1
|
Wilk SS, Michalak K, Owczarek EP, Winiarczyk S, Zabielska-Koczywąs KA. Proteomic Analyses Reveal the Role of Alpha-2-Macroglobulin in Canine Osteosarcoma Cell Migration. Int J Mol Sci 2024; 25:3989. [PMID: 38612805 PMCID: PMC11011979 DOI: 10.3390/ijms25073989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Canine osteosarcoma (OSA) is an aggressive bone neoplasia with high metastatic potential. Metastasis is the main cause of death associated with OSA, and there is no current treatment available for metastatic disease. Proteomic analyses, including matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI TOF/TOF MS), are widely used to select molecular targets and identify proteins that may play a key role in primary tumours and at various steps of the metastatic cascade. The main aim of this study was to identify proteins differently expressed in canine OSA cell lines with different malignancy phenotypes (OSCA-8 and OSCA-32) compared to canine osteoblasts (CnOb). The intermediate aim of the study was to compare canine OSA cell migration capacity and assess its correlation with the malignancy phenotypes of each cell line. Using MALDI-TOF/TOF MS analyses, we identified eight proteins that were significantly differentially expressed (p ≤ 0.05) in canine OSA cell lines compared to CnOb: cilia- and flagella-associated protein 298 (CFAP298), general transcription factor II-I (GTF2I), mirror-image polydactyly gene 1 protein (MIPOL1), alpha-2 macroglobulin (A2M), phosphoglycerate mutase 1 (PGAM1), ubiquitin (UB2L6), ectodysplasin-A receptor-associated adapter protein (EDARADD), and leucine-rich-repeat-containing protein 72 (LRRC72). Using the Simple Western technique, we confirmed high A2M expression in CnOb compared to OSCA-8 and OSCA-32 cell lines (with intermediate and low A2M expression, respectively). Then, we confirmed the role of A2M in cancer cell migration by demonstrating significantly inhibited OSA cell migration by treatment with A2M (both at 10 and 30 mM concentrations after 12 and 24 h) in a wound-healing assay. This study may be the first report indicating A2M's role in OSA cell metastasis; however, further in vitro and in vivo studies are needed to confirm its possible role as an anti-metastatic agent in this malignancy.
Collapse
Affiliation(s)
- Sylwia S. Wilk
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (K.M.); (S.W.)
| | - Ewelina P. Owczarek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena, 02-109 Warsaw, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (K.M.); (S.W.)
- National Veterinary Research Institute, Aleja Partyzantów 5, 24-100 Puławy, Poland
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
| |
Collapse
|
2
|
Yang YT, Engleberg AI, Yuzbasiyan-Gurkan V. Establishment and Characterization of Cell Lines from Canine Metastatic Osteosarcoma. Cells 2023; 13:25. [PMID: 38201229 PMCID: PMC10778184 DOI: 10.3390/cells13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the advancements in treatments for other cancers, the outcomes for osteosarcoma (OSA) patients have not improved in the past forty years, especially in metastatic patients. Moreover, the major cause of death in OSA patients is due to metastatic lesions. In the current study, we report on the establishment of three cell lines derived from metastatic canine OSA patients and their transcriptome as compared to normal canine osteoblasts. All the OSA cell lines displayed significant upregulation of genes in the epithelial mesenchymal transition (EMT) pathway, and upregulation of key cytokines such as CXCL8, CXCL10 and IL6. The two most upregulated genes are MX1 and ISG15. Interestingly, ISG15 has recently been identified as a potential therapeutic target for OSA. In addition, there is notable downregulation of cell cycle control genes, including CDKN2A, CDKN2B and THBS1. At the protein level, p16INK4A, coded by CDKN2A, was undetectable in all the canine OSA cell lines, while expression of the tumor suppressor PTEN was variable, with one cell line showing complete absence and others showing low levels of expression. In addition, the cells express a variety of actionable genes, including KIT, ERBB2, VEGF and immune checkpoint genes. These findings, similar to those reported in human OSA, point to some genes that can be used for prognosis, targeted therapies and novel drug development for both canine and human OSA patients.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Jarosz AS, Pendleton AL, Lashbrook MJ, Cech E, Altieri M, Kunch A, Modiano JF, Halo JV. Expression and high levels of insertional polymorphism of an endogenous gammaretrovirus lineage in dogs. PLoS Genet 2023; 19:e1011083. [PMID: 38055724 PMCID: PMC10727363 DOI: 10.1371/journal.pgen.1011083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/18/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Despite the absence of a confirmed exogenously replicating retrovirus in Canis lupus familiaris (C. familiaris), past retroviral infections are evident in the genomes of living animals via the presence of endogenous retroviruses (ERVs). Although gammaretrovirus-like transcripts and enzyme activities were previously reported to be present in canine leukemias and lymphomas, those findings were not further explored. Initial analysis of the C. familiaris reference genome revealed a minor subset of one ERV lineage, classified as CfERV-Fc1(a), or Fc1(a) here, with features characteristic of recent