1
|
Malakpour-Permlid A, Rodriguez MM, Untracht GR, Andersen PE, Oredsson S, Boisen A, Zór K. High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Toxicol Rep 2025; 14:101863. [PMID: 39758801 PMCID: PMC11699757 DOI: 10.1016/j.toxrep.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate in vivo cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop in vivo mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks. These models, based on human HeLa cervical cancer cells and cancer-associated fibroblasts (CAFs) cultured as mono- or co-cultures within the 3D scaffolds, revealed that anticancer drug paclitaxel (PTX) exhibited consistently higher inhibitory concentration 50 (IC50) in 3D (≥ 1000 nM) compared to 2D (≥ 100 nM), indicating reduced toxicity on cells cultured in 3D. Interestingly, the toxicity of PTX was significantly lower on mini-tumors in non-homogenous 3D (IC50: 600 or 1000 nM) than in homogenous 3D cultures (IC50 exceeding 1000 nM). Microscopic studies revealed that the non-homogenous scaffolds closely resemble the tumor collagen network than their homogeneous counterpart. Both 3D scaffolds offer optimal pore size, facilitating efficient cell infiltration into the depth of 58.1 ± 1.2 µm (homogenous) and 86.4 ± 9.8 µm (non-homogenous) within 3D cultures. Cells cultured in the 3D non-homogenous systems exhibited drug treatment responses closer to in vivo conditions, highlighting the role of scaffold structure and design on cellular response to drug treatment. The PCL-based 3D models provide a robust, tunable, and efficient approach for the HTS of anti-cancer drugs compared to conventional 2D systems.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gavrielle R. Untracht
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter E. Andersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
- Innovation Acta S.r.l., Siena, Via delle 1-53100, Italy
| |
Collapse
|
2
|
Gama JM, Oliveira RC. CD44 and Its Role in Solid Cancers - A Review: From Tumor Progression to Prognosis and Targeted Therapy. FRONT BIOSCI-LANDMRK 2025; 30:24821. [PMID: 40152366 DOI: 10.31083/fbl24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 03/29/2025]
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane protein expressed in normal cells but overexpressed in several types of cancer. CD44 plays a major role in tumor progression, both locally and systemically, by direct interaction with the extracellular matrix, inducing tissue remodeling, activation of different cellular pathways, such as Akt or mechanistic target of rapamycin (mTOR), and stimulation of angiogenesis. As a prognostic marker, CD44 has been identified as a major player in cancer stem cells (CSCs). CSCs with a CD44 phenotype are associated with chemoresistance, alone or in combination with other CSC markers, such as CD24 or aldehyde dehydrogenase 1 (ALDH1), and may be used for patient stratification. In the therapy setting, CD44 has been explored as a viable target, directly or indirectly. It has revealed promising potential, paving the way for its future use in the clinical setting. Immunohistochemistry effectively detects CD44 overexpression, enabling patients to be accurately selected for surgery and targeted anti-CD44 therapies. In this review, we highlight the properties of CD44, its expression in normal and tumoral tissues through immunohistochemistry and potential treatment options. We also discuss the clinical significance of this marker and its added value in therapeutic decision-making.
Collapse
Affiliation(s)
- João Martins Gama
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Rui Caetano Oliveira
- Centro de Investigação em Meio Ambiente, Genética e Oncobiologia-CIMAGO, Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
- Centro de Anatomia Patológica Germano de Sousa, 3000-377 Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
4
|
Chen D, Liu P, Lin J, Zang L, Liu Y, Zhai S, Lu X, Weng Y, Li H. A Distinguished Roadmap of Fibroblast Senescence in Predicting Immunotherapy Response and Prognosis Across Human Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406624. [PMID: 39739618 PMCID: PMC11831569 DOI: 10.1002/advs.202406624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The resistance of tumors to immune checkpoint inhibitors (ICI) may be intricately linked to cellular senescence, although definitive clinical validation remains elusive. In this study, comprehensive pan-cancer scRNA-seq analyses identify fibroblasts as exhibiting the most pronounced levels of cellular senescence among tumor-associated cell populations. To elucidate this phenomenon, a fibroblast senescence-associated transcriptomic signature (FSS), which correlated strongly with protumorigenic signaling pathways and immune dysregulation that fosters tumor progression, is developed. Leveraging the FSS, the machine learning (ML) framework demonstrates exceptional accuracy in predicting ICI response and survival outcomes, achieving superior area under curve (AUC) values across validation, testing, and in-house cohorts. Strikingly, FSS consistently outperforms established signatures in predictive robustness across diverse cancer subtypes. From an integrative analysis of 17 CRISPR/Cas9 libraries, CDC6 emerges as a pivotal biomarker for pan-cancer ICI response and prognostic stratification. Mechanistically, experimental evidence reveals that CDC6 in tumor cells orchestrates fibroblast senescence via TGF-β1 secretion and oxidative stress, subsequently reprogramming the tumor microenvironment and modulating ICI response. These findings underscore the translational potential of targeting fibroblast senescence as a novel therapeutic strategy to mitigate immune resistance and enhance antitumor efficacy.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Pengyi Liu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Jiayu Lin
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Longjun Zang
- Department of General SurgeryTaiyuan Central HospitalTaiyuanShanxi030009China
| | - Yihao Liu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Shuyu Zhai
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Xiongxiong Lu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Yuanchi Weng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Hongzhe Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiao Tong University School of MedicineShanghai200025China
- State Key Laboratory of Oncogenes and Related GenesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
5
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
6
|
Liu ZL, Chen N, Li R, Ma YJ, Qiayimaerdan A, Ma CL. WGCNA reveals a biomarker for cancer-associated fibroblasts to predict prognosis in cervical cancer. J Chin Med Assoc 2024; 87:885-897. [PMID: 38946034 DOI: 10.1097/jcma.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are crucial components of the cervical cancer tumor microenvironment, playing a significant role in cervical cancer progression, treatment resistance, and immune evasion, but whether the expression of CAF-related genes can predict clinical outcomes in cervical cancer is still unknown. In this study, we sought to analyze genes associated with CAFs through weighted gene co-expression network analysis (WGCNA) and to create a predictive model for CAFs in cervical cancer. METHODS We acquired transcriptome sequencing data and clinical information on cervical cancer patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. WGCNA was conducted to identify genes related to CAFs. We developed a prognostic model based on CAF genes in cervical cancer using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Single-cell sequencing data analysis and in vivo experiments for validation of hub genes in CAFs. RESULTS A prognostic model for cervical cancer was developed based on CAF genes including COL4A1 , LAMC1 , RAMP3 , POSTN , and SERPINF1 . Cervical cancer patients were divided into low- and high-risk groups based on the optimal cutoff value. Patients in the high-risk group had a significantly worse prognosis. Single-cell RNA sequencing data revealed that hub genes in the CAFs risk model were expressed mainly in fibroblasts. The real-time fluorescence quantitative polymerase chain reaction (PCR) results revealed a significant difference in the expression levels of COL4A1 , LAMC1 , POSTN , and SERPINF1 between the cancer group and the normal group ( p < 0.05). Consistently, the results of the immunohistochemical tests exhibited notable variations in COL4A1, LAMC1, RAMP3, POSTN, and SERPINF1 expression between the cancer and normal groups ( p < 0.001). CONCLUSION The CAF risk model for cervical cancer constructed in this study can be used to predict prognosis, while the CAF hub genes can be utilized as crucial markers for cervical cancer prognosis.
