada-Júnior
- Serviço de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | | | | | | | | | | | | | | | - José Artur Bogo Chies
- Laboratório de Imunogenética, Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Tiago Degani Veit
- Laboratório de Imunogenética, Universidade Federal do Rio Grande do Sul, Porto Alegre.,Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
30
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
31
|
Ribeiro de Andrade Ramos B, da Silva MG. The Burden of Genetic and Epigenetic Traits in Prematurity. Reprod Sci 2017; 25:471-479. [PMID: 28718380 DOI: 10.1177/1933719117718270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite decades of investigations and accumulated scientific knowledge, preterm birth (PTB) remains a significant burden worldwide. Several mechanisms have been proposed to explain this condition, and a number of risk factors from infectious to behavioral and genetic/epigenetic factors influence this outcome. The heritability of PTB is estimated to be 17% to 36%, which demonstrates that genetic predisposition plays a key role in PTB. Structural DNA modifications without changes in the DNA sequence and post-transcriptional regulation also have an impact on gene expression and thus influence pregnancy outcomes. There is a complex interplay between environmental factors and the individual's genetics and epigenetics that may culminate in PTB, but the complete regulatory pathways and networks involved in this context are still unclear. Here, we outline what is known so far about the genetic and epigenetic factors involved in preterm delivery, including polymorphisms, DNA methylation, and microRNAs, and suggest fields for research.
Collapse
Affiliation(s)
| | - Márcia Guimarães da Silva
- 1 Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, São Paulo, Brazil
| |
Collapse
|