integration, including the presence of ORFs and identical or nearly identical LTRs. Our previous analysis of whole genome sequence data belonging to extant Canidae revealed a burst of past infections in Canis ancestors resulting in numerous young, polymorphic, and highly intact loci now segregating in dogs. Here, we demonstrate the expression of full-length Fc1(a) proviruses in tissues collected from healthy animals and from animals with cancer. We observed significantly higher expression in samples of dogs with various cancer diagnoses when compared to samples from healthy dogs. Genotyping of insertionally polymorphic Fc1(a) loci identified candidate expressed proviruses and delineated distributions over sample groups. Collectively, the data show that Fc1(a) proviruses retain biological activity in the domestic dog and provides a means to examine potential genetic links with disease states in this species.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| | - Amanda L. Pendleton
- Purdue University, Department of Biochemistry, West Lafayette, Indiana, United States of America
- Purdue University, Purdue Center for Plant Biology, West Lafayette, Indiana, United States of America
| | - Michael J. Lashbrook
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| | - Erica Cech
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| | - Madison Altieri
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| | - Austin Kunch
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Julia V. Halo
- Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, United States of America
| |
Collapse
|
4
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Choi Y, Nam MW, Lee HK, Choi KC. Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases. J Vet Sci 2023; 24:e71. [PMID: 38031650 PMCID: PMC10556291 DOI: 10.4142/jvs.23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023] Open
Abstract
With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNA-sequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also non-coding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.
Collapse
Affiliation(s)
- Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
6
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Dopytalska K, Czaplicka A, Szymańska E, Walecka I. The Essential Role of microRNAs in Inflammatory and Autoimmune Skin Diseases-A Review. Int J Mol Sci 2023; 24:ijms24119130. [PMID: 37298095 DOI: 10.3390/ijms24119130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The etiopathogenesis of autoimmune skin diseases is complex and still not fully understood. The role of epigenetic factors is emphasized in the development of such diseases. MicroRNAs (miRNAs), a group of non-coding RNAs (ncRNAs-non-coding RNAs), are one of the important post-transcriptional epigenetic factors. miRNAs have a significant role in the regulation of the immune response by participating in the process of the differentiation and activation of B and T lymphocytes, macrophages, and dendritic cells. Recent advances in research on epigenetic factors have provided new insights into the pathogenesis and potential diagnostic and therapeutic targets of many pathologies. Numerous studies revealed a change in the expression of some microRNAs in inflammatory skin disorders, and the regulation of miRNA expression is a promising therapeutic goal. This review presents the state of the art regarding changes in the expression and role of miRNAs in inflammatory and autoimmune skin diseases, including psoriasis, atopic dermatitis, vitiligo, lichen planus, hidradenitis suppurativa, and autoimmune blistering diseases.
Collapse
Affiliation(s)
- Klaudia Dopytalska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Anna Czaplicka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Elżbieta Szymańska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Irena Walecka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
8
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
9
|
Megquier K, Turner-Maier J, Morrill K, Li X, Johnson J, Karlsson EK, London CA, Gardner HL. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS One 2022; 17:e0274383. [PMID: 36099278 PMCID: PMC9469990 DOI: 10.1371/journal.pone.0274383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason Turner-Maier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kathleen Morrill
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
10
|
Liu Y, Zhao Q, Xi T, Zheng L, Li X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: Implications in personalized medicine. Genes Dis 2021; 8:759-768. [PMID: 34522706 PMCID: PMC8427239 DOI: 10.1016/j.gendis.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis, is a development of secondary tumor growths at a distance from the primary site, and closely related to poor prognosis and mortality. However, there is still no effective treatment for metastatic cancer. Therefore, there is an urgent need to find an effective therapy for cancer metastasis. Plenty of evidence indicates that miR-9 can function as a promoter or suppressor in cancer metastasis and coordinate multistep of metastatic process. In this review, we summarize the different roles of miR-9 with the corresponding molecular mechanisms in metastasis of twelve common cancers and the multiple mechanisms underlying miR-9-mediated regulation of metastasis, benefiting the further research of miR-9 and metastasis, and hoping to bridge it with clinical applications.