Collapse
Affiliation(s)
- Zao-Ling Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Nan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Rong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ying-Jie Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Aerna Qiayimaerdan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Cai-Ling Ma
- Division of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
8
|
Chen Q, Luo J, Liu J, Yu H, Zhou M, Yu L, Chen Y, Zhang S, Mo Z. Integrating single-cell and spatial transcriptomics to elucidate the crosstalk between cancer-associated fibroblasts and cancer cells in hepatocellular carcinoma with spleen-deficiency syndrome. J Tradit Complement Med 2024; 14:321-334. [PMID: 38707923 PMCID: PMC11068993 DOI: 10.1016/j.jtcme.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/24/2023] [Accepted: 11/20/2023] [Indexed: 05/07/2024] Open
Abstract
Background and aim Most patients with hepatocellular carcinoma (HCC) in China have been diagnosed with spleen deficiency syndrome (SDS), which accelerates the progression of HCC by disrupting the tumor microenvironment homeostasis. This study aimed to investigate the intercellular crosstalk in HCC with SDS. Experimental procedure An HCC-SDS mouse model was established using orthotopic HCC transplantation based on reserpine-induced SDS. Single-cell data analysis and cancer cell prediction were conducted using Seurat and CopyKAT package, respectively. Intercellular interactions were explored using CellPhoneDB and CellChat and subsequently validated using co-culture assays, ELISA and histological staining. We performed pathway activity analysis using gene set variation analysis and the Seurat package. The extracellular matrix (ECM) remodeling was assessed using a gel contraction assay, atomic force microscopy, and Sirius red staining. The deconvolution of the spatial transcriptomics data using the "CARD" package based on single-cell data. Results and conclusion We successfully established the HCC-SDS mouse model. Twenty-nine clusters were identified. The interactions between cancer cells and cancer-associated fibroblasts (CAFs) were significantly enhanced via platelet-derived growth factor (PDGF) signaling in HCC-SDS. CAFs recruited in HCC-SDS lead to ECM remodeling and the activation of TGF-β signaling pathway. Deconvolution of the spatial transcriptome data revealed that CAFs physically surround cancer cells in HCC-SDS. This study reveals that the crosstalk of CAFs-cancer cells is crucial for the tumor-promoting effect of SDS. CAFs recruited by HCC via PDGFA may lead to ECM remodeling through activation of the TGF-β pathway, thereby forming a physical barrier to block immune cell infiltration under SDS.
Collapse
Affiliation(s)
- Qiuxia Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - He Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Meiling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Ling Yu
- Department of Critical Care Medicine, The Second Clinical College to Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhuomao Mo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, 311113, China
| |
Collapse
|
9
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
10
|
Wang Y, Xu M, Yao Y, Li Y, Zhang S, Fu Y, Wang X. Extracellular cancer‑associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor‑promoting roles and prognosis biomarker functions. Oncol Lett 2024; 27:167. [PMID: 38449793 PMCID: PMC10915806 DOI: 10.3892/ol.2024.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024] Open
Abstract
Tumor invasion and metastasis are the processes that primarily cause adverse outcomes in patients with cervical cancer. Cancer-associated fibroblasts (CAFs), which participate in cancer progression and metastasis, are novel targets for the treatment of tumors. The present study aimed to assess the heterogeneity of CAFs in the cervical cancer microenvironment through single-cell RNA sequencing. After collecting five cervical cancer samples and obtaining the CAF-associated gene sets, the CAFs in the cervical cancer microenvironment were divided into myofibroblastic CAFs and extracellular (ec)CAFs. The ecCAFs appeared with more robust pro-tumorigenic effects than myCAFs according to enrichment analysis. Subsequently, through combining the ecCAF hub genes and bulk gene expression data for cervical cancer obtained from The Cancer Genome Atlas and Gene Ontology databases, univariate Cox regression and least absolute shrinkage and selection operator analyses were performed to establish a CAF-associated risk signature for patients with cancer. The established risk signature demonstrated a stable and strong prognostic capability in both the training and validation cohorts. Subsequently, the association between the risk signature and clinical data was evaluated, and a nomogram to facilitate clinical application was established. The risk score was demonstrated to be associated with both the tumor immune microenvironment and the therapeutic responses. Moreover, the signature also has predictive value for the prognosis of head and neck squamous cell carcinoma, and bladder urothelial carcinoma, which were also associated with human papillomavirus infection. In conclusion, the present study assessed the heterogeneity of CAFs in the cervical cancer microenvironment, and a subgroup of CAFs that may be closely associated with tumor progression was defined. Moreover, a signature based on the hub genes of ecCAFs was shown to have biomarker functionality in terms of predicting survival rates, and therefore this CAF subgroup may become a therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Yuehan Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mingxia Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yeli Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yunfeng Fu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Krishnamoorthy S, Sabanayagam R, Periyasamy L, Muruganantham B, Muthusami S. Plumbagin as a preferential lead molecule to combat EGFR-driven matrix abundance and migration of cervical carcinoma cells. Med Oncol 2024; 41:89. [PMID: 38520625 DOI: 10.1007/s12032-024-02332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
The handshake between the complex networks of matrix components in the tumor micro-environment (TME) is considered as a crucial event in the progression of several cancers including cervical carcinoma (CC). A number of studies report a connection between epidermal growth factor (EGF) and matrix component production. Studies demonstrate that the mechano-transduction trigger by collagen, influences the tumor cells to undergo epithelial-mesenchymal transition (EMT) and block the entry of drugs. We hypothesize that the intervention to prevent EGF triggered deposition of matrix components could sensitize several therapies for CC cells. We utilized morphological assessment, MTT assay, mitored tracking, acridine orange (AO)/ ethidium bromide (EtBr) staining and bromodeoxyuridine (BrdU) assay to measure the cell viability, mitochondrial activity, cellular apoptosis, and DNA synthesis. Clonogenic assay and scratch healing assay were executed to address the stemness and migratory potential. Detection of glycosaminoglycan's (GAGs), collagen, matrix metalloproteinase (MMP)-2/9 secretion and calcium (Ca2+) ions were performed to assess the production of matrix components. Finally, the interaction between EGFR and plumbagin was evaluated by employing molecular dynamics (MD) simulation. Pre-treating the cells with plumbagin inhibited the EGF-induced EMT along with reduction in cell proliferation, migration, clonogenesis and depletion of matrix components. The actions of EGF and plumbagin were more pronounced in HPV-positive CC cells than HPV-negative CC cells. This study identified that increased matrix production triggered by EGF-rich milieu is inhibited by plumbagin in human papilloma viral (HPV) 68 positive ME180, HPV 16 positive SiHa and HPV-negative C33A cell lines. Delivery of plumbagin directly to TME would effectively accelerate the clearance of CC cells, reduce metastasis and matrix abundance by employing targeted delivery to minimize the undesired effects of plumbagin.
