1
|
Schreurs MA, Adank MA, Hollestelle A, de Groot R, Stommel-Jenner DJ, Van Asperen CJ, Ausems MG, Berger LPV, Blok MJ, van Engelen K, Hogervorst FBL, Geurts-Giele W, Gille JJP, Wevers MR, Schmidt MK, Hooning MJ. Cohort profile: a nationwide study in Dutch CHEK2 c.1100delC families using the infrastructure of the HEreditary Breast and Ovarian cancer study Netherlands - Hebon-CHEK2. BMJ Open 2024; 14:e086688. [PMID: 39384226 PMCID: PMC11474769 DOI: 10.1136/bmjopen-2024-086688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE CHEK2 c.1100delC is associated with an increased breast cancer risk in women. While this variant is prevalent in the Netherlands (1% in the general population), knowledge of aetiology and prognosis of breast cancer and other tumours in CHEK2 c.1100delC carriers is lacking. The nationwide HEreditary Breast and Ovarian cancer study the Netherlands (Hebon) cohort aims to answer study questions in families with an increased risk of breast cancer and ovarian cancer. While initially focusing on BRCA1/2-variant families, Hebon gradually expanded to include pathogenic variants in other genes associated with breast and/or ovarian cancer over time. This provides an excellent setting to establish a cohort to ultimately study the impact of CHEK2 c.1100delC on cancer risk prediction and surveillance, breast cancer treatment and prognosis. PARTICIPANTS We invited all heterozygous and homozygous CHEK2 c.1100delC indexes and tested female relatives. 1802 women were included, of whom 1374 were heterozygotes and 938 were breast cancer cases. Pedigrees were collected from all clinical genetic departments. Furthermore, participants completed a detailed questionnaire on hormonal and lifestyle factors, family history, cancer diagnosis and treatment. FINDINGS TO DATE Mean age at study inclusion was 53 years. Linkage with the Netherlands Cancer Registry showed a younger age at diagnosis in homozygotes (mean age 41.7 years) and heterozygotes (47.9 years) than non-carriers (51.2 years). Furthermore, carriers were more often diagnosed with grade 2, oestrogen receptor-positive breast cancer and more often developed contralateral breast cancer than non-carriers. Most women consumed alcohol regularly and about half never smoked. FUTURE PLANS Further data linkages with the Netherlands Cancer Registry will allow prospective follow-up and breast cancer risk assessment in unaffected women at the time of genetic testing, risk of contralateral breast cancer and survival in patients with breast cancer. Also, linkage with the nationwide network and registry of histopathology and cytopathology in The Netherlands (PALGA) allows us to retrieve tumour samples to study tumourigenesis.
Collapse
Affiliation(s)
| | - Muriel A Adank
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Rosa de Groot
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kiser D, Elhanan G, Bolze A, Neveux I, Schlauch KA, Metcalf WJ, Cirulli ET, McCarthy C, Greenberg LA, Grime S, Blitstein JMS, Plauth W, Grzymski JJ. Screening Familial Risk for Hereditary Breast and Ovarian Cancer. JAMA Netw Open 2024; 7:e2435901. [PMID: 39320887 PMCID: PMC11425146 DOI: 10.1001/jamanetworkopen.2024.35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Importance Most patients with pathogenic or likely pathogenic (P/LP) variants for breast cancer have not undergone genetic testing. Objective To identify patients meeting family history criteria for genetic testing in the electronic health record (EHR). Design, Setting, and Participants This study included both cross-sectional (observation date, February 1, 2024) and retrospective cohort (observation period, January 1, 2018, to February 1, 2024) analyses. Participants included patients aged 18 to 79 years enrolled in Renown Health, a large health system in Northern Nevada. Genotype was known for 38 003 patients enrolled in Healthy Nevada Project (HNP), a population genomics study. Exposure An EHR indicating that a patient is positive for criteria according to the Seven-Question Family History Questionnaire (hereafter, FHS7 positive) assessing familial risk for hereditary breast and ovarian cancer (HBOC). Main Outcomes and Measures The primary outcomes were the presence of P/LP variants in the ATM, BRCA1, BRCA2, CHEK2, or PALB2 genes (cross-sectional analysis) or a diagnosis of cancer (cohort analysis). Age-adjusted cancer incidence rates per 100 000 patients per year were calculated using the 2020 US population as the standard. Hazard ratios (HRs) for cancer attributable to FHS7-positive status were estimated using cause-specific hazard models. Results Among 835 727 patients, 423 393 (50.7%) were female and 29 913 (3.6%) were FHS7 positive. Among those who were FHS7 positive, 24 535 (82.0%) had no evidence of prior genetic testing for HBOC in their EHR. Being FHS7 positive was associated with increased prevalence of P/LP variants in BRCA1/BRCA2 (odds ratio [OR], 3.34; 95% CI, 2.48-4.47), CHEK2 (OR, 1.62; 95% CI, 1.05-2.43), and PALB2 (OR, 2.84; 95% CI, 1.23-6.16) among HNP female individuals, and in BRCA1/BRCA2 (OR, 3.35; 95% CI, 1.93-5.56) among HNP male individuals. Being FHS7 positive was also associated with significantly increased risk of cancer among 131 622 non-HNP female individuals (HR, 1.44; 95% CI, 1.22-1.70) but not among 114 982 non-HNP male individuals (HR, 1.11; 95% CI, 0.87-1.42). Among 1527 HNP survey respondents, 352 of 383 EHR-FHS7 positive patients (91.9%) were survey-FHS7 positive, but only 352 of 883 survey-FHS7 positive patients (39.9%) were EHR-FHS7 positive. Of the 29 913 FHS7-positive patients, 19 764 (66.1%) were identified only after parsing free-text family history comments. Socioeconomic differences were also observed between EHR-FHS7-negative and EHR-FHS7-positive patients, suggesting disparities in recording family history. Conclusions and Relevance In this cross-sectional study, EHR-derived FHS7 identified thousands of patients with familial risk for breast cancer, indicating a substantial gap in genetic testing. However, limitations in EHR family history data suggested that other identification methods, such as direct-to-patient questionnaires, are required to fully address this gap.
Collapse
Affiliation(s)
- Daniel Kiser
- University of Nevada Reno School of Medicine, Reno
| | - Gai Elhanan
- University of Nevada Reno School of Medicine, Reno
| | | | - Iva Neveux
- University of Nevada Reno School of Medicine, Reno
| | | | | | | | | | | | | | | | | | - Joseph J Grzymski
- University of Nevada Reno School of Medicine, Reno
- Renown Health, Reno, Nevada
| |
Collapse
|
3
|
Schreurs MAC, Schmidt MK, Hollestelle A, Schaapveld M, van Asperen CJ, Ausems MGEM, van de Beek I, Broekema MF, Margriet Collée J, van der Hout AH, van Kaam KJAF, Komdeur FL, Mensenkamp AR, Adank MA, Hooning MJ. Cancer risks for other sites in addition to breast in CHEK2 c.1100delC families. Genet Med 2024; 26:101171. [PMID: 38828701 DOI: 10.1016/j.gim.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Female CHEK2 c.1100delC heterozygotes are eligible for additional breast surveillance because of an increased breast cancer risk. Increased risks for other cancers have been reported. We studied whether CHEK2 c.1100delC is associated with an increased risk for other cancers within these families. METHODS Including 10,780 individuals from 609 families, we calculated standardized incidence rates (SIRs) and absolute excess risk (AER, per 10,000 person-years) by comparing first-reported cancer derived from the pedigrees with general Dutch population rates from 1970 onward. Attained-age analyses were performed for sites in which significant increased risks were found. Considering the study design, we primarily focused on cancer risk in women. RESULTS We found significant increased risks of colorectal cancer (CRC; SIR = 1.43, 95% CI = 1.14-1.76; AER = 1.43) and hematological cancers (SIR = 1.32; 95% CI = 1.02-1.67; AER = 0.87). CRC was significantly more frequent from age 45 onward. CONCLUSION A significantly increased risk of CRC, and hematological cancers in women was found, starting at a younger age than expected. Currently, colorectal surveillance starts at age 45 in high-risk individuals. Our results suggest that some CHEK2 c.1100delC families might benefit from this surveillance as well; however, further research is needed to determine who may profit from this additional colorectal surveillance.