Collapse
Affiliation(s)
- Yichen Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China.,School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China
| |
Collapse
|
11
|
Wilk SS, Zabielska-Koczywąs KA. Molecular Mechanisms of Canine Osteosarcoma Metastasis. Int J Mol Sci 2021; 22:3639. [PMID: 33807419 PMCID: PMC8036641 DOI: 10.3390/ijms22073639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OSA) represents the most common bone tumor in dogs. The malignancy is highly aggressive, and most of the dogs die due to metastasis, especially to the lungs. The metastatic process is complex and consists of several main steps. Assessment of the molecular mechanisms of metastasis requires in vitro and especially in vivo studies for a full evaluation of the process. The molecular and biological resemblance of canine OSA to its human counterpart enables the utilization of dogs as a spontaneous model of this disease in humans. The aim of the present review article is to summarize the knowledge of genes and proteins, including p63, signal transducer and activator of transcription 3 (STAT3), Snail2, ezrin, phosphorylated ezrin-radixin-moesin (p-ERM), hepatocyte growth factor-scatter factor (HGF-SF), epidermal growth factor receptor (EGFR), miR-9, and miR-34a, that are proven, by in vitro and/or in vivo studies, to be potentially involved in the metastatic cascade of canine OSA. The determination of molecular targets of metastatic disease may enhance the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
12
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
13
|
Wu F, Jiang X, Wang Q, Lu Q, He F, Li J, Li X, Jin M, Xu J. The impact of miR-9 in osteosarcoma: A study based on meta-analysis, TCGA data, and bioinformatics analysis. Medicine (Baltimore) 2020; 99:e21902. [PMID: 32871922 PMCID: PMC7458186 DOI: 10.1097/md.0000000000021902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The function of miR-9 in osteosarcoma is not well-investigated and controversial. Therefore, we conducted meta-analysis to explore the role of miR-9 in osteosarcoma, and collected relevant TCGA data to further testify the result. In addition, bioinformatics analysis was conducted to investigate the mechanism and related pathways of miR-9-3p in osteosarcoma.Literature search was operated on databases up to February 19, 2020, including PubMed, Web of Science, Science Direct, Cochrane Central Register of Controlled Trials, and Wiley Online Library, China National Knowledge Infrastructure, China Biology Medicine disc, Chongqing VIP, and Wan Fang Data. The relation of miR-9 expression with survival outcome was estimated by hazard ratio (HRs) and 95% CIs. Meta-analysis was conducted on the Stata 12.0 (Stata Corporation, TX). To further assess the function of miR-9 in osteosarcoma, relevant data from the TCGA database was collected. Three databases, miRDB, miRPathDB 2.0, and Targetscan 7.2, were used for prediction of target genes. Genes present in these 3 databases were considered as predicted target genes of miR-9-3p. Venny 2.1 were used for intersection analysis. Subsequently, GO, KEGG, and PPI network analysis were conducted based on the overlapping target genes of miR-9-3p to explore the possible molecular mechanism in osteosarcoma.Meta-analysis shown that overexpression of miR-9 was associated with worse overall survival (OS) (HR = 4.180, 95% CI: 2.880-6.066, P < .001, I = 23.5%). Based on TCGA data, osteosarcoma patients with overexpression of miR-9-3p (HR = 1.603, 95% CI: 1.028-2.499, P = .037) and miR-9-5p (HR = 1.698, 95% CI: 1.133-2.545, P = .01) also suffered poor OS. In bioinformatics analysis, 2 significant and important pathways were enriched: Wnt signaling pathway from gene ontology analysis (gene ontology:0016055, P-adjust = .008); hippo signaling pathway from Kyoto Encyclopedia of Genes and Genomes analysis (P-adjust = .007). Moreover, network analysis relevant protein-protein interaction was visualized, revealing 117 nodes and 161 edges.High miR-9 expression was associated with poor prognosis. Based on bioinformatics analysis, this study enhanced the understanding of the mechanism and related pathways of miR-9 in osteosarcoma.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics and Rehabilitation
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Qun Wang
- Department of Internal Medicine, Huzhou Wuxing Hospital of Integrated Traditional Chinese and Western Medicine
| | - Qian Lu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Fengxiang He
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital
| | - Juntao Xu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| |
Collapse
|
14
|
Zheng J, Shao S, Dai C, Guan S, Chen H. miR-9-5p promotes the invasion and migration of endometrial stromal cells in endometriosis patients through the SIRT1/NF-κB pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1859-1866. [PMID: 32782715 PMCID: PMC7414472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The present study was designed to investigate the expression of miR-9-5p and to study the effect of miR-9-5p expression on the invasion and migration of endometrial stromal cells in endometriosis patients. METHODS We recruited 17 eutopic endometrium patients, 19 ectopic endometrium patients, and 13 normal endometrium patients, and we measured their miR-9-5p and SIRT1 expressions. Western blot was used to measure the protein expressions, and cellular immunofluorescence was used to check the positions of the p65 position protein in cells. A Transwell chamber and cell scratch tests were used to test cell invasion and migration, respectively. RESULTS miR-9-5p was highly expressed, and SIRT1 was lowly expressed in the endometria of the endometriosis patients, and there was a negative correlation between miR-9-5p and SIRT1 mRNA in the endometriosis patients. A dual luciferase reporter gene system showed that miR-9-5p targeted the inhibition of SIRT1 expression in the endometrial stromal cells. Moreover, the up-regulation of miR-9-5p expression using the miR-9-5p-mimics significantly increased the distance of endometrial stromal cell migration and the number of cells that entered into the lower chamber of the Transwell chamber, and the down-regulation of miR-9-5p using the miR-9-5p-inhibitor significantly decreased the distance of endometrial stromal cell migration and the number of cells that entered into the lower chamber of the Transwell chamber. Moreover, the miR-9-5p-mimics significantly increased the expressions of the P-p65/p65 protein and the 65 protein in the nuclei, and the miR-9-5p-inhibitor significantly decreased the expressions of the P-p65/p65 protein and the 65 protein in the nuclei. CONCLUSION miR-9-5p is highly expressed in the endometria of endometriosis patients, and miR-9-5p can promote the invasion and migration of endometrial stromal cells in vitro by targeting the SIRT1 expression via the NF-κB pathway.
