1
|
Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, Donovan J, Tan LA, Vatner R, Kalinichenko V, Mascia A, Perentesis JP, Kalin TV. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol 2023; 186:109741. [PMID: 37315577 PMCID: PMC10527231 DOI: 10.1016/j.radonc.2023.109741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Taniya Saha
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Nihar Rama
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lin Abigail Tan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Division of Experimental Hematology, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
2
|
Yu Z, Zhu J, Wang H, Li H, Jin X. Function of BCLAF1 in human disease. Oncol Lett 2022; 23:58. [PMID: 34992690 PMCID: PMC8721854 DOI: 10.3892/ol.2021.13176] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Originally identified as a regulator of apoptosis and transcription, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has since been shown to be associated with a multitude of biological processes, such as DNA damage response, splicing and processing of pre-mRNA, T-cell activation, lung development, muscle cell proliferation and differentiation, autophagy, ischemia-reperfusion injury, and viral infection. In recent years, an increasing amount of evidence has shown that BCLAF1 acts as either a tumor promoter or tumor suppressor in tumorigenesis depending on the cellular context and the type of cancer. Even in the same tumor type, BCLAF1 may have opposite effects. In the present review, the subcellular localization, structural features, mutations within BCLAF1 will be described, then the regulation of BCLAF1 and its downstream targets will be analyzed. Furthermore, the different roles and possible mechanisms of BCLAF1 in tumorigenesis will also be highlighted and discussed. Finally, BCLAF1 may be considered as a potential target for cancer therapy in the future.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haibiao Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
3
|
Carbon ion radiotherapy boosts anti-tumour immune responses by inhibiting myeloid-derived suppressor cells in melanoma-bearing mice. Cell Death Discov 2021; 7:332. [PMID: 34732697 PMCID: PMC8566527 DOI: 10.1038/s41420-021-00731-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies have shown that carbon ion radiotherapy (CIRT) induces anti-cancer immune responses in melanoma patients, yet the mechanism remains elusive. The abundance of myeloid-derived suppressor cells (MDSC) in the tumour microenvironment is associated with therapeutic efficacy and disease outcome. This study analysed the changes in the immune contexture in response to the carbon ion treatment. The murine melanoma B16, MelanA, and S91 tumour models were established in syngeneic immunocompetent mice. Then, the tumours were irradiated with carbon ion beams, and flow cytometry was utilised to observe the immune contexture changes in the bone marrow, peripheral blood, spleen, and tumours. The immune infiltrates in the tumour tissues were further assessed using haematoxylin/eosin staining and immunohistochemistry. The immunoblot detected the expression of proteins associated with the JAK/STAT signalling pathway. The secretion of immune-related cytokines was examined using ELISA. Compared to conventional radiotherapy, particle beams have distinct advantages in cancer therapy. Here, the use of carbon ion beams (5 GyE) for melanoma-bearing mice was found to reduce the population of MDSC in the bone marrow, peripheral blood, and spleen of the animals via a JAK2/STAT3-dependent mechanism. The percentage of CD3+, CD4+, CD8+ T cells, macrophages, and natural killer cells increased after radiation, resulting in reduced tumour growth and prolonged overall survival in the three different mouse models of melanoma. This study, therefore, substantiated that CIRT boosts anti-tumour immune responses via the inhibition of MDSC.
Collapse
|
4
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Immune Modulatory Effects of Radiotherapy. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
6
|
Lacher MD, Bauer G, Fury B, Graeve S, Fledderman EL, Petrie TD, Coleal-Bergum DP, Hackett T, Perotti NH, Kong YY, Kwok WW, Wagner JP, Wiseman CL, Williams WV. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4 + T Lymphocytes. Front Immunol 2018; 9:776. [PMID: 29867922 PMCID: PMC5962696 DOI: 10.3389/fimmu.2018.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer immunotherapy with irradiated, granulocyte–macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB), in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B), ADA (encoding adenosine deaminase), ADGRE5 (CD97), CD58 (LFA3), CD74 (encoding invariant chain and CLIP), CD83, CXCL8 (IL8), CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele) treated with yellow fever virus (YFV) envelope (Env) 43–59 peptides reactivated YFV-DRB3*01:01-specific CD4+ T cells. Thus, the partial HLA allele match between SV-BR-1-GM and the clinical responder might have enabled patient T lymphocytes to directly recognize SV-BR-1-GM TAAs as presented on SV-BR-1-GM MHCs. Taken together, our findings are consistent with a potentially unique mechanism of action by which SV-BR-1-GM cells can act as APCs for previously primed CD4+ T cells.