Collapse
Affiliation(s)
- Maartje A C Schreurs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Michael Schaapveld
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet G E M Ausems
- Division of Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Irma van de Beek
- Department of Clinical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjoleine F Broekema
- Department of Human Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annemieke H van der Hout
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kim J A F van Kaam
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fenne L Komdeur
- Department of Human Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muriel A Adank
- Department of Clinical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Evans DG, Burghel GJ, Howell SJ, Pugh S, Forde C, Howell A, Lalloo F, Woodward ER. Pathogenic variant detection rate varies considerably in male breast cancer families and sporadic cases: minimal additional contribution beyond BRCA2, BRCA1 and CHEK2. J Med Genet 2024; 61:853-855. [PMID: 38609177 PMCID: PMC11420751 DOI: 10.1136/jmg-2023-109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Male breast cancer (MBC) affects around 1 in 1000 men and is known to have a higher underlying component of high and moderate risk gene pathogenic variants (PVs) than female breast cancer, particularly in BRCA2. However, most studies only report overall detection rates without assessing detailed family history. METHODS We reviewed germline testing in 204 families including at least one MBC for BRCA1, BRCA2, CHEK2 c.1100DelC and an extended panel in 93 of these families. Individuals had MBC (n=118), female breast cancer (FBC)(n=80), ovarian cancer (n=3) or prostate cancer-(n=3). Prior probability of having a BRCA1/2 PV was assessed using the Manchester Scoring System (MSS). RESULTS In the 204 families, BRCA2 was the major contributor, with 51 (25%) having PVs, followed by BRCA1 and CHEK2, with five each (2.45%) but no additional PVs identified, including in families with high genetic likelihood on MSS. Detection rates were 85.7% (12/14) in MSS ≥40 and 65.5% with MSS 30-39 but only 12.8% (6/47) for sporadic breast cancer. PV rates were low and divided equally between BRCA1/2 and CHEK2. CONCLUSION: As expected, BRCA2 PVs predominate in MBC families with rates 10-fold those in CHEK2 and BRCA1. The MSS is an effective tool in assessing the likelihood of BRCA1/2 PVs.
Collapse
Affiliation(s)
| | - George J Burghel
- Genomic Diagnostic Laboratory, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sacha J Howell
- Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Pugh
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Claire Forde
- Clinical Genetics Service, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | - Fiona Lalloo
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Emma Roisin Woodward
- Manchester Centre for Genomic Medicine, Central Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
5
|
Hinić S, Cybulski C, Van der Post RS, Vos JR, Schuurs-Hoeijmakers J, Brugnoletti F, Koene S, Vreede L, van Zelst-Stams WAG, Kets CM, Haadsma M, Spruijt L, Wevers MR, Evans DG, Wimmer K, Schnaiter S, Volk AE, Möllring A, de Putter R, Soikkonen L, Kahre T, Tooming M, de Jong MM, Vaz F, Mensenkamp AR, Genuardi M, Lubinski J, Ligtenberg M, Hoogerbrugge N, de Voer RM. The heterogeneous cancer phenotype of individuals with biallelic germline pathogenic variants in CHEK2. Genet Med 2024; 26:101101. [PMID: 38362852 DOI: 10.1016/j.gim.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE Females with biallelic CHEK2 germline pathogenic variants (gPVs) more often develop multiple breast cancers than individuals with monoallelic CHEK2 gPVs. This study is aimed at expanding the knowledge on the occurrence of other malignancies. METHODS Exome sequencing of individuals who developed multiple primary malignancies identified 3 individuals with the CHEK2 (NM_007194.4) c.1100del p.(Thr367MetfsTer15) loss-of-function gPV in a biallelic state. We collected the phenotypes of an additional cohort of individuals with CHEK2 biallelic gPVs (n = 291). RESULTS In total, 157 individuals (53.4%; 157/294 individuals) developed ≥1 (pre)malignancy. The most common (pre)malignancies next to breast cancer were colorectal- (n = 19), thyroid- (n = 19), and prostate (pre)malignancies (n = 12). Females with biallelic CHEK2 loss-of-function gPVs more frequently developed ≥2 (pre)malignancies and at an earlier age compared with females biallelic for the CHEK2 c.470T>C p.(Ile157Thr) missense variant. Furthermore, 26 males (31%; 26/84 males) with CHEK2 biallelic gPVs developed ≥1 (pre)malignancies of 15 origins. CONCLUSION Our study suggests that CHEK2 biallelic gPVs likely increase the susceptibility to develop multiple malignancies in various tissues, both in females and males. However, it is possible that a substantial proportion of individuals with CHEK2 biallelic gPVs is missed as diagnostic testing for CHEK2 often is limited to individuals who developed breast cancer.
Collapse
Affiliation(s)
- Snežana Hinić
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Rachel S Van der Post
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Janet R Vos
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Fulvia Brugnoletti
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Saskia Koene
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Lilian Vreede
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Wendy A G van Zelst-Stams
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - C Marleen Kets
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maaike Haadsma
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Liesbeth Spruijt
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Marijke R Wevers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - D Gareth Evans
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; The University of Manchester, Genomic Medicine, Division of Evolution, Infection and Genomic Sciences, Manchester, United Kingdom
| | - Katharina Wimmer
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schnaiter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander E Volk
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Möllring
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin de Putter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Leila Soikkonen
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Oulu University Hospital, Department of Clinical Genetics, Oulu, Finland
| | - Tiina Kahre
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mikk Tooming
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mirjam M de Jong
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Fátima Vaz
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Instituto Português Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Arjen R Mensenkamp
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maurizio Genuardi
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Richarda M de Voer
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
7
|
Ekram SN, Al Shanbari N, Bin Laswad BM, Alharthi A, Tayeb W, Bahha A. Checkpoint Kinase 2 (CHEK2) Gene Mutation in a Patient With Breast and Prostate Cancer: A Unique Presentation of a Rare Disease. Cureus 2023; 15:e49710. [PMID: 38161833 PMCID: PMC10757464 DOI: 10.7759/cureus.49710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Breast cancer is one of the rarest malignancies in males, with a low incidence rate compared to all breast cancers. Gene mutation plays a significant role in the pathologic process of cancer. Mutations in breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2) have been associated with male breast cancer (MBC), as well as prostate cancer (PCa). Despite the etiopathogenetic similarity, combined MBC and PCa is a rare entity. This report presents the case of a 57-year-old male with a history of breast cancer who underwent modified radical mastectomy (MRM) with lymph node dissection followed by adjuvant chemoradiotherapy four years ago. The patient presented with recurrent episodes of voiding dysfunction for three months, followed by urine retention. His family history was positive for breast and lung cancer. High prostate-specific antigen (PSA) and Prostate Imaging-Reporting and Data System 5 (PI-RADS5) necessitate transrectal ultrasound-guided biopsy, which confirmed the diagnosis of PCa. Molecular genetics testing and next-generation sequencing (NGS) analysis identified heterozygous variant c.636T>G, p.(Tyr212*) in the checkpoint kinase 2 (CHEK2) gene. The patient is planned for neoadjuvant luteinizing hormone-releasing hormone (LHRH) for 3-6 months, to be followed by transurethral tunneling of the prostate (TUTP) with adjuvant LHRH. The allele frequency of this patient mutation was documented for the first time among the general population, and it has not been described in the literature. This unique and rare case was presented with clinical, morphological, and immunohistochemical features together with a review of the current literature.
