1
|
Ahmadipour M, Prado JC, Hakak-Zargar B, Mahmood MQ, Rogers IM. Using ex vivo bioengineered lungs to model pathologies and screening therapeutics: A proof-of-concept study. Biotechnol Bioeng 2024; 121:3020-3033. [PMID: 38837764 DOI: 10.1002/bit.28754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/19/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Respiratory diseases, claim over eight million lives annually. However, the transition from preclinical to clinical phases in research studies is often hindered, partly due to inadequate representation of preclinical models in clinical trials. To address this, we conducted a proof-of-concept study using an ex vivo model to identify lung pathologies and to screen therapeutics in a humanized rodent model. We extracted and decellularized mouse heart-lung tissues using a detergent-based technique. The lungs were then seeded and cultured with human cell lines (BEAS-2B, A549, and Calu3) for 6-10 days, representing healthy lungs, cancerous states, and congenital pathologies, respectively. By manipulating cultural conditions and leveraging the unique characteristics of the cell lines, we successfully modeled various pathologies, including advanced-stage solid tumors and the primary phase of SARS-CoV-2 infection. Validation was conducted through histology, immunofluorescence staining, and pathology analysis. Additionally, our study involved pathological screening of the efficacy and impact of key anti-neoplastic therapeutics (Cisplatin and Wogonin) in cancer models. The results highlight the versatility and strength of the ex vivo model in representing crucial lung pathologies and screening therapeutics during the preclinical phase. This approach holds promise for bridging the gap between preclinical and clinical research, aiding in the development of effective treatments for respiratory diseases, including lung cancer.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jorge Castilo Prado
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benyamin Hakak-Zargar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Malik Quasir Mahmood
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Perin N, Lončar B, Kadić M, Kralj M, Starčević K, Carvalho RA, Jarak I, Hranjec M. Design, Synthesis, Antitumor Activity and NMR-Based Metabolomics of Novel Amino Substituted Tetracyclic Imidazo[4,5-b]Pyridine Derivatives. ChemMedChem 2024; 19:e202300633. [PMID: 38757872 DOI: 10.1002/cmdc.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Newly prepared tetracyclic imidazo[4,5-b]pyridine derivatives were synthesized to study their antiproliferative activity against human cancer cells. Additionally, the structure-activity was studied to confirm the impact of the N atom position in pyridine nuclei as well as the chosen amino side chains on antiproliferative activity. Targeted amino substituted regioisomers were prepared by using uncatalyzed amination from corresponding chloro substituted precursors. The most active compounds 6 a, 8 and 10 showed improved activity in comparison to standard drug etoposide with IC50 values in a nanomolar range of concentration (0.2-0.9 μM). NMR-based metabolomics is a powerful instrument to elucidate activity mechanism of new chemotherapeutics. Multivariate and univariate statistical analysis of metabolic profiles of non-small cell lung cancer cells before and after exposure to 6 a revealed significant changes in metabolism of essential amino acids, glycerophospholipids and oxidative defense. Insight into the changes of metabolic pathways that are heavily involved in cell proliferation and survival provide valuable guidelines for more detailed analysis of activity metabolism and possible targets of this class of bioactive compounds.