Collapse
Affiliation(s)
- Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Rajalakshmi Sabanayagam
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India.
- Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India.
| |
Collapse
|
12
|
Kang C, Duo Y, Zheng L, Zhao N, Wang J, Liu Z, Qiu L, Bi F. CAFs-derived exosomes promote the development of cervical cancer by regulating miR-18a-5p-TMEM170B signaling axis. Biochem Biophys Res Commun 2024; 694:149403. [PMID: 38147699 DOI: 10.1016/j.bbrc.2023.149403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Mounting studies have showed that tumor microenvironment (TME) is crucial for cervical cancer (CC), and cancer-related fibroblasts (CAFs) play a major role in it. Recently, exosomal miRNAs secreted by CAFs have been found to be potential targets for cancer diagnosis and therapy. In this paper, we aimed to investigate the function of CAFs-mediated exosome miR-18a-5p (CAFs-exo-miR-18a-5p) in CC. First, in combination with bioinformatic data analysis of the GEO database (GSE86100) and RT-qPCR of CC clinical tissue samples and cell lines, miR-18a-5p was discovered to be markedly up-regulated in CC. Next, CAFs-secreted exosomes were isolated and it was found that miR-18a-5p expression was dramatically promoted in CC cell lines when treated with CAFs-exos. The CAFs-exo-miR-18a-5p was then elucidated to stimulate the proliferation and migration and inhibit the apoptosis of CC cells. In order to clarify the underlying mechanism, we further screened the target genes of miR-18a-5p. TMEM170B was selected by bioinformatic data analysis of online databases combined with RT-qPCR of CC clinical tissues and cells. Luciferase reporter gene analysis combined with molecular biology experiments further elucidated that miR-18a-5p suppressed TMEM170B expression in CC. Finally, both cell and animal experiments demonstrated that TMEM170B over-expression attenuated the oncogenic effect of CAFs-exo-miR-18a-5p. In conclusion, our study indicates that CAFs-mediated exosome miR-18a-5p promotes the initiation and development of CC by suppressing TMEM170B signaling axis, which provides a possible direction for the diagnosis and therapy of CC.
Collapse
Affiliation(s)
- Cong Kang
- Department of Gynecology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Yali Duo
- Central Laboratory, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Lei Zheng
- Central Laboratory, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Ning Zhao
- Department of Gynecology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Jing Wang
- Department of Gynecology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Zhongjie Liu
- Department of Gynecology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - Lei Qiu
- Department of Pathology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China
| | - FengLing Bi
- Department of Gynecology, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, 053000, China.
| |
Collapse
|
13
|
Tian P, Deng J, Ma C, Miershali A, Maimaitirexiati G, Yan Q, Liu Y, Maimaiti H, Li Y, Zhou C, Ren J, Ding L, Li R. CBX7 is involved in the progression of cervical cancer through the ITGβ3/TGFβ1/AKT pathway. Oncol Lett 2024; 27:14. [PMID: 38028179 PMCID: PMC10664064 DOI: 10.3892/ol.2023.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
The chromobox protein homolog 7 (CBX7) serves a tumor-suppressive role in human malignant neoplasias. The downregulation of CBX7 is associated with the poor prognosis and aggressiveness of various human cancers. However, the biological functions and underlying mechanisms of CBX7 in cervical cancer remain unclear. The present study investigated the role and mechanism of CBX7 in cervical cancer. Lentivirus and siRNA were used to construct cervical cancer cells with stable CBX7 knockdown and SiHa xenograft models. The cell growth, migration, invasion and apoptosis were observed through in vivo and in vitro experiments. The expression levels of CBX7, integrin β3 (ITGβ3), transforming growth factor β1 (TGFβ1), phosphatidylinositol-3-kinase (PI3K), AKT, E-cadherin (E-cad) and vimentin (VIM) were detected by western blot analysis and reverse transcription-quantitative PCR. The correlation between CBX7 and these genes was analyzed. TGFβ1 was also silenced through shRNA in cells with stable CBX7 knockdown to detect its effect on cell growth, invasion and apoptosis, and on pathway-related gene expression. It was revealed that knockdown of CBX7 promoted the proliferation, migration, and invasion of cervical cancer cells, and inhibited apoptosis. In addition, CBX7 knockdown promoted tumor growth in vivo. Correlation analysis demonstrated that CBX7 was negatively correlated with ITGβ3, TGFβ1, PI3K, AKT, phosphorylated AKT and VIM, but positively correlated with E-cad. Moreover, the knockdown of TGFβ1 reversed the promotion of cell proliferation and inhibition of apoptosis induced by CBX7 knockdown and attenuated the increase of ITGβ3, TGFβ1, PI3K, AKT and VIM caused by CBX7 knockdown. In conclusion, the findings of the present study indicated that the downregulation of CBX7 enhances cell migration and invasion while inhibiting cell apoptosis in cervical cancer by modulating the ITGβ3/TGFβ1/AKT signaling pathways.