Collapse
Affiliation(s)
- Samar N Ekram
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Nasser Al Shanbari
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Bassam M Bin Laswad
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Abdulrahman Alharthi
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Waseem Tayeb
- Department of Surgery, Division of Urology, King Abdullah Medical City, Makkah, SAU
| | - Abdulbari Bahha
- Department of Surgery, Division of Urology, King Abdullah Medical City, Makkah, SAU
| |
Collapse
|
8
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
9
|
Li H, Zhang Y, Teh MS, Limaye S, Cavalcante FP, Shen JB. Analysis of the distinct features of metastasis male breast cancer and its effect on overall survival based on the SEER database compared with female breast cancer. Transl Cancer Res 2023; 12:2371-2378. [PMID: 37859736 PMCID: PMC10583016 DOI: 10.21037/tcr-23-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Background Male breast cancer (MBC) is a rare disease and differs from female breast cancer (FBC) in clinicopathological and immune tissue types. Given the limited research on MBC due to its rarity, an understanding of the shared and distinct features of MBC and FBC is vital for formulating efficacious treatment strategies. Methods Data of patients diagnosed with metastatic breast cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2012 to 2017 were analysed. Chi-square test was used to compare clinicopathological characteristics between male and female patients. Kaplan-Meier analysis was utilized to compare differences in overall survival (OS). Results A total of 2,858 patients with MBC were studied, 134 of whom had distant metastasis. Compared with 8,698 patients with metastatic FBC, a higher proportion of metastatic MBC patients had tumors located in the center of the breast, received surgical treatment, and had bone + lung metastasis. Survival analysis revealed no difference in OS between metastatic MBC and FBC patients (P=0.27), but there was a significant difference in OS between metastatic and nonmetastatic MBC (P=0.004). Compared with metastatic FBC, MBC patients with bone metastasis alone, lung metastasis alone, liver metastasis alone, and bone + lung metastasis also had worse prognosis (P=0.021, 0.019, 0.024, 0.011, respectively). Conclusions Metastatic MBC has unique clinicopathological disease features and patterns of metastasis. No significant difference between the survival of metastatic MBC and FBC patients was observed. Distant metastasis was an independent risk factor impacting the prognosis of MBC patients.
Collapse
Affiliation(s)
- Heng Li
- General Surgery Department, Shanghai Baoshan District Hospital of Integrated Traditional and Western Medicine, Shanghai, China
| | - Yong Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei-Sze Teh
- Breast Surgery Unit, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sandhya Limaye
- Faculty of Medicine, Concord Hospital Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Immunology, Concord Hospital, Sydney, NSW, Australia
| | | | - Jiang-Bo Shen
- Department of General Surgery, Shanghai Jiading District Central Hospital, Shanghai, China
| |
Collapse
|
10
|
Bucalo A, Conti G, Valentini V, Capalbo C, Bruselles A, Tartaglia M, Bonanni B, Calistri D, Coppa A, Cortesi L, Giannini G, Gismondi V, Manoukian S, Manzella L, Montagna M, Peterlongo P, Radice P, Russo A, Tibiletti MG, Turchetti D, Viel A, Zanna I, Palli D, Silvestri V, Ottini L. Male breast cancer risk associated with pathogenic variants in genes other than BRCA1/2: an Italian case-control study. Eur J Cancer 2023; 188:183-191. [PMID: 37262986 DOI: 10.1016/j.ejca.2023.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Germline pathogenic variants (PVs) in BRCA1/2 genes are associated with breast cancer (BC) risk in both women and men. Multigene panel testing is being increasingly used for BC risk assessment, allowing the identification of PVs in genes other than BRCA1/2. While data on actionable PVs in other cancer susceptibility genes are now available in female BC, reliable data are still lacking in male BC (MBC). This study aimed to provide the patterns, prevalence and risk estimates associated with PVs in non-BRCA1/2 genes for MBC in order to improve BC prevention for male patients. METHODS We performed a large case-control study in the Italian population, including 767 BRCA1/2-negative MBCs and 1349 male controls, all screened using a custom 50 cancer gene panel. RESULTS PVs in genes other than BRCA1/2 were significantly more frequent in MBCs compared with controls (4.8% vs 1.8%, respectively) and associated with a threefold increased MBC risk (OR: 3.48, 95% CI: 1.88-6.44; p < 0.0001). PV carriers were more likely to have personal (p = 0.03) and family (p = 0.02) history of cancers, not limited to BC. PALB2 PVs were associated with a sevenfold increased MBC risk (OR: 7.28, 95% CI: 1.17-45.52; p = 0.034), and ATM PVs with a fivefold increased MBC risk (OR: 4.79, 95% CI: 1.12-20.56; p = 0.035). CONCLUSIONS This study highlights the role of PALB2 and ATM PVs in MBC susceptibility and provides risk estimates at population level. These data may help in the implementation of multigene panel testing in MBC patients and inform gender-specific BC risk management and decision making for patients and their families.
Collapse
Affiliation(s)
- Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Daniele Calistri
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST IRCCS, Meldola, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Viviana Gismondi
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Siranoush Manoukian
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), Milan, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Maria Grazia Tibiletti
- Dipartimento di Patologia, ASST Settelaghi and Centro di Ricerca per lo studio dei tumori eredo-familiari, Università dell'Insubria, Varese, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Viel
- Unità di Oncogenetica e Oncogenomica Funzionale, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Chatterji S, Krzoska E, Thoroughgood CW, Saganty J, Liu P, Elsberger B, Abu-Eid R, Speirs V. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: a systematic review. Lancet Oncol 2023; 24:e74-e85. [PMID: 36725152 DOI: 10.1016/s1470-2045(22)00633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
Although similar phenotypically, there is evidence that male and female breast cancer differ in their molecular landscapes. In this systematic review, we consolidated all existing prognostic biomarker data in male breast cancer spanning genetics, transcriptomics, proteomics, and epigenetics, and phenotypic features of prognostic value from articles published over a 29-year period (March 16, 1992, to May 1, 2021). We identified knowledge gaps in the existing literature, discussed limitations of the included studies, and outlined potential approaches for translational biomarker discovery and validation in male breast cancer. We also recognised STC2, DDX3, and DACH1 as underexploited markers of male-specific prognostic value in breast cancer. Finally, beyond describing the cumulative knowledge on the extensively researched markers oestrogen receptor-α, progesterone receptor, HER2, androgen receptor, and BRCA2, we highlighted ATM, CCND1, FGFR2, GATA3, HIF1-α, MDM2, TP53, and c-Myc as well studied predictors of poor survival that also aligned with several hallmarks of cancer.