Collapse
Affiliation(s)
- Jinyan Zheng
- Department of Obstetrics, Sanmen People's Hospital of Zhejiang Sanmen, Zhejiang, China
| | - Shanshan Shao
- Department of Obstetrics, Sanmen People's Hospital of Zhejiang Sanmen, Zhejiang, China
| | - Chanjuan Dai
- Department of Obstetrics, Sanmen People's Hospital of Zhejiang Sanmen, Zhejiang, China
| | - Shan Guan
- Department of Obstetrics, Sanmen People's Hospital of Zhejiang Sanmen, Zhejiang, China
| | - Hong Chen
- Department of Obstetrics, Sanmen People's Hospital of Zhejiang Sanmen, Zhejiang, China
| |
Collapse
|
15
|
Vansteenkiste DP, Fenger JM, Fadda P, Martin‐Vaquero P, da Costa RC. MicroRNA expression in the cerebrospinal fluid of dogs with and without cervical spondylomyelopathy. J Vet Intern Med 2019; 33:2685-2692. [PMID: 31639228 PMCID: PMC6872614 DOI: 10.1111/jvim.15636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osseous-associated cervical spondylomyelopathy (OA-CSM) is a common condition of the cervical vertebral column that affects giant dog breeds. MicroRNAs (miRNAs) are small RNAs that regulate gene expression, and recent data suggest that circulating miRNAs present in biological fluids may serve as potential biomarkers for disease. The miRNA profiles of cerebrospinal fluid (CSF) from healthy dogs and dogs clinically affected by OA-CSM have not been described. OBJECTIVE To characterize the expression levels of miRNAs present in the CSF of normal Great Danes and identify differentially expressed miRNAs in the CSF of Great Danes clinically affected with OA-CSM. ANIMALS Client-owned dogs: 12 control, 12 OA-CSM affected. METHODS Cerebrospinal fluid samples were collected prospectively. MicroRNA expression was evaluated using the NanoString nCounter platform and quantitative real-time PCR. RESULTS We identified 8 miRNAs with significant differential expression. MiR-299-5p and miR-765 had increased expression levels in the CSF of OA-CSM-affected dogs, whereas miR-494, miR-612, miR-302-d, miR-4531, miR-4455, and miR-6721-5p had decreased expression levels in OA-CSM affected dogs compared to clinically normal dogs. Quantitative real-time PCR was performed to validate the expression levels of 2 miRNAs (miR-494 and miR-612), and we found a 1.5-fold increase in miR-494 expression and a 1.2-fold decrease in miR-612 in the CSF of the OA-CSM affected group (P = .41 and .89, respectively). CONCLUSIONS AND CLINICAL IMPORTANCE Data generated from our study represent an initial characterization of the miRNA profile of normal canine CSF and suggest that a distinct CSF miRNA expression profile is associated with OA-CSM.
Collapse
Affiliation(s)
- Daniella P. Vansteenkiste
- Department of Veterinary Clinical SciencesThe Ohio State University, College of Veterinary MedicineColumbusOhio
| | - Joelle M. Fenger
- Department of Veterinary Clinical SciencesThe Ohio State University, College of Veterinary MedicineColumbusOhio
| | - Paolo Fadda
- Comprehensive Cancer Center, Genomics Shared ResourceThe Ohio State UniversityColumbusOhio
| | | | - Ronaldo C. da Costa
- Department of Veterinary Clinical SciencesThe Ohio State University, College of Veterinary MedicineColumbusOhio
| |
Collapse
|
16
|
Su M, Yi H, He X, Luo L, Jiang S, Shi Y. miR-9 regulates melanocytes adhesion and migration during vitiligo repigmentation induced by UVB treatment. Exp Cell Res 2019; 384:111615. [PMID: 31499059 DOI: 10.1016/j.yexcr.2019.111615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022]
Abstract
The decreased adhesion ability of melanocytes to the neighboring keratinocytes prompts melanocytes to lose from the epidermis, comprising the critical step in vitiligo pathogenesis. The repigmentation process involves the migration of melanocytes to the lesional area. This study aims to investigate the role and mechanism of microRNA (miR)-9 in the adhesion and migration of melanocytes during vitiligo repigmentation induced by UVB treatment. The HaCaT keratinocytes were used to mimic lesional condition and the PIG1 melanocytes as perilesional condition. Human lesional vitiligo specimens showed increased miR-9 and decreased adhesion molecules such as E-cadherin and β1 integrin. Furthermore, UVB exposure upregulated IL-10, E-cadherin, and β1 integrin, downregulated miR-9 in HaCaT cells. Moreover, the increased IL-10 by UVB exposure decreased miR-9 level by inducing miR-9 methylation via methyltransferase DNMT3A in HaCaT cells. Additionally, miR-9 targeted and inhibited E-cadherin and β1 integrin in HaCaT cells, and suppressed migration of PIG1 cells to UVB-exposed HaCaT cells. In conclusion, miR-9 was suppressed by IL-10 and inhibited migration of PIG1 cells to HaCaT cells during UVB-mediated vitiligo repigmentation.