Collapse
Affiliation(s)
- Ping Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Nosocomial Infection Management, The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Jinglan Deng
- College of Nursing, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Gynecology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Ainipa Miershali
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Gulikezi Maimaitirexiati
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Qi Yan
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Yating Liu
- College of Nursing, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Hatimihan Maimaiti
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Yuting Li
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Changhui Zhou
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Jingqin Ren
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Lu Ding
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Orthopaedics, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Rong Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
14
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
15
|
Marima R, Mosoane B, Mtshali N, Basera A, Kgatle M, Grech G, Dlamini Z. Mechanisms of chemotherapy resistance in cervical cancer. STRATEGIES FOR OVERCOMING CHEMOTHERAPY RESISTANCE IN CERVICAL CANCER 2024:53-70. [DOI: 10.1016/b978-0-443-28985-9.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
17
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
18
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Sabanayagam R, Krishnamoorthy S, Gnanagurusamy J, Muruganatham B, Muthusami S. EGCG attenuate EGF triggered matrix abundance and migration in HPV positive and HPV negative cervical cancer cells. Med Oncol 2023; 40:261. [PMID: 37544940 DOI: 10.1007/s12032-023-02135-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Our previous laboratory findings suggested the beneficial effects of epigallocatechin gallate (EGCG) against cervical cancer (CC) cells survival. The present study is aimed at identifying the effects of EGCG in preventing the actions of epidermal growth factor (EGF) in human papilloma virus (HPV) 68 positive ME180 and HPV negative C33A CC cells. An elevated level of EGF in tumor micro-environment (TME) is linked to the metastasis of several cancers including CC. We hypothesized that EGCG has the ability to block the actions of EGF. To test this, survival assay was performed in cells treated with or without EGF and EGCG. The mitochondrial activity of cells was ascertained using MTT assay and mitored staining. Protein and non-protein components in the extracellular matrix such as collagen and sulphated glycosaminoglycans (GAGs) were evaluated using sirius red and alcian blue staining, respectively. Matrix metalloproteinase-2 (MMP-2) gene expression and enzymatic activity were assessed using real time-reverse transcriptase-polymerase chain reaction (RT-PCR) and gelatin zymography. Wound healing assay was performed to assess the EGF induced migratory ability and its inhibition by EGCG pre-treatment. Clonogenic assay showed that EGCG pre-treatment blocked the EGF driven colony formation. In silico analysis performed identified the efficacy of EGCG in binding with different domains of EGF receptor (EGFR). EGCG pre-treatment prevented the epithelial-mesenchymal transition (EMT) and metabolic activity induced by EGF, this is associated with concomitant reduction in the gene expression and enzyme activity of MMP-2. Further, reduced migration and ability to form colonies were observed in EGCG pre-treated cells when stimulated with EGF. HPV positive ME180 cells showed increased migratory and clonogenic ability upon EGF stimulation, whose effects were not much significant in HPV negative C33A cells. EGCG effectively blocked the actions of EGF in both HPV positive and HPV negative conditions and can be advocated as supplementary therapy for the management of EGF driven CC. However, further studies using cell line-derived xenograft (CDX)/patient-derived xenograft (PDX) model system is warranted to validate the therapeutic utility of EGCG.
Collapse
Affiliation(s)
- Rajalakshmi Sabanayagam
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Bharathi Muruganatham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
20
|
Mokoala KMG, Lawal IO, Maserumule LC, Bida M, Maes A, Ndlovu H, Reed J, Mahapane J, Davis C, Van de Wiele C, Popoola G, Giesel FL, Vorster M, Sathekge MM. Correlation between [ 68Ga]Ga-FAPI-46 PET Imaging and HIF-1α Immunohistochemical Analysis in Cervical Cancer: Proof-of-Concept. Cancers (Basel) 2023; 15:3953. [PMID: 37568769 PMCID: PMC10417683 DOI: 10.3390/cancers15153953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Hypoxia leads to changes in tumor microenvironment (upregulated CAFs) with resultant aggressiveness. A key factor in the physiological response to hypoxia is hypoxia-inducible factor-1alpha (HIF-1α). [68Ga]Ga-FAPI PET imaging has been demonstrated in various cancer types. We hypothesized that [68Ga]Ga-FAPI PET may be used as an indirect tracer for mapping hypoxia by correlating the image findings to pathological analysis of HIF-1α expression. The [68Ga]Ga-FAPI PET/CT scans of women with cancer of the cervix were reviewed and the maximum and mean standardized uptake value (SUVmax and SUVmean) and FAPI tumor volume (FAPI-TV) were documented. Correlation analysis was performed between PET-derived parameters and immunohistochemical staining as well as between PET-derived parameters and the presence of metastasis. Ten women were included. All patients demonstrated tracer uptake in the primary site or region of the primary. All patients had lymph node metastases while only six patients had distant visceral or skeletal metastases. The mean SUVmax, SUVmean, and FAPI-TV was 18.89, 6.88, and 195.66 cm3, respectively. The average FAPI-TV for patients with additional sites of metastases was higher than those without. Immunohistochemistry revealed varying intensities of HIF-1α expression in all tested samples. There was a positive correlation between the presence of skeletal metastases and staining for HIF-1α (r=0.80;p=0.017). The presence of skeletal metastasis was correlated to the HIF-1⍺ staining (percentage distribution). Furthermore, the FAPI-TV was a better predictor of metastatic disease than the SUVmax.
Collapse
Affiliation(s)
- Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Letjie C. Maserumule
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Meshack Bida
- National Health Laboratory Services, Department of Anatomical Pathology, Pretoria 0001, South Africa;
| | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Katholieke University Leuven, 3000 Kortrijk, Belgium
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria 0028, South Africa;
| | - Cindy Davis
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
| | - Gbenga Popoola
- Lincolnshire Partnership NHS Foundation Trust, St George’s, Lincoln, Lincolnshire LN1 1FS, UK;
| | - Frederik L. Giesel
- Department of Nuclear Medicine, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Kwazulu Natal, Durban 4001, South Africa;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
21
|
Pirkkanen J, Tharmalingam S, Thome C, Sinex HC, Benjamin LV, Losch AC, Borgmann AJ, Dhaemers RM, Gordon C, Boreham DR, Mendonca MS. Genomic Loss and Epigenetic Silencing of the FOSL1 Tumor Suppressor Gene in Radiation-induced Neoplastic Transformation of Human CGL1 Cells Alters the Tumorigenic Phenotype In Vitro and In Vivo. Radiat Res 2023; 200:48-64. [PMID: 37141110 PMCID: PMC10409446 DOI: 10.1667/rade-22-00216.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023]
Abstract
The CGL1 human hybrid cell system has been utilized for many decades as an excellent cellular tool for investigating neoplastic transformation. Substantial work has been done previously implicating genetic factors related to chromosome 11 to the alteration of tumorigenic phenotype in CGL1 cells. This includes candidate tumor suppressor gene FOSL1, a member of the AP-1 transcription factor complex which encodes for protein FRA1. Here we present novel evidence supporting the role of FOSL1 in the suppression of tumorigenicity in segregants of the CGL1 system. Gamma-induced mutant (GIM) and control (CON) cells were isolated from 7 Gy gamma-irradiated CGL1s. Western, Southern and Northern blot analysis were utilized to assess FOSL1/FRA1 expression as well as methylation studies. GIMs were transfected to re-express FRA1 and in vivo tumorigenicity studies were conducted. Global transcriptomic microarray and RT-qPCR analysis were used to further characterize these unique cell segregants. GIMs were found to be tumorigenic in vivo when injected into nude mice whereas CON cells were not. GIMs show loss of Fosl/FRA1 expression as confirmed by Western blot. Southern and Northern blot analysis further reveals that FRA1 reduction in tumorigenic CGL1 segregants is likely due to transcriptional suppression. Results suggest that radiation-induced neoplastic transformation of CGL1 is in part due to silencing of the FOSL1 tumor suppressor gene promoter by methylation. The radiation-induced tumorigenic GIMs transfected to re-express FRA1 resulted in suppression of subcutaneous tumor growth in nude mice in vivo. Global microarray analysis and RT-qPCR validation elucidated several hundred differentially expressed genes. Downstream analysis reveals a significant number of altered pathways and enriched Gene Ontology terms genes related to cellular adhesion, proliferation, and migration. Together these findings provide strong evidence that FRA1 is a tumor suppressor gene deleted and epigenetically silenced after ionizing radiation-induced neoplastic transformation in the CGL1 human hybrid cell system.