Collapse
Affiliation(s)
- Subarnarekha Chatterji
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Emma Krzoska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - John Saganty
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Peng Liu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Rasha Abu-Eid
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Dentistry, University of Aberdeen, Aberdeen, UK
| | - Valerie Speirs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Tyrmi JS, Arffman RK, Pujol-Gualdo N, Kurra V, Morin-Papunen L, Sliz E, Piltonen TT, Laisk T, Kettunen J, Laivuori H. Leveraging Northern European population history: novel low-frequency variants for polycystic ovary syndrome. Hum Reprod 2022; 37:352-365. [PMID: 34791234 PMCID: PMC8804330 DOI: 10.1093/humrep/deab250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Can we identify novel variants associated with polycystic ovary syndrome (PCOS) by leveraging the unique population history of Northern Europe? SUMMARY ANSWER We identified three novel genome-wide significant associations with PCOS, with two putative independent causal variants in the checkpoint kinase 2 (CHEK2) gene and a third in myosin X (MYO10). WHAT IS KNOWN ALREADY PCOS is a common, complex disorder with unknown aetiology. While previous genome-wide association studies (GWAS) have mapped several loci associated with PCOS, the analysis of populations with unique population history and genetic makeup has the potential to uncover new low-frequency variants with larger effects. STUDY DESIGN, SIZE, DURATION A population-based case-control GWAS was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS We identified PCOS cases from national registers by ICD codes (ICD-10 E28.2, ICD-9 256.4, or ICD-8 256.90), and all remaining women were considered controls. We then conducted a three-stage case-control GWAS: in the discovery phase, we had a total of 797 cases and 140 558 controls from the FinnGen study. For validation, we used an independent dataset from the Estonian Biobank, including 2812 cases and 89 230 controls. Finally, we performed a joint meta-analysis of 3609 cases and 229 788 controls from both cohorts. Additionally, we reran the association analyses including BMI as a covariate, with 2169 cases and 160 321 controls from both cohorts. MAIN RESULTS AND THE ROLE OF CHANCE Two out of the three novel genome-wide significant variants associating with PCOS, rs145598156 (P = 3.6×10-8, odds ratio (OR) = 3.01 [2.02-4.50] minor allele frequency (MAF) = 0.005) and rs182075939 (P = 1.9×10-16, OR = 1.69 [1.49-1.91], MAF = 0.04), were found to be enriched in the Finnish and Estonian populations and are tightly linked to a deletion c.1100delC (r2 = 0.95) and a missense I157T (r2 = 0.83) in CHEK2. The third novel association is a common variant near MYO10 (rs9312937, P = 1.7 × 10-8, OR = 1.16 [1.10-1.23], MAF = 0.44). We also replicated four previous reported associations near the genes Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4), DENN Domain Containing 1A (DENND1A), FSH Subunit Beta (FSHB) and Zinc Finger And BTB Domain Containing 16 (ZBTB16). When adding BMI as a covariate only one of the novel variants remained genome-wide significant in the meta-analysis (the EstBB lead signal in CHEK2 rs182075939, P = 1.9×10-16, OR = 1.74 [1.5-2.01]) possibly owing to reduced sample size. LARGE SCALE DATA The age- and BMI-adjusted GWAS meta-analysis summary statistics are available for download from the GWAS Catalog with accession numbers GCST90044902 and GCST90044903. LIMITATIONS, REASONS FOR CAUTION The main limitation was the low prevalence of PCOS in registers; however, the ones with the diagnosis most likely represent the most severe cases. Also, BMI data were not available for all (63% for FinnGen, 76% for EstBB), and the biobank setting limited the accessibility of PCOS phenotypes and laboratory values. WIDER IMPLICATIONS OF THE FINDINGS This study encourages the use of isolated populations to perform genetic association studies for the identification of rare variants contributing to the genetic landscape of complex diseases such as PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work has received funding from the European Union's Horizon 2020 research and innovation programme under the MATER Marie Skłodowska-Curie grant agreement No. 813707 (N.P.-G., T.L., T.P.), the Estonian Research Council grant (PRG687, T.L.), the Academy of Finland grants 315921 (T.P.), 321763 (T.P.), 297338 (J.K.), 307247 (J.K.), 344695 (H.L.), Novo Nordisk Foundation grant NNF17OC0026062 (J.K.), the Sigrid Juselius Foundation project grants (T.L., J.K., T.P.), Finska Läkaresällskapet (H.L.) and Jane and Aatos Erkko Foundation (H.L.). The funders had no role in study design, data collection and analysis, publishing or preparation of the manuscript. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Jaakko S Tyrmi
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Natàlia Pujol-Gualdo
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Venla Kurra
- Department of Clinical Genetics, Faculty of Medicine and Health Technology, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Eeva Sliz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Hannele Laivuori
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University Hospital and Tampere University, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Fang W, Huang Y, Han X, Peng J, Zheng M. Characteristics of metastasis and survival between male and female breast cancer with different molecular subtypes: A population-based observational study. Cancer Med 2021; 11:764-777. [PMID: 34898007 PMCID: PMC8817100 DOI: 10.1002/cam4.4469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Objective Male breast cancer (BC) is a rare disease, having different clinicopathological features and survival outcomes from female patients. The aim of this research was to, combine with molecular subtypes, analyze the metastatic patterns, and prognosis between male and female patients, and to determine whether the gender was the independent prognostic factor for BC. Methods Data used in this study were acquired from the SEER database from 2010 to 2016. The clinicopathology features and metastatic patterns were compared by the Chi‐square test and Fisher's exact test. Kaplan–Meier method was performed to compare overall survival (OS) and factors correlated with OS were determined by Cox regression models. Competing risk models were used to ascertain factors related to breast cancer‐specific death (BCSD). Results Compared with female BC, the incidence of regional LN (HR 1.849, 95% CI 1.674–2.043, p < 0.001) and distant metastasis (HR 1.421, 95%CI: 1.157–1.744, p < 0.001) was higher in male BC. For regional LN metastasis, hormone receptor (HoR)−/HER2+ subtype occupied the majority in both male (55.56%) and female (36.86%) groups. For distant metastasis, HoR−/HER2− subtype (21.26%), and HoR−/HER2+ (7.67%) were in major in male and female group separately. Male patients shared similar combinations of metastases with female groups as for single‐site, bi‐site, and tri‐site metastasis. Gender was an independent prognostic factor for OS (p < 0.001) but not for BCSD(p = 0.620). In subgroup of patients with HoR+/HER2−(OS: p = 0.003; BCSD: p = 0.606), HoR+/HER2+(OS: p = 0.003; BCSD: p = 0.277), regional LN positive(OS: p = 0.005; BCSD: p = 0.379), or bone metastasis (OS: p = 0.030; BCSD: p = 0.862), the male cohort had poorer OS but similar BCSD with female cohort. Conclusions Compared with female patients, male BC had different metastasis patterns and prognostic outcomes, and the affection of breast subtypes on metastasis and survivorship was also different. More attention needs to be paid for specific molecular subtype and more personalized therapeutic strategies should be customized while treating male patients.