Collapse
Affiliation(s)
- Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | | | - Matej Kadić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - Rui A Carvalho
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| |
Collapse
|
3
|
Datta C, Das P, Dutta S, Prasad T, Banerjee A, Gehlot S, Ghosal A, Dhabal S, Biswas P, De D, Chaudhuri S, Bhattacharjee A. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity. Life Sci 2024; 352:122857. [PMID: 38914305 DOI: 10.1016/j.lfs.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
AIM AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Subhajit Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Tuhina Prasad
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Abhineet Banerjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sameep Gehlot
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Arpa Ghosal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Singh D, Qiu Z, Jonathan SM, Fa P, Thomas H, Prasad CB, Cai S, Wang JJ, Yan C, Zhang X, Venere M, Li Z, Sizemore ST, Wang QE, Zhang J. PP2A B55α inhibits epithelial-mesenchymal transition via regulation of Slug expression in non-small cell lung cancer. Cancer Lett 2024; 598:217110. [PMID: 38986733 PMCID: PMC11670312 DOI: 10.1016/j.canlet.2024.217110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line. Gene set enrichment analysis (GSEA) of the RNA-sequencing data revealed significant enrichment of the epithelial-mesenchymal transition (EMT) pathway, with SNAI2 (the gene encoding Slug) emerging as one of the top candidates. Our findings demonstrate that PP2A B55α suppresses EMT, as PPP2R2A deficiency through knockdown or homozygous or hemizygous depletion promotes EMT and metastatic behavior in NSCLC cells, as evidenced by changes in EMT biomarkers, invasion and migration abilities, as well as metastasis in a tail vein assay. Mechanistically, PP2A B55α inhibits EMT by downregulating SNAI2 expression via the GSK3β-β-catenin pathway. Importantly, PPP2R2A deficiency also slows cell proliferation by disrupting DNA replication, particularly in PPP2R2A-/- cells. Furthermore, PPP2R2A deficiency, especially PPP2R2A-/- cells, leads to an increase in the cancer stem cell population, which correlates with enhanced resistance to chemotherapy. Overall, the decrease in PP2A B55α levels due to hemizygous/homozygous depletion heightens EMT and the metastatic or stemness/drug resistance potential of NSCLC cells despite their proliferation disadvantage. Our study highlights the significance of PP2A B55α in EMT and metastasis and suggests that targeting EMT/stemness could be a potential therapeutic strategy for treating PPP2R2A-deficient NSCLC.
Collapse
Affiliation(s)
- Deepika Singh
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Zhaojun Qiu
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Spehar M Jonathan
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Pengyan Fa
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Hannah Thomas
- The Ohio State University, Columbus, OH, United States
| | - Chandra Bhushan Prasad
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Shurui Cai
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Jing J Wang
- The Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, United States; Department of Biomedical Informatics, College of Medicine, The Ohio State University, United States
| | - Monica Venere
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, United States
| | - Steven T Sizemore
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Qi-En Wang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Junran Zhang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States; The James Comprehensive Cancer Center, Center for Metabolism, United States.
| |
Collapse
|
5
|
Lorenc E, Varinelli L, Chighizola M, Brich S, Pisati F, Guaglio M, Baratti D, Deraco M, Gariboldi M, Podestà A. Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues. Sci Rep 2023; 13:12175. [PMID: 37500685 PMCID: PMC10374531 DOI: 10.1038/s41598-023-38763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.
Collapse
Affiliation(s)
- Ewelina Lorenc
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Matteo Chighizola
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech Ltd. Benefit Corporation with a Sole Shareholder, via Adamello 16, 20139, Milan, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy.
| | - Alessandro Podestà
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
6
|
Chen YF, Wang ZH, Chen YC, Chang CH, Zhuang HZ, Chung FY, Jan JS. Polypeptide Bilayer Assembly-Mediated Gene Delivery Enhances Chemotherapy in Cancer Cells. Mol Pharm 2023; 20:680-689. [PMID: 36515396 DOI: 10.1021/acs.molpharmaceut.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Road, Taitung 95092, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Zih-Hua Wang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Yi-Cheng Chen
- Translational Medicine Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Road, East District, Chiayi 600566, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Hui-Zhong Zhuang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Fang-Yu Chung
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| |
Collapse
|
7
|
Murali M, Murali VP, Joseph MM, Rajan S, Maiti KK. Elucidating cell surface glycan imbalance through SERS guided metabolic glycan labelling: An appraisal of metastatic potential in cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112506. [PMID: 35785648 DOI: 10.1016/j.jphotobiol.2022.112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The intrinsic complexities of cell-surface glycans impede tracking the metabolic changes in cells. By coupling metabolic glycan labelling (MGL) and surface-enhanced Raman scattering (SERS), we employed the MGL-SERS strategy to elucidate the differential glycosylation pattern in cancer cell lines. Herein, for the first time, we are reporting an N-alkyl derivative of glucosamine (GlcNPhAlk) as a glycan labelling precursor. The extent of labelling was assessed by utilizing Raman imaging and verified by complementary fluorescence and Western blot analysis. MGL-SERS technique was implemented for a comparative evaluation of cell surface glycan imbalance in different cancer cells wherein a linear relationship between glycan expression and metastatic potential was established. Further, the effect of sialyltransferase inhibitor, P-3Fax-Neu5Ac, on metabolic labelling of GlcNPhAlk proved the incorporation of GlcNPhAlk to the terminal glycans through the sialic acid biosynthetic pathway. Hence, this methodology unveils the phenomenon of metastatic progression in cancer cells with inherent glycosylation-related dysplasia.