Collapse
Affiliation(s)
- Jake Pirkkanen
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Sujeenthar Tharmalingam
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, Ontario, P3E 2C6, Canada
| | - Christopher Thome
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, Ontario, P3E 2C6, Canada
| | - Helen Chin Sinex
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laura V. Benjamin
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Adam C. Losch
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anthony J. Borgmann
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ryan M. Dhaemers
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christopher Gordon
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Douglas R. Boreham
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Bruce Power, PO Box 1540, 177 Tie Rd, R.R. 2, Tiverton, Ontario, N0G 2T0, Canada
- Nuclear Innovation Institute, Port Elgin, Ontario, N0H 2C0, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
22
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
23
|
Shen S, Zhang Z, Huang H, Yang J, Tao X, Meng Z, Ren H, Li X. Copper-induced injectable hydrogel with nitric oxide for enhanced immunotherapy by amplifying immunogenic cell death and regulating cancer associated fibroblasts. Biomater Res 2023; 27:44. [PMID: 37165428 PMCID: PMC10170699 DOI: 10.1186/s40824-023-00389-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) induced by different cancer treatments has been widely evaluated to recruit immune cells and trigger the specific antitumor immunity. However, cancer associated fibroblasts (CAFs) can hinder the invasion of immune cells and polarize the recruited monocytes to M2-type macrophages, which greatly restrict the efficacy of immunotherapy (IT). METHODS In this study, an injectable hydrogel induced by copper (Cu) has been designed to contain antibody of PD-L1 and nitric oxide (NO) donor. The therapeutic efficacy of hydrogel was studied in 4T1 cells and CAFs in vitro and 4T1 tumor-bearing mice in vivo. The immune effects on cytotoxic T lymphocytes, dendritic cells (DCs) and macrophages were analyzed by flow cytometry. Enzyme-linked immunosorbent assay, immunofluorescence and transcriptome analyses were also performed to evaluate the underlying mechanism. RESULTS Due to the absorbance of Cu with the near-infrared laser irradiation, the injectable hydrogel exhibits persistent photothermal effect to kill cancer cells. In addition, the Cu of hydrogel shows the Fenton-like reaction to produce reactive oxygen species as chemodynamic therapy, thereby enhancing cancer treatment and amplifying ICD. More interestingly, we have found that the released NO can significantly increase depletion of CAFs and reduce the proportion of M2-type macrophages in vitro. Furthermore, due to the amplify of ICD, injectable hydrogel can effectively increase the infiltration of immune cells and reverse the immunosuppressive tumor microenvironment (TME) by regulating CAFs to enhance the therapeutic efficacy of anti-PD-L1 in vivo. CONCLUSIONS The ion induced self-assembled hydrogel with NO could enhance immunotherapy via amplifying ICD and regulating CAFs. It provides a novel strategy to provoke a robust antitumor immune response for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Shuilin Shen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zimeng Zhang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Haixiao Huang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhengjie Meng
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
24
|
Li Y, Gao X, Huang Y, Zhu X, Chen Y, Xue L, Zhu Q, Wang B, Wu M. Tumor microenvironment promotes lymphatic metastasis of cervical cancer: its mechanisms and clinical implications. Front Oncol 2023; 13:1114042. [PMID: 37234990 PMCID: PMC10206119 DOI: 10.3389/fonc.2023.1114042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Collapse
Affiliation(s)
- Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yingying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
25
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
26
|
Padežnik T, Oleksy A, Cokan A, Takač I, Sobočan M. Changes in the Extracellular Matrix in Endometrial and Cervical Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065463. [PMID: 36982551 PMCID: PMC10052846 DOI: 10.3390/ijms24065463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Endometrial and cervical cancers are the two most common gynaecological malignancies and among the leading causes of death worldwide. The extracellular matrix (ECM) is an important component of the cellular microenvironment and plays an important role in developing and regulating normal tissues and homeostasis. The pathological dynamics of the ECM contribute to several different processes such as endometriosis, infertility, cancer, and metastasis. Identifying changes in components of ECM is crucial for understanding the mechanisms of cancer development and its progression. We performed a systematic analysis of publications on the topic of changes in the extracellular matrix in cervical and endometrial cancer. The findings of this systematic review show that matrix metalloproteinases (MMP) play an important role impacting tumour growth in both types of cancer. MMPs degrade various specific substrates (collagen, elastin, fibronectin, aggrecan, fibulin, laminin, tenascin, vitronectin, versican, nidogen) and play a crucial role in the basal membrane degradation and ECM components. Similar types of MMPs were found to be increased in both cancers, namely, MMP-1, MMP-2, MMP-9, and MMP-11. Elevated concentrations of MMP-2 and MMP-9 were correlated with the FIGO stage and are associated with poor prognosis in endometrial cancer, whereas in cervical cancer, elevated concentrations of MMP-9 have been associated with a better outcome. Elevated ADAMTS levels were found in cervical cancer tissues. Elevated disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) levels were also found in endometrial cancer, but their role is still unclear. Following these findings, this review reports on tissue inhibitors of ECM enzymes, MMPs, and ADAMTS. The present review demonstrates changes in the extracellular matrix in cervical and endometrial cancers and compared their effect on cancer development, progression, and patient prognosis.
Collapse
Affiliation(s)
- Tjaša Padežnik
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Anja Oleksy
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Cokan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Iztok Takač
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Monika Sobočan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department for Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
27
|
Atanasova VS, de Jesus Cardona C, Hejret V, Tiefenbacher A, Mair T, Tran L, Pfneissl J, Draganić K, Binder C, Kabiljo J, Clement J, Woeran K, Neudert B, Wohlhaupter S, Haase A, Domazet S, Hengstschläger M, Mitterhauser M, Müllauer L, Tichý B, Bergmann M, Schweikert G, Hartl M, Dolznig H, Egger G. Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model. Cell Mol Gastroenterol Hepatol 2023; 15:1391-1419. [PMID: 36868311 PMCID: PMC10141529 DOI: 10.1016/j.jcmgh.2023.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND & AIMS Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.
