1
|
Huang C, Yu XB, Zhou YZ, Bao WQ. Identification and validation of ion channels-related mRNA prognostic signature for glioblastomas. Medicine (Baltimore) 2024; 103:e40736. [PMID: 39612412 DOI: 10.1097/md.0000000000040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Glioblastomas (GBM) is a kind of malignant brain tumor with poor prognosis. Identifying new biomarkers is promising for the treatment of GBM. The mRNA-seq and clinical data were obtained from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas databases. The differentially expressed genes were identified using limma R package. The prognosis-related genes were screened out and a risk model was constructed using univariate, least absolute shrinkage and selection operator, and multivariate Cox analysis. Receiver operating characteristic curve was used to assess the efficiency of model. Kaplan-Meier survival curve was applied for the survival analysis. Mutation analysis was conducted using maftools package. The effect of immunotherapy was analyzed according to TIDE score, and the drug sensitivity analysis was performed. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed for the functional analysis. The regulatory network was constructed by STRING and Cytoscape software. RT-qPCR was performed to validate the expression of 3 hub genes in vitro. A risk model was constructed based on 3 ion channels related genes (gap junction protein beta 2 [GJB2], potassium voltage-gated channel subfamily h member 6 [KCNH6], and potassium calcium-activated channel subfamily n member 4 [KCNN4]). The risk score and hub genes were positively correlated with the calcium signaling pathway. Patients were divided into 2 groups based on the risk score calculated by 3 signatures. The infiltration levels of T cell, B lineage, monocytic lineage, and neutrophils were increased in high risk group, while TIDE score was decreased. IC50 of potential drugs for GBM treatment was elevated in the high risk group. Furthermore, GJB2, KCNH6, and KCNN4 were oncogenic, and GJB2 and KCNN4 were upregulated, while KCNH6 was downregulated in high risk group and GBM cells. The regulatory network showed that KCNH6 was targeted by more miRNA and transcription factors and KCNN4 interacted with more drugs. We constructed a three-signature risk model, which could effectively predict the prognosis of GBM development. Besides, KCNH6 and KCNN4 were respectively considered as the targets of molecular targeted treatment and chemotherapy.
Collapse
Affiliation(s)
- Chao Huang
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | | | | | | |
Collapse
|
2
|
Huang M, Huang X, Li L. ERH is a prognostic biomarker associated with immune cell infiltration in lung cancer. Biomarkers 2024; 29:466-478. [PMID: 39422755 DOI: 10.1080/1354750x.2024.2418579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION The enhancer of rudimentary homolog (ERH) is significant in cancers, but its role in lung cancer is understudied. METHODS We divided lung cancer patients into high and low ERH expression groups based on tumour tissue levels. Using the log-rank test, we analysed the correlation between ERH expression and patient prognosis. The effects of high ERH expression on lung cancer cell proliferation, migration, and invasion were assessed using CCK8, EDU, transwell, and wound healing assays. RESULTS ERH expression was significantly higher in cancerous versus normal lung tissue (p < 0.05), including lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Patients with high ERH expression had worse overall survival (HR = 1.37, p = 2.5 × 1 0 -7) and first progression survival (HR = 1.38, p = 0.00065) in lung cancer. However, while high ERH expression predicts an unfavourable prognosis in LUAD, it does not hold true for LUSC. Furthermore, knockdown of ERH inhibited lung cancer cell proliferation, migration, and invasion. ERH expression was linked to immune cell infiltration. High ERH expression in LUAD and LUSC samples correlated with higher CD8 T cell, T cells CD4 memory activated, and M1 macrophages abundance, while low ERH expression correlated with higher T cells CD4 memory resting abundance. CONCLUSION Upregulation of ERH in lung cancer tissue is associated with poor prognosis and immune cell infiltration.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Male
- Cell Movement
- Female
- Cell Line, Tumor
- Middle Aged
- Adenocarcinoma of Lung/immunology
- Adenocarcinoma of Lung/pathology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Aged
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Mingfang Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Xiuming Huang
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Liang Li
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Li M, Zhang Z, Guan L, Ji S, Lu P. ERH gene knockdown inhibits the proliferation and migration of ARPE-19 cells through MCM complex and EMT process. Gene 2024; 892:147855. [PMID: 37778419 DOI: 10.1016/j.gene.2023.147855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE To explore the role of the Enhancer of rudimentary homolog (ERH) gene on the proliferation and migration of ARPE-19 cells, and its mechanism. METHODS ARPE-19 cells were divided into ERH gene knockdown (ERH KD) and normal ERH gene (ERH NC) groups and infected with respected virus. Cell counting kit-8 assay, wound-healing assay, and flow cytometry were performed to evaluate the effects of the ERH gene on cell proliferation, migration, and cell cycle. A 4D label-free quantitative proteomic analysis was conducted to obtain the ERH gene knockdown-related differential proteins list (DPL). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein domain analysis, subcellular localization analysis, and protein-protein interaction (PPI) analysis were performed to explore the main downstream functions of the ERH gene. Proteins related to DNA replication, cell cycle, and epithelial-mesenchymal transition (EMT) were identified by Western blot test. RESULTS The ERH gene was successfully knocked down in ARPE-19 cells of the ERH KD group. The proliferation and migration of cells were reduced and the cell cycle was arrested at the S phase in the ERH KD group. A DPL of 47 upregulated and 108 downregulated proteins was obtained, and their functions were explored and found to be associated with the MCM complex, DNA replication, and cell cycle. Protein domain analysis, protein subcellular localization analysis, and PPI analysis showed that the MCM complex may play a key role in the proliferation of ARPE-19 cells affected by the ERH gene. DNA replication, cell cycle, and EMT-related proteins were affected when the ERH gene was knocked down. CONCLUSION Knockdown of ERH gene inhibits the proliferation and migration of ARPE-19 cells through the MCM complex and EMT process.