Collapse
Affiliation(s)
- Madhukrishnan Murali
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Soumya Rajan
- Government College, Kasargod 671123, Kerala, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
The microRNA-520a-3p inhibits invasion and metastasis by targeting NF-kappaB signaling pathway in non-small cell lung cancer. Clin Transl Oncol 2022; 24:1569-1579. [PMID: 35247196 DOI: 10.1007/s12094-022-02797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To identify the expression of miR-520a-3p and AKT1 in non-small cell lung cancer cells (NSCLC) and the mechanism in inhibiting cell invasion and metastasis by targeting NF-kappaB signaling pathway. METHODS Bioinformatics analysis and dual luciferase reporter gene assay were used to predict and verify the targeting relationship between miR-520a-3p and AKT1. EdU assay was used to detect the proliferation of NSCLC cells. Flow cytometry detected the apoptosis of NSCLC cells. Transwell assay tested the invasion ability of NSCLC cells. qRT-PCR measured the expression of miR-520a-3p and AKT1 mRNA in NSCLC cells; while western blotting was adopted to detect the protein expressions of AKT1, Ki67, CyclinD1, Bax, Bcl-2, MMP-2, MMP-9, NF-kB p65, IkBs kinase (IKK), NF-kB inducing kinase (NIK). RESULTS Bioinformatics analysis suggested that miR-520a-3p could target AKT1. miR-520a-3p could regulate the expression of AKT1 negatively. Compared to mimic-NC group, miR-520a-3p mimic group had increased expressions of miR-520a-3p and Bax, while decreased expressions of AKT1, Ki67, CyclinD1, Bcl-2, MMP-2, MMP-9, NF-kB p65, IKK and NIK, reduced cell proliferation, invasion, and increased cell apoptosis rate (all P < 0.05). Compared to inhibitor NC group, miR-520a-3p inhibitor group had decreased expressions of miR-520a-3p and Bax, but increased expressions of AKT1, Ki67, CyclinD1, Bcl-2, MMP-2, MMP-9, NF-kB p65, IKK and NIK, promoted cell proliferation, invasion, and suppressed cell apoptosis rate (all P < 0.05). CONCLUSION Overexpression of miR-520a-3p can target and downregulate the expression of AKT1 to inhibit the invasion and metastasis of NSCLC via suppressing the activation of NF-kappaB signaling pathway.
Collapse
|
9
|
Wang P, Bai C, Hu Z, Li X, Shen F, He M. MicroRNA (miR)-355 Suppressed Small Cell Lung Cancer Cell Metastasis via Regulating P38 Mitogen-Activated Protein Kinases (MAPKs) Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA (miR)-355 was reported to mediate p38 mitogen-activated protein kinases (MAPKs) signaling, which exerted an effect on cell invasion and metastasis. But whether miR-355 could inhibit small cell lung cancer cell line H446 cell metastasis by regulating p38 MAPKs signaling needs
further study. H446 cells were cultured to establish miR-355 overexpression group and blank group. The expression of MT1-MMP, the activity and migration of H446 cells were evaluated. Further, the ability of invasion, the level of p-p38 MAPKs and the activity degree of MT1-MMP were observed
in H446 cells. MT1-MMP was mainly expressed on the cell membrane. miR-355 overexpression significantly decreased cellular viability and reduced MT1-MMP and p-p38 MAPKs levels relative to the blank group without influencing p38 MAPKs level. In addition, miR-355 overexpression suppressed cell
migration and invasive ability in H446 cells. Finally, miR-355 overexpression reduced pro-MMP and MMP-2 activity in H446 cells. miR-355 overexpression suppressed H446 cell metastasis through regulating P38 MAPKs signaling.