Collapse
Affiliation(s)
- Velina S Atanasova
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Václav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andreas Tiefenbacher
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Julijan Kabiljo
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Janik Clement
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Katharina Woeran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Barbara Neudert
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Astrid Haase
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sandra Domazet
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | | | | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Boris Tichý
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Bergmann
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany; Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Markus Hartl
- Department of Biochemistry and Cell Biology, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
29
|
Macromolecular crowding regulates matrix composition and gene expression in human gingival fibroblast cultures. Sci Rep 2023; 13:2047. [PMID: 36739306 PMCID: PMC9899282 DOI: 10.1038/s41598-023-29252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Standard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Collapse
|
30
|
Wang W, Fan X, Yang J, Wang X, Gu Y, Chen M, Jiang Y, Liu L, Zhang M. Preliminary MRI Study of Extracellular Volume Fraction for Identification of Lymphovascular Space Invasion of Cervical Cancer. J Magn Reson Imaging 2023; 57:587-597. [PMID: 36094153 DOI: 10.1002/jmri.28423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lymphovascular space invasion (LVSI) is a risk factor for poor prognosis of cervical cancer. Preoperative identification of LVSI is very difficult. PURPOSE To evaluate the potential of extracellular volume (ECV) fraction based on T1 mapping in preoperative identification of LVSI in cervical cancer compared with dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE Retrospective. SUBJECTS A total of 79 patients (median age 54 years) with cervical cancer were classified into LVSI group (n = 29) and without LVSI group (n = 50) according to postoperative pathology. FIELD STRENGTH/SEQUENCE A 3-T, noncontrast and contrast-enhanced T1 mapping performed with volume interpolated breath hold examination (VIBE) sequence, DCE-MRI applied with 3D T1-weighted VIBE sequence. ASSESSMENT Regions of interest along the medial edge of the lesion were drawn on slices depicting the maximum cross-section of the tumor. The noncontrast and contrast-enhanced T1 value of the tumor and arteries in the same slice were measured, and ECV was calculated from T1 values. The parametric maps (Ktrans , kep , and ve ) derived from DCE-MRI standard Toft's model were evaluated. STATISTICAL TESTS ECV, Ktrans , kep , and ve between groups with and without LVSI were compared using Student's t-test. The receiver operating characteristic (ROC) curve and DeLong test were used to evaluate and compare the diagnostic performance of ECV, Ktrans , kep , and ve for differentiating LVSI. P < 0.05 was considered statistically significant. RESULTS The ECV and Ktrans of the LVSI group were significantly higher than that of non-LVSI group (52.86% vs. 36.77%, 0.239 vs. 0.176, respectively), and no significant differences in Kep or ve values were observed (P = 0.071 and P = 0.168, respectively). The ECV fraction showed significantly higher area under ROC curve than Ktrans for differentiating LVSI (0.874 vs. 0.655, respectively). DATA CONCLUSION ECV measurements based on T1 mapping might improve the discrimination between patients with and without LVSI in cervical cancer, showing better performance for this purpose than DCE-MRI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaofei Fan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingxin Chen
- Inpatient Service Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yueluan Jiang
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
32
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
33
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
34
|
Yang L, Li J, Zang G, Song S, Sun Z, Li X, Li Y, Xie Z, Zhang G, Gui N, Zhu S, Chen T, Cai Y, Zhao Y. Pin1/YAP pathway mediates matrix stiffness-induced epithelial-mesenchymal transition driving cervical cancer metastasis via a non-Hippo mechanism. Bioeng Transl Med 2023; 8:e10375. [PMID: 36684109 PMCID: PMC9842039 DOI: 10.1002/btm2.10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial-mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen-coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes-associated protein (YAP) activity via PPIase non-mitotic a-interaction 1 (Pin1) with a non-Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Long Yang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Jingwen Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Guangchao Zang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Sijie Song
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Zhengwen Sun
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Xinyue Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yuanzhu Li
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Zhenhong Xie
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Ni Gui
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Shu Zhu
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Tingting Chen
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yikui Cai
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| | - Yinping Zhao
- Laboratory of Tissue and Cell BiologyLab Teaching & Management Center, Chongqing Medical UniversityYuzhong District, ChongqingChina
| |
Collapse
|
35
|
Chen A, Jing W, Qiu J, Zhang R. Prediction of Cervical Cancer Outcome by Identifying and Validating a NAD+ Metabolism-Derived Gene Signature. J Pers Med 2022; 12:jpm12122031. [PMID: 36556252 PMCID: PMC9781171 DOI: 10.3390/jpm12122031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in cancer development and has been enhanced as a new therapeutic concept for cancer treatment. This study set out to identify an NAD+ metabolic-related gene signature for the prospect of cervical cancer survival and prognosis. Tissue profiles and clinical characteristics of 293 cervical cancer patients and normal tissues were downloaded from The Cancer Genome Atlas database to obtain NAD+ metabolic-related genes. Based on the differentially expressed NAD+ metabolic-related genes, cervical cancer patients were divided into two subgroups (Clusters 1 and 2) using consensus clustering. In total, 1404 differential genes were acquired from the clinical data of these two subgroups. From the NAD+ metabolic-related genes, 21 candidate NAD+ metabolic-related genes (ADAMTS10, ANGPTL5, APCDD1L, CCDC85A, CGREF1, CHRDL2, CRP, DENND5B, EFS, FGF8, P4HA3, PCDH20, PCDHAC2, RASGRF2, S100P, SLC19A3, SLC6A14, TESC, TFPI, TNMD, ZNF229) were considered independent indicators of cervical cancer prognosis through univariate and multivariate Cox regression analyses. The 21-gene signature was significantly different between the low- and high-risk groups in the training and validation datasets. Our work revealed the promising clinical prediction value of NAD+ metabolic-related genes in cervical cancer.
Collapse
Affiliation(s)
| | | | - Jin Qiu
- Correspondence: (J.Q.); (R.Z.)
| | | |
Collapse
|
36
|
George IA, Chauhan R, Dhawale R, Iyer R, Limaye S, Sankaranarayanan R, Venkataramanan R, Kumar P. Insights into therapy resistance in cervical cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100074. [DOI: 10.1016/j.adcanc.2022.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Zheng JH, Yao HF, Duan ZH, Ji PX, Yang J, Zhu YH, Jia QY, Yang JY, Liu DJ, Sun YW, Chen PC, Shi PD, Chen L. Exploitation and Verification of a Stroma- and Metastasis-Associated Risk Prognostic Signature in Pancreatic Adenocarcinoma. Pharmaceuticals (Basel) 2022; 15:1336. [PMID: 36355508 PMCID: PMC9696859 DOI: 10.3390/ph15111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has abundant mesenchymal components, but is also characterized by an extremely high metastatic risk. The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients. First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algorithm. Subsequently, transcriptomic data from clinical tissues in the RenJi cohort were screened for metastasis-associated genes. Integrating the two sets of genes, we constructed a risk prognostic signature by Cox and LASSO regression analysis. We then obtained a risk score by a quantitative formula and divided all samples into high- and low-risk groups based on the scores. The results demonstrated that patients with high-risk scores have a worse prognosis than those with low-risk scores, both in the TCGA database and in the RenJi cohort. In addition, tumor mutation burden, chemotherapeutic drug sensitivity and immune infiltration analysis also exhibited significant differences between the two groups. In exploring the potential mechanisms of how stromal components affect tumor metastasis, we simulated different matrix stiffness in vitro to explore its effect on EMT key genes in PAAD cells. We found that cancer cells stimulated by high matrix stiffness may trigger EMT and promote PAAD metastasis.