Collapse
Affiliation(s)
- Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xu Han
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Chamseddine RS, Wang C, Yin K, Wang J, Singh P, Zhou J, Robson ME, Braun D, Hughes KS. Penetrance of male breast cancer susceptibility genes: a systematic review. Breast Cancer Res Treat 2021; 191:31-38. [PMID: 34642874 DOI: 10.1007/s10549-021-06413-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Several male breast cancer (MBC) susceptibility genes have been identified, but the MBC risk for individuals with a pathogenic variant in each of these genes (i.e., penetrance) remains unclear. We conducted a systematic review of studies reporting the penetrance of MBC susceptibility genes to better summarize current estimates of penetrance. METHODS A search query was developed to identify MBC-related papers indexed in PubMed/MEDLINE. A validated natural language processing method was applied to identify papers reporting penetrance estimates. These penetrance studies' bibliographies were reviewed to ensure comprehensiveness. We accessed the potential ascertainment bias for each enrolled study. RESULTS Fifteen penetrance studies were identified from 12,182 abstracts, covering five purported MBC susceptibility genes: ATM, BRCA1, BRCA2, CHEK2, and PALB2. Cohort (n = 6, 40%) and case-control (n = 5, 33%) studies were the two most common study designs, followed by family-based (n = 3, 20%), and a kin-cohort study (n = 1, 7%). Seven of the 15 studies (47%) adjusted for ascertainment adequately and therefore the MBC risks reported by these seven studies can be considered applicable to the general population. Based on these seven studies, we found pathogenic variants in ATM, BRCA2, CHEK2 c.1100delC, and PALB2 show an increased risk for MBC. The association between BRCA1 and MBC was not statistically significant. CONCLUSION This work supports the conclusion that pathogenic variants in ATM, BRCA2, CHEK2 c.1100delC, and PALB2 increase the risk of MBC, whereas pathogenic variants in BRCA1 may not be associated with increased MBC risk.
Collapse
Affiliation(s)
- Reem S Chamseddine
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Cathy Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kanhua Yin
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jin Wang
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| | - Preeti Singh
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jingan Zhou
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Danielle Braun
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kevin S Hughes
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Male breast cancer: an update. Virchows Arch 2021; 480:85-93. [PMID: 34458944 DOI: 10.1007/s00428-021-03190-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Male breast cancer (MBC) is rare, accounting for less than 1% of all breast cancer but the incidence has increased worldwide. Risk factors include increased longevity, obesity, testicular diseases and tumours, and germline mutations of BRCA2. BRCA2 carriers have 80 times the risk of the general population. Men generally present with breast cancer at an older age compared with women. Histologically, MBC is often of grade 2, hormone receptor positive, HER2 negative, and no special type carcinoma although in situ and invasive papillary carcinomas are common. Reporting and staging are similar to female breast cancer. Metastatic lesions to the male breast do occur and should be differentiated from primary carcinomas. Until recently, MBC was thought to be similar to the usual ER positive post-menopausal female counterpart. However, advances in MBC research and trials have highlighted significant differences between the two. This review provides an up to date overview of the biology, genetics, and histology of MBC with comparison to female breast cancers and differential diagnosis from histological mimics.
Collapse
|
16
|
Szwiec M, Tomiczek-Szwiec J, Kluźniak W, Wokołorczyk D, Osowiecka K, Sibilski R, Wachowiak M, Gronwald J, Gronwald H, Lubiński J, Cybulski C, Narod SA, Huzarski T. Genetic predisposition to male breast cancer in Poland. BMC Cancer 2021; 21:975. [PMID: 34461861 PMCID: PMC8406897 DOI: 10.1186/s12885-021-08718-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer in men accounts for fewer than 1 % of all breast cancer cases diagnosed in men and women. Genes which predispose to male breast cancer include BRCA1 and BRCA2. The role of other genes is less clear. In Poland, 20 founder mutations in BRCA1, BRCA2, CHEK2, PALB2, NBN, RECQL are responsible for the majority of hereditary breast cancer cases in women, but the utility this genes panel has not been tested in men. METHODS We estimated the prevalence of 20 alleles in six genes (BRCA1, BRCA2, CHEK2, PALB2, NBN, RECQL) in 165 Polish male breast cancer patients. We compared the frequency of selected variants in male breast cancer cases and controls. RESULTS One of the 20 mutations was seen in 22 of 165 cases (13.3%). Only one BRCA1 mutation and two BRCA2 mutations were found. We observed statistically significant associations for PALB2 and CHEK2 truncating mutations. A PALB2 mutation was detected in four cases (OR = 11.66; p < 0.001). A CHEK2 truncating mutation was detected in five cases (OR = 2.93;p = 0.02). CONCLUSION In conclusion, we recommend that a molecular test for BRCA1, BRCA2, PALB2 and CHEK2 recurrent mutations should be offered to male breast cancer patients in Poland.
Collapse
Affiliation(s)
- Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland.
| | | | - Wojciech Kluźniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Dominika Wokołorczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Karolina Osowiecka
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, University of Warmia and Mazury in Olsztyn, Al. Warszawska 30, 11-041, Olsztyn, Poland
| | - Robert Sibilski
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland
| | - Małgorzata Wachowiak
- Department of Clinical Oncology, University Hospital in Zielona Góra, Zyty 26, 65-046, Zielona Góra, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Helena Gronwald
- Department of Propaedeutics, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Poland, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, M5G 1N8, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5T 3M7, Canada
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252, Szczecin, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland
| |
Collapse
|
17
|
Campos FAB, Rouleau E, Torrezan GT, Carraro DM, Casali da Rocha JC, Mantovani HK, da Silva LR, Osório CABDT, Moraes Sanches S, Caputo SM, Santana dos Santos E. Genetic Landscape of Male Breast Cancer. Cancers (Basel) 2021; 13:3535. [PMID: 34298749 PMCID: PMC8305894 DOI: 10.3390/cancers13143535] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Male breast cancer (MBC) is now considered molecularly different from female breast cancer (FBC). Evidence from studies indicates that common genetic and epigenetic features of FBC are not shared with those diagnosed in men. Genetic predisposition is likely to play a significant role in the tumorigenesis of this rare disease. Inherited germline variants in BRCA1 and BRCA2 account for around 2% and 10% of MBC cases, respectively, and the lifetime risk of breast cancer for men harboring BRCA1 and BRCA2 mutations is 1.2% and 6.8%. As for FBC, pathogenic mutations in other breast cancer genes have also been recently associated with an increased risk of MBC, such as PALB2 and CHEK2 mutations. However, while multigene germline panels have been extensively performed for BC female patients, the rarity of MBC has resulted in limited data to allow the understanding of the magnitude of risk and the contribution of recently identified moderate penetrance genes of FBC for MBC predisposition. This review gathers available data about the germline genetic landscape of men affected by breast cancer, estimated risk associated with these genetic variants, and current guidelines for clinical management.
Collapse
Affiliation(s)
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94805 Villejuif, France;
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (G.T.T.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo 01508-010, Brazil
| | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (G.T.T.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo 01508-010, Brazil
| | | | - Higor Kassouf Mantovani
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-881, Brazil; (H.K.M.); (L.R.d.S.)
| | - Leonardo Roberto da Silva
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-881, Brazil; (H.K.M.); (L.R.d.S.)
| | | | - Solange Moraes Sanches
- Deparment of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.M.S.); (E.S.d.S.)
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75248 Paris, France;
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Elizabeth Santana dos Santos
- Deparment of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.M.S.); (E.S.d.S.)