Collapse
Affiliation(s)
- Peng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Xingjing Li
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| | - Fang Shen
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| | - Mudan He
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| |
Collapse
|
10
|
Chang SC, Zhang BX, Su ECY, Wu WC, Hsieh TH, Salazar AM, Lin YK, Ding JL. Hiltonol Cocktail Kills Lung Cancer Cells by Activating Cancer-Suppressors, PKR/OAS, and Restraining the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22041626. [PMID: 33562773 PMCID: PMC7915988 DOI: 10.3390/ijms22041626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
NSCLC (non-small cell lung cancer) is a leading cause of cancer-related deaths worldwide. Clinical trials showed that Hiltonol, a stable dsRNA representing an advanced form of polyI:C (polyinosinic-polycytidilic acid), is an adjuvant cancer-immunomodulator. However, its mechanisms of action and effect on lung cancer have not been explored pre-clinically. Here, we examined, for the first time, how a novel Hiltonol cocktail kills NSCLC cells. By retrospective analysis of NSCLC patient tissues obtained from the tumor biobank; pre-clinical studies with Hiltonol alone or Hiltonol+++ cocktail [Hiltonol+anti-IL6+AG490 (JAK2 inhibitor)+Stattic (STAT3 inhibitor)]; cytokine analysis; gene knockdown and gain/loss-of-function studies, we uncovered the mechanisms of action of Hiltonol+++. We demonstrated that Hiltonol+++ kills the cancer cells and suppresses the metastatic potential of NSCLC through: (i) upregulation of pro-apoptotic Caspase-9 and Caspase-3, (ii) induction of cytosolic cytochrome c, (iii) modulation of pro-inflammatory cytokines (GRO, MCP-1, IL-8, and IL-6) and anticancer IL-24 in NSCLC subtypes, and (iv) upregulation of tumor suppressors, PKR (protein kinase R) and OAS (2′5′ oligoadenylate synthetase). In silico analysis showed that Lys296 of PKR and Lys66 of OAS interact with Hiltonol. These Lys residues are purportedly involved in the catalytic/signaling activity of the tumor suppressors. Furthermore, knockdown of PKR/OAS abrogated the anticancer action of Hiltonol, provoking survival of cancer cells. Ex vivo analysis of NSCLC patient tissues corroborated that loss of PKR and OAS is associated with cancer advancement. Altogether, our findings unraveled the significance of studying tumor biobank tissues, which suggests PKR and OAS as precision oncological suppressor candidates to be targeted by this novel Hiltonol+++ cocktail which represents a prospective drug for development into a potent and tailored therapy for NSCLC subtypes.
Collapse
MESH Headings
- 2',5'-Oligoadenylate Synthetase/chemistry
- 2',5'-Oligoadenylate Synthetase/genetics
- 2',5'-Oligoadenylate Synthetase/metabolism
- A549 Cells
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Binding Sites
- Carboxymethylcellulose Sodium/analogs & derivatives
- Carboxymethylcellulose Sodium/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cyclic S-Oxides/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interleukin-6/antagonists & inhibitors
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Models, Molecular
- Poly I-C/pharmacology
- Polylysine/analogs & derivatives
- Polylysine/pharmacology
- Tumor Microenvironment/drug effects
- Tyrphostins/pharmacology
- eIF-2 Kinase/chemistry
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Shu-Chun Chang
- The PhD Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan;
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan
- Correspondence: (S.-C.C.); (J.L.D.)