Collapse
Affiliation(s)
- Mengyun Su
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Hong Yi
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Wuhan, 430015, China
| | - Xiaolei He
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Longfei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China
| | - Ying Shi
- Department of Dermatology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
17
|
Bhuvaneshwar K, Harris M, Gusev Y, Madhavan S, Iyer R, Vilboux T, Deeken J, Yang E, Shankar S. Genome sequencing analysis of blood cells identifies germline haplotypes strongly associated with drug resistance in osteosarcoma patients. BMC Cancer 2019; 19:357. [PMID: 30991985 PMCID: PMC6466653 DOI: 10.1186/s12885-019-5474-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children. Survival remains poor among histologically poor responders, and there is a need to identify them at diagnosis to avoid delivering ineffective therapy. Genetic variation contributes to a wide range of response and toxicity related to chemotherapy. The aim of this study is to use sequencing of blood cells to identify germline haplotypes strongly associated with drug resistance in osteosarcoma patients. METHODS We used sequencing data from two patient datasets, from Inova Hospital and the NCI TARGET. We explored the effect of mutation hotspots, in the form of haplotypes, associated with relapse outcome. We then mapped the single nucleotide polymorphisms (SNPs) in these haplotypes to genes and pathways. We also performed a targeted analysis of mutations in Drug Metabolizing Enzymes and Transporter (DMET) genes associated with tumor necrosis and survival. RESULTS We found intronic and intergenic hotspot regions from 26 genes common to both the TARGET and INOVA datasets significantly associated with relapse outcome. Among significant results were mutations in genes belonging to AKR enzyme family, cell-cell adhesion biological process and the PI3K pathways; as well as variants in SLC22 family associated with both tumor necrosis and overall survival. The SNPs from our results were confirmed using Sanger sequencing. Our results included known as well as novel SNPs and haplotypes in genes associated with drug resistance. CONCLUSION We show that combining next generation sequencing data from multiple datasets and defined clinical data can better identify relevant pathway associations and clinically actionable variants, as well as provide insights into drug response mechanisms.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Michael Harris
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | | | | | - John Deeken
- Inova Translational Medicine Institute, Fairfax, VA USA
| | - Elizabeth Yang
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
- George Washington University School of Medicine, Washington DC, USA
- Virginia Commonwealth University School of Medicine, Inova Campus, Falls Church, VA USA
| | - Sadhna Shankar
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
| |
Collapse
|
18
|
Gao S, Wang J, Tian S, Luo J. miR‑9 depletion suppresses the proliferation of osteosarcoma cells by targeting p16. Int J Oncol 2019; 54:1921-1932. [PMID: 31081054 PMCID: PMC6521929 DOI: 10.3892/ijo.2019.4783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is a common primary malignancy in adolescents and children. MicroRNAs (miRNAs or miRs) can regulate the progression of OS. Herein, we explored the target genes and effects of miR-9 in OS. Cell growth, colony formation and cell cycle were respectively examined using a cell counting kit-8 (CCK-8), crystal violet staining and flow cytometry. The target gene of miR-9 was predicted according to the MicroRNA.org website. Luciferase activity was examined using a dual luciferase reporter gene assay kit. The corresponding factors levels were analyzed by carrying out reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. A mouse model of OS was also established and the volume and weight of the tumors of the mice with OS were measured. The levels of p16 in the mice with OS were detected by immunohistochemistry (IHC). The data revealed a high expression of miR-9 and a low expression of p16 in the OS tissue. p16 was found to be the target gene for miR-9 in OS. miR-9 depletion decreased the proliferation and colony formation of Saos-2 cells by arresting the cells at the G1 phase, accompanied by the downregulation of cyclin A, cyclin D1 and c-Myc expression levels. Moreover, miR-9 depletion inhibited the phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). In vivo, miR-9 depletion decreased the tumor volume and weight and increased p16 expression in the mouse tumor tissues. Nevertheless, p16 silencing reversed the suppressive effects of miR-9 inhibitors on OS cells. On the whole, the findings of this study substantiate that miR-9 depletion suppresses cell proliferation by targeting p16 in OS and by mediating the activation of the ERK/p38/JNK pathway.