Collapse
Affiliation(s)
- Meili Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China; Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, No. 269 Daxue Road, Xuzhou, Jiangsu, China.
| | - Zhengpei Zhang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, No. 269 Daxue Road, Xuzhou, Jiangsu, China.
| | - Lina Guan
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, No. 269 Daxue Road, Xuzhou, Jiangsu, China.
| | - Sujuan Ji
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, No. 269 Daxue Road, Xuzhou, Jiangsu, China.
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
6
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
7
|
Pang K, Dong Y, Hao L, Shi ZD, Zhang ZG, Chen B, Feng H, Ma YY, Xu H, Pan D, Chen ZS, Han CH. ERH Interacts With EIF2α and Regulates the EIF2α/ATF4/CHOP Pathway in Bladder Cancer Cells. Front Oncol 2022; 12:871687. [PMID: 35774124 PMCID: PMC9239699 DOI: 10.3389/fonc.2022.871687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is a lack of research on the molecular interaction of the enhancers of rudimentary homolog (ERH) in bladder cancer (BC) cells. This study aimed to determine the interacting proteins of ERH in human T24 cells. Methods First, the ERH gene was overexpressed in human T24 cells. Coimmunoprecipitation (co-IP) and shotgun mass spectrometry (MS) analyses were performed to obtain a list of proteins that interact with ERH. Subsequently, bioinformatic analyses with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) studies were performed to analyze the ERH-interactive protein list (ERH-IPL). Then, we selected one of the interacting proteins, EIF2α for verification. An immunofluorescence colocalization assay was performed to validate the co-expression of the selected protein, and the binding sites of the two proteins were predicted by ZDOCK technology. Finally, PCR analysis on the downstream molecules of the interacting protein was performed for verification. Results ERH protein was successfully overexpressed in human T24 cells. We obtained a list of 205 proteins that might directly or indirectly interact with the ERH protein by mass spectrometric analysis. The bioinformatic analysis showed that ERH-interacting proteins were related to “ribonucleoprotein complex”, “ATPase activity”, “nuclear speck”, and “translation factor activity, RNA binding”. We further identified one of the key genes, EIF2S1, and confirmed that the corresponding protein EIF2α is co-expressed and may bind with ERH in human T24 cells. The mRNA levels of molecules ATF4 and CHOP were found to be upregulated by ERH. Conclusion ERH protein affects “ribonucleoprotein complex”, “ATPase activity”, “nuclear speck”, and “translation factor activity, RNA binding”. The ERH protein can interact with EIF2α and regulate the EIF2α-ATF4/CHOP signaling pathway in human T24 cells.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Zhen-duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Zhi-guo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Harry Feng
- STEM Academic Department, Wyoming Seminary, Kinston, PA, United States
| | - Yu-yang Ma
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Zhe-sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Cong-hui Han, ; Zhe-sheng Chen,
| | - Cong-hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
- *Correspondence: Cong-hui Han, ; Zhe-sheng Chen,
| |
Collapse
|
8
|
Zhang Y, Chen W, Cheng X, Wang F, Gao C, Song F, Song F, Liang X, Fang W, Chen Z. Sphingomyelin Phodiesterase Acid-Like 3A Promotes Hepatocellular Carcinoma Growth Through the Enhancer of Rudimentary Homolog. Front Oncol 2022; 12:852765. [PMID: 35686107 PMCID: PMC9171240 DOI: 10.3389/fonc.2022.852765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with unclear pathogenesis. Sphingomyelin phodiesterase acid-like 3A (SMPDL3A) affects cell differentiation and participates in immune regulation. However, its molecular biological function in HCC has not yet been elucidated. Methods Data from 180 HCC patients were analyzed the relationship between the expression of SMPDL3A in liver cancer tissues and the prognosis of liver cancer patients. Crispr-Cas9 dual vector lentivirus was used to knock out SMPDL3A in HCC cell lines. The effects of SMPDL3A on cell viability were determined by CCK8 assay, clone formation experiment, cell cycle assay, cell scratch, TUNEL experiment and flow cytometry. Xenograft tumor assays in BALB/c nude mice confirmed that SMPDL3A promoted tumor growth and in vivo. Preliminary exploration of SMPDL3A interacting protein by mass spectrometry analysis and co-immunoprecipitation. Results