| | - Bo-Xiang Zhang
- The PhD Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan;
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University Hospital, 252 Wusing Street, Taipei 110, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, 252 Wusing Street, Taipei 110, Taiwan
| | - Wei-Ciao Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan;
- Department of Thoracic Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, Taipei 110, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan;
| | - Andres M. Salazar
- Oncovir, Inc., 3203 Cleveland Avenue Northwest, Washington, DC 20008, USA;
| | - Yen-Kuang Lin
- Big Data Research Center, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan;
- Biostatistics Center, Office of Data Science, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 250 Wusing Street, Taipei 110, Taiwan
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Correspondence: (S.-C.C.); (J.L.D.)
| |
Collapse
|
11
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
13
|
Immune cells inhibit the tumor metastasis in the 4D cellular lung model by reducing the number of live circulating tumor cells. Sci Rep 2018; 8:16569. [PMID: 30410108 PMCID: PMC6224572 DOI: 10.1038/s41598-018-34983-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
The immune system and tumor microenvironment play a decisive role in tumor progression. We developed a novel model to better understand tumor progression and interaction with immune cells and the cellular components. We grew 393 P non-metastatic and 344SQ metastatic murine cells in an acellular metastatic lung cancer model, where both cell lines formed circulating tumor cells (CTC) and metastatic lesions. When the CTC from this model were placed in the tail vein of nu/nu mice, both cell lines formed metastatic lesions. However, in syngeneic immune-competent mice, the CTC from the non-metastatic cell line did not metastasize while the CTC from the metastatic cell line metastasized. When we placed the activated immune cells in the cellular lung model, it decreased CTC and metastatic lesion formation for the non-metastatic cell line while it had no impact on metastatic cell line. The metastatic cell line had a significant increase in expression of programmed death-ligand 1 (PDL-1) compared to the non-metastatic cell line in the model. Overall, the immune cells showed an impact on viability of CTC for cell lines with a decreased expression of PDL-1 that leads to decreased metastatic lesion formation. Further studies are needed to understand the subtype of immune cells and mechanism of decreased CTC viability and metastasis inhibition.
Collapse
|
14
|
Kyakulaga AH, Aqil F, Munagala R, Gupta RC. Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells. Sci Rep 2018; 8:15737. [PMID: 30356176 PMCID: PMC6200817 DOI: 10.1038/s41598-018-34018-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and in the United States. Despite recent advancements in treatment approaches, metastasis remains a major therapeutic challenge in lung cancer and explains the extremely poor prognosis. Epithelial to mesenchymal transition (EMT), a complex process of cellular reprogramming has become an attractive drug target because it plays a crucial role in the metastasis of non-small cell lung cancer (NSCLC). In the present study, we examined the effects of withaferin A (WFA), a plant-derived steroidal lactone on EMT in human NSCLC cell lines. First, we demonstrated that WFA displayed time- and concentration-dependent cytotoxicity on A549 and H1299 NSCLC cells. Then, cells were exposed to ≤ 0.5 µM WFA for ≤ 4 h to minimize cytotoxicity and determined its effects on EMT, cell adhesion, motility, migration, and invasion. EMT induction was performed by culturing cells in serum-free media containing TGFβ1 (5 ng/mL) and TNFα (25 ng/mL) for 48 h. We observed that pretreatment of cells with WFA inhibited cell adhesion, migration, and invasion of A549 and H1299 cells. Using western blot, immunofluorescence, and qRT-PCR analysis, we demonstrated that WFA suppressed TGFβ1 and TNFα-induced EMT in both cell lines. Mechanistically, WFA suppressed the phosphorylation and nuclear translocation of Smad2/3 and NF-κB in A549 and H1299 cells. Together, our study provides additional evidence demonstrating the inhibitory effects of WFA on EMT induction in NSCLC cells and further demonstrates the therapeutic potential of WFA against the metastasis in NSCLC.