Collapse
Affiliation(s)
- Jia-Hao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong-Fei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zong-Hao Duan
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pei-Xuan Ji
- Shanghai Institute of Digestive Disease, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jian Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu-Heng Zhu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qin-Yuan Jia
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian-Yu Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yong-Wei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peng-Cheng Chen
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Pei-Dong Shi
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Li Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
38
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
39
|
Skowron MA, Eul K, Stephan A, Ludwig GF, Wakileh GA, Bister A, Söhngen C, Raba K, Petzsch P, Poschmann G, Kuffour EO, Degrandi D, Ali S, Wiek C, Hanenberg H, Münk C, Stühler K, Köhrer K, Mass E, Nettersheim D. Profiling the 3D interaction between germ cell tumors and microenvironmental cells at the transcriptome and secretome level. Mol Oncol 2022; 16:3107-3127. [PMID: 35811571 PMCID: PMC9441004 DOI: 10.1002/1878-0261.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022] Open
Abstract
The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Eul
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gillian F. Ludwig
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gamal A. Wakileh
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Urology and Paediatric UrologyUniversity Hospital UlmUlmGermany
| | - Arthur Bister
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Söhngen
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell TherapeuticsMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Edmund Osei Kuffour
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Pediatrics IIIUniversity Children's Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Elvira Mass
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
40
|
SNAI1-expressing fibroblasts and derived-extracellular matrix as mediators of drug resistance in colorectal cancer patients. Toxicol Appl Pharmacol 2022; 450:116171. [PMID: 35878797 DOI: 10.1016/j.taap.2022.116171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antitumor treatments is one of the most important problems faced by clinicians in the management of colorectal cancer (CRC) patients. Cancer-Associated Fibroblasts (CAFs) are the main producers and remodelers of the extracellular matrix (ECM), which is directly involved in drug resistance mechanisms. Primary Normal Fibroblasts (NFs) and CAFs and cell lines (fibroblasts and tumor cells), were used to generate ECM and to identify its role in the oxaliplatin and cetuximab chemoresistance processes of CRC cells mediated by SNAI1-expressing fibroblasts. Matrices generated by Snai1 KO MEFs (Knockout Mouse Embryonic Fibroblasts) confer less resistance on oxaliplatin and cetuximab than wild-type MEF-derived matrices. Similarly, matrices derived from CAFs cause greater survival of colorectal cancer cells than NF-derived matrices, in a similar way to Snai1 expression levels. In addition, Snail1 expression in fibroblasts regulates drug resistance and metabolism gene expression in tumor cells mediated by ECM. Finally, a series of 531 patients (TCGA) with CRC was used to assess the role of SNAI1 expression in patients' prognosis indicating an association between tumor SNAI1 expression and overall survival in colon cancer patients but not in rectal cancer patients. SNAI1 expression in CRC cancer patients, together with in vitro experimentation, suggests the possible use of SNAI1 expression in tumor-associated fibroblasts as a predictive biomarker of response to oxaliplatin and cetuximab treatments in patients with CRC.
Collapse
|
41
|
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol 2022; 13:988246. [PMID: 36105798 PMCID: PMC9465173 DOI: 10.3389/fimmu.2022.988246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the available treatment approaches have limited therapeutic benefits. Therefore, understanding the underlying mechanisms of occurrence and development is particularly crucial. Increasing attention has been paid to the pathophysiological role of cancer-associated fibroblasts (CAFs) in the heterogeneous tumour microenvironment. CAFs play a crucial role in tumorigenesis, tumour progression and treatment response. However, routine tissue sequencing cannot adequately reflect the heterogeneity of tumours. In this study, single-cell sequencing was used to examine the fibroblast population in CRC. After cluster analysis, the fibroblast population was divided into four subgroups. The distribution and role of these four subgroups in CRC were found to be different. Based on differential gene expression and lasso regression analysis of the main marker genes in these subgroups, four representative genes were obtained, namely, TCF7L1, FLNA, GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk groups using the prognostic risk model established based on the expression of these four genes. The prognosis of patients in different risk groups varied significantly; patients with low-risk scores had a greater response to PDL1 inhibitors, significant clinical benefits and significantly prolonged overall survival. These effects may be attributed to inhibition of the function of T cells in the immune microenvironment and promotion of the function of tumour-associated macrophages.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
- *Correspondence: Ying Chen,
| |
Collapse
|
42
|
Spheroid Formation and Peritoneal Metastasis in Ovarian Cancer: The Role of Stromal and Immune Components. Int J Mol Sci 2022; 23:ijms23116215. [PMID: 35682890 PMCID: PMC9181487 DOI: 10.3390/ijms23116215] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological cancers, with the worst prognosis and the highest mortality rate. Peritoneal dissemination (or carcinomatosis) accompanied by ascites formation is the most unfavorable factor in the progression and recurrence of OC. Tumor cells in ascites are present as either separate cells or, more often, as cell aggregates, i.e., spheroids which promote implantation on the surface of nearby organs and, at later stages, metastases to distant organs. Malignant ascites comprises a unique tumor microenvironment; this fact may be of relevance in the search for new prognostic and predictive factors that would make it possible to personalize the treatment of patients with OC. However, the precise mechanisms of spheroid formation and carcinomatosis are still under investigation. Here, we summarize data on ascites composition as well as the activity of fibroblasts and macrophages, the key stromal and immune components, in OC ascites. We describe current knowledge about the role of fibroblasts and macrophages in tumor spheroid formation, and discuss the specific functions of fibroblasts, macrophages and T cells in tumor peritoneal dissemination and implantation.