- Centro de Oncologia, Hospital Sírio Libanês, Sao Paulo 01308-050, Brazil
| |
Collapse
|
18
|
Li K, Wang B, Yang Z, Yu R, Chen H, Li Y, He J, Zhou C. Nomogram Predicts the Role of Contralateral Prophylactic Mastectomy in Male Patients With Unilateral Breast Cancer Based on SEER Database: A Competing Risk Analysis. Front Oncol 2021; 11:587797. [PMID: 33996535 PMCID: PMC8117922 DOI: 10.3389/fonc.2021.587797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Contralateral prophylactic mastectomy (CPM) in female breast cancer (FBC) is supported by multiple clinical studies and consensus guidelines, but knowledge of preventive contralateral mastectomy in male breast cancer (MaBC) is very limited and its benefits are still controversial. Methods A retrospective cohort study was enrolled with 4,405 MaBC patients who underwent unilateral mastectomy (UM) or CPM from the Surveillance, Epidemiology, and End Results (SEER) database from 1998 to 2015. A nomogram was built based on the corresponding parameters by competing risks regression to predict the 3-year, 5-year, and 8-year probabilities of BCSD (breast cancer-specific death). C-index and calibration curves were chosen for validation. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to estimate the nomogram’s clinical utility. Results A total of 4,197 patients received UM and 208 patients received CPM, with 63-months median follow-up. In the competing risks regression, six variables (surgery, marital status, T-stage, N-stage, histology, tumor grade) were significantly associated with BCSD. Based on these independent prognosis factors, a nomogram model was constructed. The C-index 0.75 (95%CI: 0.73-0.77) in the training cohort and 0.73 (95%CI: 0.71-0.74) in the internal validation group suggested robustness of the model. In addition, the calibration curves exhibited favorably. The NRI values (training cohort: 0.54 for 3-year, 0.55 for 5-year, and 0.49 for 8-year BCSD prediction; validation cohort: 0.51 for 3-year, 0.45 for 5-year, and 0.33 for 8-year BCSD prediction) and IDI values (training cohort: 0.02 for 3-year, 0.03 for 5-year, and 0.04 for 8-year BCSD prediction; validation cohort: 0.02 for 3-year, 0.04 for 5-year, and 0.04 for 8-year BCSD prediction) indicated that the model performed better than the AJCC criteria-based tumor staging alone. Conclusions The administration of CPM was associated with the decrease in risk of BCSD in patients with MaBC. The nomogram could provide a precise and personalized prediction of the cumulative risk in patients with MaBC after CPM.
Collapse
Affiliation(s)
- Kunlong Li
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zejian Yang
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ren Yu
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Heyan Chen
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yijun Li
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Can Zhou
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Berliner JL, Cummings SA, Boldt Burnett B, Ricker CN. Risk assessment and genetic counseling for hereditary breast and ovarian cancer syndromes-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2021; 30:342-360. [PMID: 33410258 DOI: 10.1002/jgc4.1374] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Cancer risk assessment and genetic counseling for hereditary breast and ovarian cancer (HBOC) are a communication process to inform and prepare patients for genetic test results and the related medical management. An increasing number of healthcare providers are active in the delivery of cancer risk assessment and testing, which can have enormous benefits for enhanced patient care. However, genetics professionals remain key in the multidisciplinary care of at-risk patients and their families, given their training in facilitating patients' understanding of the role of genetics in cancer development, the potential psychological, social, and medical implications associated with cancer risk assessment and genetic testing. A collaborative partnership of non-genetics and genetics experts is the ideal approach to address the growing number of patients at risk for hereditary breast and ovarian cancer. The goal of this practice resource is to provide allied health professionals an understanding of the key components of risk assessment for HBOC as well as the use of risk models and published guidelines for medical management. We also highlight what patient types are appropriate for genetic testing, what are the most appropriate test(s) to consider, and when to refer individuals to a genetics professional. This practice resource is intended to serve as a resource for allied health professionals in determining their approach to delivering comprehensive care for families and individuals facing HBOC. The cancer risk and prevalence figures in this document are based on cisgender women and men; the risks for transgender or non-binary individuals have not been studied and therefore remain poorly understood.
Collapse
Affiliation(s)
- Janice L Berliner
- Genetic Counseling Department, Bay Path University, East Longmeadow, MA, USA
| | | | | | - Charité N Ricker
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
21
|
Ben Kridis-Rejeb W, Ben Ayed-Guerfali D, Ammous-Boukhris N, Ayadi W, Kifagi C, Charfi S, Saguem I, Sellami-Boudawara T, Daoud J, Khanfir A, Mokdad-Gargouri R. Identification of novel candidate genes by exome sequencing in Tunisian familial male breast cancer patients. Mol Biol Rep 2020; 47:6507-6516. [PMID: 32901360 DOI: 10.1007/s11033-020-05703-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Male Breast Cancer (MBC) is a rare and aggressive disease that is associated with genetic factors. Mutations in BRCA1 and BRCA2 account for 10% of all MBC cases suggesting that other genetic factors are involved. The aim of the present study is to screen whole BRCA1 and BRCA2 exons using the Ampliseq BRCA panel in Tunisian MBC patients with family history. Furthermore, we performed exome sequencing using the TruSight One sequencing panel on an early onset BRCA negative patient. We showed that among the 6 MBC patients, only one (MBC-F1) harbored a novel frameshift mutation in exon 2 of the BRCA2 gene (c.17-20delAAGA, p.Lys6Xfs) resulting in a short BRCA2 protein of only 6 amino-acids. We selected 9 rare variants after applying several filter steps on the exome sequencing data. Among these variants, and based on their role in breast carcinogenesis, we retained 6 candidate genes (MSH5, DCC, ERBB3, NOTCH3, DIAPH1, and DNAH11). Further studies are needed to confirm the association of the selected genes with family MBC.
Collapse
Affiliation(s)
| | - Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Chamseddine Kifagi
- Division of Immunology & Vaccinology, DTU Nanotech, Department of Micro-and Nanotechnology, Kemitorvet, Buildings 202 and 204, Lyngby Campus, 2800, Kgs. Lyngby, Denmark
| | - Slim Charfi
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Ines Saguem
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Tahia Sellami-Boudawara
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
22
|
Sutcliffe EG, Stettner AR, Miller SA, Solomon SR, Marshall ML, Roberts ME, Susswein LR, Arvai KJ, Klein RT, Murphy PD, Hruska KS. Differences in cancer prevalence among CHEK2 carriers identified via multi-gene panel testing. Cancer Genet 2020; 246-247:12-17. [PMID: 32805687 DOI: 10.1016/j.cancergen.2020.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Although CHEK2 is a well-established cancer gene, questions remain including whether risks vary substantially between different variants and whether biallelic carriers have higher risks than heterozygotes. We report on a cohort of individuals with CHEK2 pathogenic and likely pathogenic variants (collectively, PV) in order to better characterize this gene. METHODS We retrospectively queried samples submitted for multi-gene hereditary cancer testing to identify individuals with CHEK2 PVs and assessed differences in phenotypes among various genotypes. RESULTS CHEK2 PVs were identified in 2508 individuals, including 32 individuals with biallelic CHEK2 PVs. Breast (female, 59.9% and male, 11.8%), prostate (20.1%), and colorectal (3.5%), were among the most frequently reported cancers. Select missense PVs showed similar cancer prevalence to truncating PVs while some others showed lower prevalence. No significant differences were observed between biallelic carriers and heterozygotes. CONCLUSIONS Our data support that some, but not all, CHEK2 missense PVs demonstrate lower cancer prevalence; further studies are needed to continue characterizing possible variant specific risks. In addition, biallelic CHEK2 PVs do not appear to be associated with a more severe phenotype than single CHEK2 PVs. Furthermore, co-occurrences with PVs in other cancer risk genes are common among CHEK2 heterozygotes and often warrant additional management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kevin J Arvai
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | | | | | | |
Collapse
|
23
|
Ansari N, Shahrabi S, Khosravi A, Shirzad R, Rezaeean H. Prognostic Significance of CHEK2 Mutation in Progression of Breast Cancer. Lab Med 2019; 50:e36-e41. [PMID: 31220302 DOI: 10.1093/labmed/lmz009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers among women; genetic mutations reflect the development of this disease. Mutations in cell signaling factors can be the main cause of BC development. In this study, we focused on mutations in checkpoint kinase 2 (CHEK2) and their impact as a prognostic factor in the pathogenesis of BC. CHEK2 is controlled in cell signaling pathways through the influence of upstream genes. Also, several downstream genes are regulated by CHEK2. In addition, mutations in CHEK2 lead to resistance of BC cells to chemotherapy and metastasis of cancer cells to other parts of the body. Finally, detection of mutations in CHEK2 can be used as a prognostic factor for patient response to treatment and for targeting downstream molecules of CHEK2 that are involved in the proliferation of breast tumor cells. Mutations such as c.1100delC and I157T can distinguish which patients are susceptible to metastasis.