Collapse
Affiliation(s)
- Al Hassan Kyakulaga
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
15
|
Abstract
It is difficult to isolate tumor cells at different points of tumor progression. We created an ex vivo lung model that can show the interaction of tumor cells with a natural matrix and continual flow of nutrients, as well as a model that shows the interaction of tumor cells with normal cellular components and a natural matrix. The acellular ex vivo lung model is created by isolating a rat heart-lung block and removing all the cells using the decellularization process. The right main bronchus is tied off and tumor cells are placed in the trachea by a syringe. The cells move and populate the left lung. The lung is then placed in a bioreactor where the pulmonary artery receives a continual flow of media in a closed circuit. The tumor grown on the left lung is the primary tumor. The tumor cells that are isolated in the circulating media are circulating tumor cells and the tumor cells in the right lung are metastatic lesions. The cellular ex vivo lung model is created by skipping the decellularization process. Each model can be used to answer different research questions.
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, Houston Methodist Hospital Research Institute
| | - Min P Kim
- Department of Surgery, Houston Methodist Hospital Research Institute; Division of Thoracic Surgery, Department of Surgery, Weill Cornell Medical College, Houston Methodist Hospital;
| |
Collapse
|
16
|
Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O'Byrne K, Punyadeera C. The Prognostic Role of Circulating Tumor Cells (CTCs) in Lung Cancer. Front Oncol 2018; 8:311. [PMID: 30155443 PMCID: PMC6102369 DOI: 10.3389/fonc.2018.00311] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer affects over 1. 8 million people worldwide and is the leading cause of cancer related mortality globally. Currently, diagnosis of lung cancer involves a combination of imaging and invasive biopsies to confirm histopathology. Non-invasive diagnostic techniques under investigation include "liquid biopsies" through a simple blood draw to develop predictive and prognostic biomarkers. A better understanding of circulating tumor cell (CTC) dissemination mechanisms offers promising potential for the development of techniques to assist in the diagnosis of lung cancer. Enumeration and characterization of CTCs has the potential to act as a prognostic biomarker and to identify novel drug targets for a precision medicine approach to lung cancer care. This review will focus on the current status of CTCs and their potential diagnostic and prognostic utility in this setting.
Collapse
Affiliation(s)
- Joanna Kapeleris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Majid E. Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ian Vela
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Central Integrated Regional Cancer Service, Queensland Health, Brisbane, QLD, Australia
| | - Kenneth O'Byrne
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Grey JFE, Campbell-Ritchie A, Everitt NM, Fezovich AJ, Wheatley SP. The use of decellularised animal tissue to study disseminating cancer cells. J Cell Sci 2018; 132:jcs.219907. [DOI: 10.1242/jcs.219907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022] Open
Abstract
Since the establishment of cell culture, common practice has been to grow adherent cells in 2D monolayers. Although cells behave completely differently when grown in these artificial conditions, the ease of 2D culturing has meant that this practice still prevails today, and adopting conditions that more closely reflect the natural microenvironment has been met with substantial inertia. The alternative, animal models that mimic natural human physiology, are less accessible, strictly regulated and require licences and expensive facilities. Although transition from 2D to 3D cell culturing is gathering momentum, there is a clear need for alternative culturing methods that more closely resemble in vivo conditions. Here we show that decellularised organs gleaned from discarded animal carcasses are ideal biomimetic scaffolds to support secondary tumour initiation in vitro. This article describes how to decellularise tissue, perform basic histochemistry and immunofluorescence procedures for cell and matrix detection; and follows cancer cell behaviour on this matrix by way of an example. As integration into the traditional work flow is easy and inexpensive we hope this article will encourage other researchers to adopt this approach.
Collapse
Affiliation(s)
- James F. E. Grey
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2UH, UK
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - Nicola M. Everitt
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Alexander J. Fezovich
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2UH, UK
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Sally P. Wheatley
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|