Collapse
Affiliation(s)
| | - Gerhard Bauer
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Brian Fury
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Sanne Graeve
- BriaCell Therapeutics Corp., Berkeley, CA, United States
| | - Emily L Fledderman
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tye D Petrie
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Dane P Coleal-Bergum
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tia Hackett
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Nicholas H Perotti
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Ying Y Kong
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | | | |
Collapse
|
7
|
Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 2018; 10:1758834017742575. [PMID: 29383033 PMCID: PMC5784573 DOI: 10.1177/1758834017742575] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Collapse
Affiliation(s)
- Thomas Walle
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity, Heidelberg, Germany
| | - Daniel Ajona
- Division of Oncology, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainIdiSNA, Navarra Institute for Health Research, Pamplona, SpainDepartment of Biochemistry and Genetics, University of Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Ignacio Melero
- Programme in Immunotherapy, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainDepartment of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), IdiSNA, Navarra Institute for Health Research, Department of Histology and Pathology, University of Navarra, School of Medicine, Pamplona, Spain. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|
8
|
de Goeje PL, Smit EF, Waasdorp C, Schram MTB, Kaijen-Lambers MEH, Bezemer K, de Mol M, Hartemink KJ, Nuyttens JJME, Maat APWM, Hegmans JPJJ, Hendriks RW, Senan S, Aerts JGJV. Stereotactic Ablative Radiotherapy Induces Peripheral T-Cell Activation in Patients with Early-Stage Lung Cancer. Am J Respir Crit Care Med 2017; 196:1224-1227. [PMID: 28345951 DOI: 10.1164/rccm.201610-2178le] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Egbert F Smit
- 2 Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital Amsterdam, the Netherlands
| | | | - Merel T B Schram
- 1 Erasmus MC Rotterdam, the Netherlands.,3 Amphia Hospital Breda, the Netherlands and
| | | | | | - Mark de Mol
- 1 Erasmus MC Rotterdam, the Netherlands.,3 Amphia Hospital Breda, the Netherlands and
| | - Koen J Hartemink
- 2 Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital Amsterdam, the Netherlands
| | | | | | | | | | | | - Joachim G J V Aerts
- 1 Erasmus MC Rotterdam, the Netherlands.,3 Amphia Hospital Breda, the Netherlands and
| |
Collapse
|
9
|
Takahashi Y, Matsutani N, Nakayama T, Dejima H, Uehara H, Kawamura M. Immunological effect of local ablation combined with immunotherapy on solid malignancies. CHINESE JOURNAL OF CANCER 2017; 36:49. [PMID: 28592286 PMCID: PMC5463413 DOI: 10.1186/s40880-017-0216-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Recent comprehensive investigations clarified that immune microenvironment surrounding tumor cells are deeply involved in tumor progression, metastasis, and response to treatment. Furthermore, several immunotherapeutic trials have achieved successful results, and the immunotherapeutic agents are available in clinical practice. To enhance their demonstrated efficacy, combination of immunotherapy and ablation has begun to emerge. Local ablations have considerable advantages as an alternative therapeutic option, especially its minimal invasiveness. In addition, local ablations have shown immune-regulatory effect in preclinical and clinical studies. Although the corresponding mechanisms are still unclear, the local ablations combined with immunotherapy have been suggested in the treatment of several solid malignancies. This article aims to review the published data on the immune-regulatory effects of local ablations including stereotactic body radiotherapy, cryoablation, radiofrequency ablation, and high-intensity-focused ultrasound. We also discuss the value of local ablations combined with immunotherapy. Local ablations have the potential to improve future patient outcomes; however, the effectiveness and safety of local ablations combined with immunotherapy should be further investigated.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
10
|
Eckert F, Gaipl U, Niedermann G, Hettich M, Schilbach K, Huber S, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol 2017; 2:29-35. [PMID: 29657997 PMCID: PMC5893529 DOI: 10.1016/j.ctro.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
The revival of cancer immunotherapy has taken place with the clinical success of immune checkpoint inhibition. However, the spectrum of immunotherapeutic approaches is much broader encompassing T cell engaging strategies, tumour-specific vaccination, antibodies or immunocytokines. This review focuses on the immunological effects of irradiation and the evidence available on combination strategies with immunotherapy. The available data suggest great potential of combined treatments, yet also poses questions about dose, fractionation, timing and most promising multimodal strategies.
Collapse
Key Words
- Bispecific antibodies
- CAR, chimeric antigen receptor
- CAR-T-cells
- CDN, cyclic dinucleotides
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- GM-CSF, granulocyte-monocyte colony stimulating factor
- IR, irradiation
- Immunocytokines
- Immunotherapy
- PD-1, Programmed cell death protein 1 receptor
- PD-L1, PD-1 ligand
- Radiotherapy
- TCR, T cell receptor
- Treg, regulatory T cells
- Vaccination
- bsAb, bispecific antibody
- scFv, single chain variable fragment
Collapse
Affiliation(s)
- F. Eckert
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - U.S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Niedermann
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - M. Hettich
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - K. Schilbach
- Department of General Pediatrics/Pediatric Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - S.M. Huber
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - D. Zips
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|