Collapse
Affiliation(s)
- Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Shahrabi
- Department of Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza Shirzad
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeean
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Xie J, Ying YY, Xu B, Li Y, Zhang X, Li C. Metastasis pattern and prognosis of male breast cancer patients in US: a population-based study from SEER database. Ther Adv Med Oncol 2019; 11:1758835919889003. [PMID: 31798694 PMCID: PMC6859799 DOI: 10.1177/1758835919889003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background The aims of this study were to analyze the metastasis pattern and prognosis of male breast cancer (MBC) and compare it with female breast cancer (FBC), and to determine the independent factors affecting the prognosis of MBC patients. Methods Metastatic MBC diagnosed in the Surveillance, Epidemiology and End results (SEER) database from 2010 to 2015 were selected. Chi-squared test was used to compare clinicopathological characteristics. Survival differences were compared by Kaplan-Meier analysis. Cox proportional hazard model was used to determine the prognostic factors affecting overall survival. Results A total of 2754 MBC patients were identified, of which 196 had distant metastasis. Compared with nonmetastatic MBC, metastatic MBC patients had a higher proportion of <60 years old and grade III-IV, and were more likely to receive chemotherapy and radiotherapy, while the proportion of surgery, central portion of the breast, and Her2-/HR+ was lower. Compared with metastatic FBC, metastatic MBC patients had a higher proportion of ⩾60 years old, central portion of the breast, surgery, simultaneous bone and lung metastasis, while the proportion of Her2+/HR-, triple negative, liver metastasis only, and simultaneous bone and liver metastasis was lower. MBC patients with lung alone, bone alone, and simultaneous lung and bone metastasis had a higher hazard ratio (2.41; 3.06; 2.52; p < 0.0001) compared with nonmetastatic patients. Conclusions Compared with nonmetastatic MBC patients, metastatic MBC patients had unique clinicopathological features, and were also different from metastatic FBC patients. However, there was no difference in prognosis between metastatic MBC and FBC patients. Distant metastasis was an independent risk factor for the prognosis of MBC patients.
Collapse
Affiliation(s)
- Jun Xie
- Department of Respiration, Third Affiliated Hospital of Soochow University, First People's Hospital of Changzhou, Changzhou, China
| | - Yao-Yu Ying
- Department of Epidemiology and Biostatistics, Soochow University, Suzhou, Jiangsu, China
| | - Bin Xu
- Department of Tumor Biological Treatment, Third Affiliated Hospital of Soochow University, First People's Hospital of Changzhou, Changzhou, China
| | - Yan Li
- Department of Respiration, Third Affiliated Hospital of Soochow University, First People's Hospital of Changzhou, Changzhou, China
| | - Xian Zhang
- Department of Respiration, Third Affiliated Hospital of Soochow University, First People's Hospital of Changzhou, Changzhou, China
| | - Chong Li
- Department of Respiration, Third Affiliated Hospital of Soochow University, First People's Hospital of Changzhou, Juqian Road No.185, Changzhou 213000, China
| |
Collapse
|
25
|
Kleiblova P, Stolarova L, Krizova K, Lhota F, Hojny J, Zemankova P, Havranek O, Vocka M, Cerna M, Lhotova K, Borecka M, Janatova M, Soukupova J, Sevcik J, Zimovjanova M, Kotlas J, Panczak A, Vesela K, Cervenkova J, Schneiderova M, Burocziova M, Burdova K, Stranecky V, Foretova L, Machackova E, Tavandzis S, Kmoch S, Macurek L, Kleibl Z. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int J Cancer 2019; 145:1782-1797. [PMID: 31050813 DOI: 10.1002/ijc.32385] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
Germline mutations in checkpoint kinase 2 (CHEK2), a multiple cancer-predisposing gene, increase breast cancer (BC) risk; however, risk estimates differ substantially in published studies. We analyzed germline CHEK2 variants in 1,928 high-risk Czech breast/ovarian cancer (BC/OC) patients and 3,360 population-matched controls (PMCs). For a functional classification of VUS, we developed a complementation assay in human nontransformed RPE1-CHEK2-knockout cells quantifying CHK2-specific phosphorylation of endogenous protein KAP1. We identified 10 truncations in 46 (2.39%) patients and in 11 (0.33%) PMC (p = 1.1 × 10-14 ). Two types of large intragenic rearrangements (LGR) were found in 20/46 mutation carriers. Truncations significantly increased unilateral BC risk (OR = 7.94; 95%CI 3.90-17.47; p = 1.1 × 10-14 ) and were more frequent in patients with bilateral BC (4/149; 2.68%; p = 0.003), double primary BC/OC (3/79; 3.80%; p = 0.004), male BC (3/48; 6.25%; p = 8.6 × 10-4 ), but not with OC (3/354; 0.85%; p = 0.14). Additionally, we found 26 missense VUS in 88 (4.56%) patients and 131 (3.90%) PMC (p = 0.22). Using our functional assay, 11 variants identified in 15 (0.78%) patients and 6 (0.18%) PMC were scored deleterious (p = 0.002). Frequencies of functionally intermediate and neutral variants did not differ between patients and PMC. Functionally deleterious CHEK2 missense variants significantly increased BC risk (OR = 3.90; 95%CI 1.24-13.35; p = 0.009) and marginally OC risk (OR = 4.77; 95%CI 0.77-22.47; p = 0.047); however, carriers low frequency will require evaluation in larger studies. Our study highlights importance of LGR detection for CHEK2 analysis, careful consideration of ethnicity in both cases and controls for risk estimates, and demonstrates promising potential of newly developed human nontransformed cell line assay for functional CHEK2 VUS classification.