Collapse
Affiliation(s)
- Song Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianchao Wang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shujian Tian
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianping Luo
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
19
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2018; 120:4783-4793. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone with a strong tendency to early metastasis, and occurs in growing bones more commonly in children and adolescents. Considering the limited therapeutic methods and lack of 100% success of these methods, developing innovative therapies with high efficacy and lower side effects is needed. Meanwhile, miRNAs and the studies indicating the involvement of miRNAs in OS development have attracted attentions as a result of the frequent abnormalities in expression of miRNAs in cancer. miRNAs are noncoding short sequences with lengths ranging from 18 to 25 nucleotides that play a very important role in cellular processes, such as proliferation, differentiation, migration, and apoptosis. MiRNAs can have either oncogenic or tumor suppressive role based on cellular function and targets. This review aimed to have overview on miR-142 as a tumor suppressor in OS. Moreover, the genes involved in the disease, such as RAC1, HMAG1, MMP9, MMP2, and E-cadherin, which have irregularities as a result of change in miR-142 expression, and, thereby, result in increasing the proliferation, invasion, and metastasis of the cells in the tissues and OS cells will be discussed.
Collapse
Affiliation(s)
- Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
22
|
Abstract
Pet dogs are becoming increasingly recognized as a population with the potential to inform medical research through their treatment for a variety of maladies by veterinary health professionals. This is the basis of the One Health initiative, supporting the idea of collaboration between human and animal health researchers and clinicians to study spontaneous disease processes and treatment in animals to inform human health. Cancer is a major health burden in pet dogs, accounting for approximately 30% of deaths across breeds. As such, pet dogs with cancer are becoming increasingly recognized as a resource for studying the pharmacology and therapeutic potential of anticancer drugs and therapies under development. This was recently highlighted by a National Academy of Medicine Workshop on Comparative Oncology that took place in mid-2015 (http://www.nap.edu/21830). One component of cancer burden in dogs is their significantly higher incidence of sarcomas as compared to humans. This increased incidence led to canine osteosarcoma being an important component in the development of surgical approaches for osteosarcoma in children. Included in this review of sarcomas in dogs is a description of the incidence, pathology, molecular characteristics and previous translational therapeutic studies associated with these tumors. An understanding of the patho-physiological and molecular characteristics of these naturally occurring canine sarcomas holds great promise for effective incorporation into drug development schemas, for evaluation of target modulation or other pharmacodynamic measures associated with therapeutic response. These data could serve to supplement other preclinical data and bolster clinical investigations in tumor types for which there is a paucity of human patients for clinical trials.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Ding J, Sha L, Shen P, Huang M, Cai Q, Li J. MicroRNA-18a inhibits cell growth and induces apoptosis in osteosarcoma by targeting MED27. Int J Oncol 2018; 53:329-338. [PMID: 29693135 DOI: 10.3892/ijo.2018.4374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant primary bone tumor and patients with OS are known to have a poor response to chemotherapy. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules (approximately 22 nucleotides in length) and they have recently become a topic for research as regards their role in cancer therapeutics. Previous studies have reported miR‑18a expression in patients with OS is significantly decreased compared with that in normal adjacent tissue. miR‑18a belongs to the miR‑17‑92 cluster encoded by the host gene MIR17HG. However, the detailed role of miR‑18a in OS remains to be determined. In this study, we demonstrated that miR‑18a mimics inhibited MG63 and Saos‑2 cell viability and migration. In addition, flow cytometry assay revealed that miR‑18a induced OS cell apoptosis. Western blot analysis indicated that the expression levels of Bcl‑2 and p‑Akt were downregulated, while the levels of cleaved caspase‑3 and Bax proteins were upregulated by miR‑18a. Moreover, we demonstrated that mediator complex subunit 27 (MED27) was the target of miR‑18a through dual luciferase assay. Finally, data from in vivo experiments indicated that tumor growth in mice was significantly suppressed by miR‑18a mimics, accompanied by a decrease in the percentage of Ki67-positive cells, and by the downregulation in MED27 and p‑Akt protein expression levels. The findings of the present study may aid in the clarification of the function of miR‑18a, particularly as regards its role in the regulation of OS cell apoptosis, and indicate that MED27 may be a potential novel therapeutic target in the treatment of OS.
Collapse
Affiliation(s)
- Jing Ding
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Lin Sha
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Pinquan Shen
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Man Huang
- Department of Good Clinical Practice, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| | - Qixun Cai
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai 200072, P.R. China
| |
Collapse
|
24
|
Sahabi K, Selvarajah GT, Abdullah R, Cheah YK, Tan GC. Comparative aspects of microRNA expression in canine and human cancers. J Vet Sci 2018; 19:162-171. [PMID: 28927253 PMCID: PMC5879064 DOI: 10.4142/jvs.2018.19.2.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in all biological pathways in multicellular organisms. Over 1,400 human miRNAs have been identified, and many are conserved among vertebrates and invertebrates. Regulation of miRNA is the most common mode of post-transcriptional gene regulation. The miRNAs that are involved in the initiation and progression of cancers are termed oncomiRs and several of them have been identified in canine and human cancers. Similarly, several miRNAs have been reported to be down-regulated in cancers of the two species. In this review, current information on the expression and roles of miRNAs in oncogenesis and progression of human and canine cancers, as well the roles miRNAs have in cancer stem cell biology, are highlighted. The potential for the use of miRNAs as therapeutic targets in personalized cancer therapy in domestic dogs and their possible application in human cancer counterparts are also discussed.