Collapse
|
43
|
Song C, Chen J, Zhang C, Dong D. An Integrated Pan-Cancer Analysis of ADAMTS12 and Its Potential Implications in Pancreatic Adenocarcinoma. Front Oncol 2022; 12:849717. [PMID: 35280819 PMCID: PMC8904364 DOI: 10.3389/fonc.2022.849717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background A Disintegrin and Metallopeptidase with Thrombospondin Type 1 Motif 12 (ADAMTS12), a member of the ADAMTS family of multidomain extracellular protease enzymes, is involved in the progression of many tumors. However, a pan-cancer analysis of this gene has not yet been performed. Its role in pancreatic adenocarcinoma (PAAD) also remains unclear. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data (GTEx) databases were used to analyze ADAMTS12 expression in pan-cancer. We assessed the expression, clinical characteristics, prognostic significance, copy number alteration, methylation, and mutation of ADAMTS12 and its correlation with the tumor immune microenvironment. qRT-PCR and immunohistochemistry assays were also performed to validate the expression of ADAMTS12 in PAAD. Results Through bioinformatics analysis and preliminary experimental verification, ADAMTS12 was found to be substantially overexpressed in PAAD. High expression level of ADAMTS12 was correlated with worse survival rates in patients with PAAD and high infiltration levels of tumor-associated macrophages, cancer-associated fibroblasts, immune checkpoint proteins, and immunosuppressive genes. Conclusion Our findings suggest ADAMTS12 as a potential prognostic biomarker in PAAD. Elevated ADAMTS12 expression may also indicate an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Caiyun Song
- Department of Gastroenterology, Wenzhou People's Hospital, Wenzhou, China
| | - Jionghuang Chen
- Zhejiang Engineering Research Center of Cognitive Healthcare, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaolei Zhang
- Zhejiang Engineering Research Center of Cognitive Healthcare, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dapeng Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Hilgers K, Ibrahim SA, Kiesel L, Greve B, Espinoza-Sánchez NA, Götte M. Differential Impact of Membrane-Bound and Soluble Forms of the Prognostic Marker Syndecan-1 on the Invasiveness, Migration, Apoptosis, and Proliferation of Cervical Cancer Cells. Front Oncol 2022; 12:803899. [PMID: 35155241 PMCID: PMC8828476 DOI: 10.3389/fonc.2022.803899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer ranks fourth among the most commonly diagnosed malignant tumors in women worldwide. Previously published evidence suggested a possible connection between the expression of the membrane-bound heparan sulfate proteoglycan syndecan-1 (Sdc-1) and the development of cervical carcinoma. Sdc-1 serves as a matrix receptor and coreceptor for receptor tyrosine kinases and additional signaling pathways. It influences cell proliferation, adhesion, and migration and is seen as a modulator of the tumor microenvironment. Following proteolytic cleavage of its extracellular domain in a process called shedding, Sdc-1 can act as a paracrine effector. The loss of Sdc-1 expression is associated with low differentiation of cervical carcinoma and with an increased rate of lymph node metastases. Here, we analyzed the clinical impact of Sdc-1 expression by analysis of public gene expression datasets and studied the effect of an overexpression of Sdc-1 and its membrane-bound and soluble forms on the malignant properties of the human cervical carcinoma cell line HeLa through functional analysis. For this purpose, the HeLa cells were stably transfected with the control plasmid pcDNA3.1 and three different Sdc-1-DNA constructs,encoding wild-type, permanently membrane-bound, and constitutively soluble Sdc-1. In clinical specimens, Sdc-1 mRNA was more highly expressed in local tumor tissues than in normal and metastatic cervical cancer tissues. Moreover, high Sdc-1 expression correlated with a poor prognosis in Kaplan-Meier survival analysis, suggesting the important role of Sdc-1 in the progression of this type of cancer. In vitro, we found that the soluble, as well as the permanently membrane-bound forms of Sdc-1 modulated the proliferation and the cell cycle, while membrane-bound Sdc1 regulated HeLa cell apoptosis. The overexpression of Sdc-1 and its soluble form increased invasiveness. In vitro scratch/wound healing assay, showed reduced Sdc-1-dependent cell motility which was linked to the Rho-GTPase signaling pathway. In conclusion, in cervical cancer Sdc-1 modulates pathogenetically relevant processes, which depend on the membrane-association of Sdc-1.
Collapse
Affiliation(s)
- Katharina Hilgers
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
45
|
Wang W, Cheng B, Yu Q. Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:889-901. [PMID: 36627901 PMCID: PMC9771752 DOI: 10.20517/cdr.2022.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 04/21/2023]
Abstract
The "seed and soil" concept has reformed paradigms for cancer treatment in the past decade. Accumulating evidence indicates that the intimate crosstalk between cancer cells and stromal cells plays a tremendous role in tumor progression. Cancer-associated fibroblasts (CAFs), the largest population of stroma cells, influence therapeutic effects through diverse mechanisms. Herein, we summarize the recent advances in the versatile functions of CAFs regarding their heterogeneity, and we mainly discuss the pro-tumorigenic functions of CAFs which promote tumorigenesis and confer therapeutic resistance to tumors. Targeting CAFs is emerging as one of the most appealing strategies in anticancer therapies. The endeavors to target or reprogram the specific subtypes of CAFs provide great cancer treatment opportunities, which may provide a better clinical benefit to cancer patients.
Collapse
Affiliation(s)
- Wenyu Wang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Bing Cheng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Qiang Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore 138672, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore
- Correspondence to: Prof. Qiang Yu, Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore. E-mail:
| |
Collapse
|
46
|
Colorectal cancer in Crohn's disease evaluated with genes belonging to fibroblasts of the intestinal mucosa selected by NMF. Pathol Res Pract 2021; 229:153728. [PMID: 34953405 DOI: 10.1016/j.prp.2021.153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Crohn's disease (CD) is a type of chronic, inflammatory bowel disease (IBD) which affects any part of the gastrointestinal tract. This study aims to understand the mechanism which activate mucosal fibroblasts in the microenvironment of the colon in CD and colorectal carcinomas and to extract fibroblasts phenotypes via a novel framework based on non-negative factorization of matrix (NMF). The results identify a fibroblast phenotype characterized by intense pro-inflammatory activity ensured by the presence of genes belonging to the APOBEC1 family, such as APOBEC3F and APOBEC3G. These results demonstrated that there is a difference in fibroblast response in producing a pro-tumorigenic effect in CD. The different activation mechanisms could represent useful biomarkers in controlling CD development without generalizing its significance as IBD.
Collapse
|
47
|
Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers (Basel) 2021; 13:cancers13225748. [PMID: 34830902 PMCID: PMC8616420 DOI: 10.3390/cancers13225748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine cervical cancer is one of the leading causes of cancer-related mortality in women worldwide. Each year, over half a million new cases are estimated, resulting in more than 300,000 deaths. While less-invasive, fertility-preserving surgical procedures can be offered to women in early stages, treatment for locally advanced disease may include radical hysterectomy, primary chemoradiotherapy (CRT) or a combination of these modalities. Concurrent platinum-based chemoradiotherapy regimens remain the first-line treatments for locally advanced cervical cancer. Despite achievements such as the introduction of angiogenesis inhibitors, and more recently immunotherapies, the overall survival of women with persistent, recurrent or metastatic disease has not been extended significantly in the last decades. Furthermore, a broad spectrum of molecular markers to predict therapy response and survival and to identify patients with high- and low-risk constellations is missing. Implementation of these markers, however, may help to further improve treatment and to develop new targeted therapies. This review aims to provide comprehensive insights into the complex mechanisms of cervical cancer pathogenesis within the context of molecular markers for predicting treatment response and prognosis.
Collapse
|
48
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1147] [Impact Index Per Article: 286.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
49
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
50
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|