Collapse
Affiliation(s)
- Petra Kleiblova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Krizova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Filip Lhota
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Hojny
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marta Cerna
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Lhotova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marianna Borecka
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Sevcik
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zimovjanova
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Kotlas
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ales Panczak
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kamila Vesela
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Cervenkova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michaela Schneiderova
- First Department of Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Monika Burocziova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Spiros Tavandzis
- Department of Medical Genetics, AGEL Laboratories, AGEL Research and Training Institute, Novy Jicin, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Insight into genetic susceptibility to male breast cancer by multigene panel testing: Results from a multicenter study in Italy. Int J Cancer 2019; 145:390-400. [DOI: 10.1002/ijc.32106] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
|
27
|
Liang M, Zhang Y, Sun C, Rizeq FK, Min M, Shi T, Sun Y. Association Between CHEK2*1100delC and Breast Cancer: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2018; 22:397-407. [DOI: 10.1007/s40291-018-0344-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Abstract
RATIONALE Neurofibromatosis, including type 1 and type 2, is inherited dominant disease that causes serious consequences. The genetic mechanism of these diseases has been described, but germline mutation of checkpoint 2 kinase gene, together with other DNA repair related genes, has not been fully elucidated in the context of neurofibromatosis. PATIENT CONCERNS In this article, we reported identical germline mutation of CHEK2 gene (p.R180C) in a 7-year-old Tibetan boy with NF1, and in a 12-year-old Chinese girl with NF2. DIAGNOSES Neurofibromatosis 1 and 2 with CHECK2 gene germline mutation. INTERVENTIONS Both patients underwent operation to obtain tumor tissue, and peripheral blood of their family was tested. OUTCOMES Identical germline mutation of CHEK2 gene (p.R180C) was detected in both patients, and germline mutations of POLE, MUTYH and ATR were also detected. LESSONS This is the first article to describe CHEK2 mutation in both NF1 and NF2. This article highlights a possible role of CHEK2, in association with other germline genetic mutations, in tumorigenesis of NF1 and NF2.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan Province
| | - Feilong Zhao
- Medical Science Liaison, Genetron Health Inc, Beijing, China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan Province
| |
Collapse
|
29
|
Schayek H, Korach H, Laitman Y, Bernstein-Molho R, Friedman E. Mutational analysis of candidate genes in Israeli male breast cancer cases. Breast Cancer Res Treat 2018; 170:399-404. [PMID: 29560538 DOI: 10.1007/s10549-018-4765-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/17/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To define the mutational spectrum of several candidate gene mutations in Israeli male breast cancer cases. METHODS MBC cases counselled at the Oncogenetics unit, Sheba Medical Center from January 1998 to June 2017 were included. Relevant clinical and oncological data and cancer phenotype were retrieved. All participants were genotyped for the predominant Jewish BRCA1 and BRCA2 germline mutations using a chip-based assay. Those who tested negative were further genotyped for three recurring mutations in CHEK2 (c.1100delC, p.S428F, p.I157T), and single mutations in the FANCM (c.5791C>T), and RAD51D (c.556C>T) genes, by direct sequencing. The ethics committee approved the study. RESULTS Overall, 61 MBC were identified and genotyped, 41 (67.2%) were Ashkenazim, age at diagnosis was 58.1 ± 12.6 years, and 31 (50.8%) had a family history of cancer. Of genotyped individuals, one (1.6%) harboured the 185delAG* BRCA1 mutation, 7 (11.4%) the 6174delT*BRCA2 mutation and 2 (3.2%) other recurring mutations in BRCA2 (overall 10/61-16.4% BRCA1/BRCA2 mutation carriers). Of BRCA-negative cases, 3/51 (5.9%) carried the p.S428F *CHEK2 mutation. None was a carrier of the other genotyped mutations in CHEK2, FANCM or RAD51D. CONCLUSION BRCA1, BRCA2 and CHEK2 germline mutations contribute to inherited predisposition to MBC in Israel.
Collapse
Affiliation(s)
- Hagit Schayek
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hahsomer, Israel
| | - Hila Korach
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hahsomer, Israel.,The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hahsomer, Israel
| | - Rinat Bernstein-Molho
- The Breast Cancer Unit, Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel.,The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hahsomer, Israel. .,The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| |
Collapse
|
30
|
Fan Z, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xu Y, Xie Y. Identification and analysis of CHEK2 germline mutations in Chinese BRCA1/2-negative breast cancer patients. Breast Cancer Res Treat 2018; 169:59-67. [PMID: 29356917 DOI: 10.1007/s10549-018-4673-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Cell-cycle-checkpoint kinase 2 (CHEK2) is an important moderate-penetrance breast cancer predisposition gene; however, recurrent CHEK2 mutations found in Caucasian women are very rare in Chinese population. We investigated the mutation spectrum and clinical relevance of CHEK2 germline mutations in Chinese breast cancer patients. METHODS The entire coding regions and splicing sites of CHEK2 were screened in 7657 Chinese BRCA1/2-negative breast cancer patients, using 62-gene panel-based sequencing. RESULTS Out of 7657 BRCA1/2-negative breast cancer patients, 26 (0.34%) carried CHEK2 pathogenic germline mutations. Most of these mutations (92.3%, 24/26) were nonsense or frameshift mutations; 84.6% (22/26) of them were in forkhead-associated (FHA) or kinase domains. Of the 18 types of CHEK2 mutations we found, 61.1% (11/18) of were novel mutations and two recurrent mutations (Y139X and R137X) were found in this cohort. Patients with CHEK2 mutations were significantly more likely to have family histories of breast and/or ovarian cancer (23.1% vs. 8.6%, p = 0.022) and family histories of any cancer (50.0% vs. 31.6%, p = 0.044); and were significantly more likely to have lymph node-positive (53.8% vs. 27.3%, p = 0.002) and progesterone receptor (PR)-positive (88.5% vs. 64.5%, p = 0.011) breast cancers. CONCLUSIONS Among Chinese breast cancer patients, the CHEK2 germline mutation rate is approximately 0.34% and two specific mutations (Y139X and R137X) are recurrent. Patients with CHEK2 mutations are significantly more likely to have family histories of cancer, and to develop lymph node-positive and/or PR-positive breast cancers.
Collapse
Affiliation(s)
- Zhenhua Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Fostira F, Saloustros E, Apostolou P, Vagena A, Kalfakakou D, Mauri D, Tryfonopoulos D, Georgoulias V, Yannoukakos D, Fountzilas G, Konstantopoulou I. Germline deleterious mutations in genes other than BRCA2 are infrequent in male breast cancer. Breast Cancer Res Treat 2018; 169:105-113. [DOI: 10.1007/s10549-018-4661-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023]
|
32
|
A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast 2018; 38:92-97. [PMID: 29287190 DOI: 10.1016/j.breast.2017.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Breast cancer (BC) in men is a rare disease, whose etiology appears to be associated with genetic factors. Inherited mutations in BRCA1/2 genes account for about 10-15% of all cases. FANCM, functionally linked to BRCA1/2, has been suggested as a novel BC susceptibility gene. Our aim was to test if FANCM germline mutations could further explain male BC (MBC) susceptibility. METHODS We screened the entire coding region of FANCM in 286 MBCs by a multi-gene panel analysis, and compared these data with available whole exome sequencing data from 415 men used as population controls. Moreover, we genotyped the two most frequent FANCM mutations (c.5101C>T and c.5791C>T) in 506 MBCs and 854 healthy male controls. RESULTS Two FANCM truncating mutations, the c.1432C>T (p.Arg478Ter) and c.1972C>T (p.Arg658Ter), were identified in two MBC cases (0.7%). When specifically considering cases at increased genetic risk for BC, FANCM mutation frequency raises up to 1%. One mutation, the c.2201_2202delCT (p.Ser734Terfs), was found among controls (0.24%). Mutation frequency in cases was higher than in controls, however this difference was not statistically significant. FANCM c.5101C>T was not present in any of the cases and controls analyzed, whereas FANCM c.5791C>T was found in two controls (0.23%). CONCLUSION Rare FANCM truncating mutations, other than c.5101C>T and c.5791C>T, may have a role in MBC susceptibility. The inclusion of FANCM in gene panels for research purpose would allow for the identification of a higher number of mutation carriers, thus helping estimate BC risk associated with FANCM mutations.
Collapse
|