Collapse
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Gayathri T Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Jacques C, Renema N, Lezot F, Ory B, Walkley CR, Grigoriadis AE, Heymann D. Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. J Bone Oncol 2018; 12:7-13. [PMID: 29850398 PMCID: PMC5966525 DOI: 10.1016/j.jbo.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are the three main entities of bone sarcoma which collectively encompass more than 50 heterogeneous entities of rare malignancies. In contrast to osteosarcoma and Ewing sarcoma which mainly affect adolescents and young adults and exhibit a high propensity to metastasise to the lungs, chondrosarcoma is more frequently observed after 40 years of age and is characterised by a high frequency of local recurrence. The combination of chemotherapy, surgical resection and radiotherapy has contributed to an improved outcome for these patients. However, a large number of patients still suffer significant therapy related toxicities or die of refractory and metastatic disease. To better delineate the pathogenesis of bone sarcomas and to identify and test new therapeutic options, major efforts have been invested over the past decades in the development of relevant pre-clinical animal models. Nowadays, in vivo models aspire to mimic all the steps and the clinical features of the human disease as accurately as possible and should ideally be manipulable. Considering these features and given their small size, their conduciveness to experiments, their affordability as well as their human-like bone-microenvironment and immunity, murine pre-clinical models are interesting in the context of these pathologies. This chapter will provide an overview of the murine models of bone sarcomas, paying specific attention for the models induced by inoculation of tumour cells. The genetically-engineered mouse models of bone sarcoma will also be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia
| | - Agi E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London Guy's Hospital, London, UK
| | - Dominique Heymann
- University of Sheffield, Medical School, Dept of Oncology and Metabolism. INSERM, European Associated laboratory «Sarcoma Research Unit», Beech Hill Road, S10 2RX Sheffield, UK.,Institut de Cancérologie de l'Ouest, INSERM, U1232, University of Nantes, «Tumour Heterogeneity and Precision Medicine», Bld Jacques Monod, 44805 Saint-Herblain cedex, France
| |
Collapse
|
26
|
Lai YC, Ushio N, Rahman MM, Katanoda Y, Ogihara K, Naya Y, Moriyama A, Iwanaga T, Saitoh Y, Sogawa T, Sunaga T, Momoi Y, Izumi H, Miyoshi N, Endo Y, Fujiki M, Kawaguchi H, Miura N. Aberrant expression of microRNAs and the miR-1/MET pathway in canine hepatocellular carcinoma. Vet Comp Oncol 2018; 16:288-296. [DOI: 10.1111/vco.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Y.-C. Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - N. Ushio
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - M. M. Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - Y. Katanoda
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - K. Ogihara
- Laboratory of Pathology, School of Life and Environmental Science; Azabu University; Sagamihara Japan
| | - Y. Naya
- Laboratory of Pathology, School of Life and Environmental Science; Azabu University; Sagamihara Japan
| | - A. Moriyama
- Drug Safety Research Laboratories; Shin Nippon Biomedical Laboratories, Ltd.; Kagoshima Japan
| | - T. Iwanaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Saitoh
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - T. Sogawa
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - T. Sunaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Momoi
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - H. Izumi
- Drug Safety Research Laboratories; Shin Nippon Biomedical Laboratories, Ltd.; Kagoshima Japan
| | - N. Miyoshi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Endo
- Laboratory of Small Animal Internal Medicine, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - M. Fujiki
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - H. Kawaguchi
- Department of Hygiene and Health Promotion Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - N. Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| |
Collapse
|
27
|
Lopez CM, Yu PY, Zhang X, Yilmaz AS, London CA, Fenger JM. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 2018; 13:e0190086. [PMID: 29293555 PMCID: PMC5749745 DOI: 10.1371/journal.pone.0190086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. METHODOLOGY AND PRINCIPAL FINDINGS RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. CONCLUSIONS These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
Collapse
Affiliation(s)
- Cecilia M. Lopez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter Y. Yu
- Medical Student Research Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ayse Selen Yilmaz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, Tufts University, New Grafton, Massachusetts, United States of America
| | - Joelle M. Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Luo Z, Wu G, Zhang D, Liu J, Ran R. microRNA‑625 targets Yes‑associated protein 1 to suppress cell proliferation and invasion of osteosarcoma. Mol Med Rep 2017; 17:2005-2011. [PMID: 29257207 DOI: 10.3892/mmr.2017.8079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the leading cause of cancer‑associated mortality in adolescents and children. MicroRNAs (miRNAs) have critical roles in cancer, particularly in the initiation and progression of OS. Therefore, OS‑associated miRNAs should be identified for use as therapeutic targets for treatment of OS. This study aimed to investigate the expression pattern, potential roles and underlying mechanism of microRNA‑625 (miR‑625) in OS. miR‑625 was markedly downregulated in OS tissues and cell lines compared with that in associated adjacent non‑tumor tissues and human normal osteoblasts, respectively. The enforced expression of miR‑625 using miRNA mimics significantly reduced the proliferation and invasion of OS cells. Bioinformatics analysis and luciferase reporter assays indicated that miR‑625 targeted the 3'‑untranslated region of Yes‑associated protein 1 (YAP‑1). Furthermore, upregulation of miR‑625 reduced endogenous YAP1 expression at the mRNA and protein levels. The upregulated expression of YAP1 in OS tissues was inversely correlated with miR‑625 expression. YAP1 restoration using a recombinant plasmid rescued the miR‑625‑mediated tumor‑suppressive effects in OS cells. In conclusion, miR‑625 attenuated the cell proliferation and invasion of OS by suppressing YAP1. Thus, miR‑625 may be a potential target for OS therapy.
Collapse
Affiliation(s)
- Zheng Luo
- Department of Spinal Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Gang Wu
- Department of Inspection, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Daiyang Zhang
- Department of Spinal Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jun Liu
- Department of Spinal Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Renguo Ran
- Department of Spinal Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
29
|
Xie Y, Sun W, Deng Z, Zhu X, Hu C, Cai L. MiR-302b Suppresses Osteosarcoma Cell Migration and Invasion by Targeting Runx2. Sci Rep 2017; 7:13388. [PMID: 29042587 PMCID: PMC5645461 DOI: 10.1038/s41598-017-13353-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma patients with lung metastasis and local invasion remain challenging to treat despite the significant contribution of the combination of surgery and neo-adjuvant chemotherapy. Our previous microarray study demonstrated that miR-302b had significantly lower expression in osteosarcoma cell lines than in osteoblast cell lines. In the present study, we further elucidated the role of miR-302b in regulating the migration and invasiveness of osteosarcoma. MiR-302b expression was markedly down-regulated in osteosarcoma cell lines and clinical tumour tissues. Lower levels of miR-302b expression were significantly associated with metastasis and high pathological grades. A functional study demonstrated that over-expression of miR-302b suppressed tumour cell proliferation, invasion and migration in vitro and in vivo. Runx2 was identified as a direct target gene for miR-302b by bioinformatics analysis and dual-luciferase reporter gene assay. Moreover, over-expression of miR-302b induced down-regulation of Runx2, OPN, MMP-2, MMP-9, MMP-12, MMP-14, and VEGF in 143B cells. Exogenous expression of Runx2 partially rescued the inhibitory effect of miR-302b on the invasion and migration activity of 143B osteosarcoma cells. Taken together, our results indicate that miR-302b functions as a tumour repressor in the invasion and migration of osteosarcoma by directly downregulating Runx2 expression and may be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yuanlong Xie
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenchao Sun
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xiaobin Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chao Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
30
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
31
|
Xu G, Shao G, Pan Q, Sun L, Zheng D, Li M, Li N, Shi H, Ni Y. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2. Am J Transl Res 2017; 9:478-488. [PMID: 28337276 PMCID: PMC5340683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) play a critical role in cancer development and progression. Bioinformatics analyses has identified eukaryotic translation initiation factor 5A2 (eIF5A2) as a target of miR-9. In this study, we attempted to determine whether miR-9 regulates non-small cell lung cancer (NSCLC) cell invasion and migration by targeting eIF5A2 We examined eIF5A2 expression using reverse transcription-quantitative PCR (RT-qPCR) and subsequently transfected A549 and NCI-H1299 NSCLC cells with a miR-9 mimic or miR-9 inhibitor to determine the migration and invasive capability of the cells via wound healing assay and Transwell invasion assay, respectively. E-cadherin and vimentin expression was detected with western blotting. The miR-9 mimic significantly reduced NSCLC cell invasive and metastatic ability, and the miR-9 inhibitor enhanced NSCLC cell migration activity, increasing the number of migrated cells. There was no significant difference between the negative control siRNA and miR-9 mimic groups after knockdown of eIF5A2; western blotting showed that miR-9 regulated E-cadherin and vimentin expression. These data show that miR-9 regulates NSCLC cell invasion and migration through regulating eIF5A2 expression. Taken together, our findings suggest that the mechanism of miR-9-regulated NSCLC cell invasion and migration may be related to epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Guodong Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310006, Zhejiang, China
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Qiaoling Pan
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Minghui Li
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Ni Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Huoshun Shi
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo UniversityNingbo 315041, Zhejiang, China
| | - Yiming Ni
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310006, Zhejiang, China
| |
Collapse
|