This study showed that the expression of SMPDL3A in HCC tissue differed from that in tumor-adjacent tissues. Moreover, the overall survival rate and tumor-free survival rate of patients with high-SMPDL3A expression were significantly lower than those with low-SMPDL3A expression. SMPDL3A expression was closely related to the level of protein induced by PIVKA-II, liver cirrhosis, tumor diameter, microvascular invasion, and Barcelona clinic liver cancer staging. Thus, SMPDL3A is an independent risk factor that affects the tumor-free survival rate and overall survival rate of HCC patients. In vitro study using Crispr-Cas9 genome editing technology revealed the knockout effect of SMPDL3A on cell proliferation, apoptosis, and migration. Cell counting kit-8 assay and clone formation experiment showed that sgSMPDL3A inhibited tumor cell proliferation and migration. Flow cytometry and TUNEL assay showed that sgSMPDL3A promoted apoptosis in tumors. Moreover, sgSMPDL3A inhibited tumor growth during subcutaneous tumor formation in nude mice. Immunohistochemistry of Ki67 and PNCA also indicated that sgSMPDL3A inhibited subcutaneous tumor proliferation in tumor-bearing nude mice. Further experiments showed that SMPDL3A interacts with the enhancer of rudimentary homolog (ERH). Conclusions High-SMPDL3A expression was related to poor prognosis of patients with HCC. Knockout of SMPDL3A inhibited the proliferation and migration and accelerated the migration of HCC cells. SMPDL3A interacted with ERH to affect the tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Weipeng Chen
- School of Medicine, Nantong University, Nantong, China.,Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Xin Cheng
- School of Medicine, Nantong University, Nantong, China.,Department of General Surgery, Jingjiang People's Hospital, Taizhou, China
| | - Feiran Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Cheng Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fengliang Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoliang Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wanzhi Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Pang K, Li ML, Hao L, Shi ZD, Feng H, Chen B, Ma YY, Xu H, Pan D, Chen ZS, Han CH. ERH Gene and Its Role in Cancer Cells. Front Oncol 2022; 12:900496. [PMID: 35677162 PMCID: PMC9169799 DOI: 10.3389/fonc.2022.900496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health problem worldwide. Studies on oncogenes and tumor-targeted therapies have become an important part of cancer treatment development. In this review, we summarize and systematically introduce the gene enhancer of rudimentary homolog (ERH), which encodes a highly conserved small molecule protein. ERH mainly exists as a protein partner in human cells. It is involved in pyrimidine metabolism and protein complexes, acts as a transcriptional repressor, and participates in cell cycle regulation. Moreover, it is involved in DNA damage repair, mRNA splicing, the process of microRNA hairpins as well as erythroid differentiation. There are many related studies on the role of ERH in cancer cells; however, there are none on tumor-targeted therapeutic drugs or related therapies based on the expression of ERH. This study will provide possible directions for oncologists to further their research studies in this field.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mei-Li Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou, China.,Department of Ophthalmology, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Harry Feng
- STEM Academic Department, Wyoming Seminary, Kingston, PA, United States
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Solasonine Induces Apoptosis and Inhibits Proliferation of Bladder Cancer Cells by Suppressing NRP1 Expression. JOURNAL OF ONCOLOGY 2022; 2022:7261486. [PMID: 35281516 PMCID: PMC8906937 DOI: 10.1155/2022/7261486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Solasonine, a steroidal alkaloid extracted from Solanum nigrum L., has been found to exert inhibitory effect on cancers. However, the underlying anticancer mechanisms of solasonine, particularly in urinary bladder cancer (BC), remain unclear. In this study, we identified the potential targets and biological functions associated with solasonine activity using a bioinformatics approach. Ingenuity pathway analysis revealed that neuropilin-1 (NRP1) and other signaling pathways, such as PI3K/AKT and ERK/MAPK pathways, were potentially involved in the therapeutic effects of solasonine. The ability of solasonine in inducing apoptosis and inhibiting proliferation in BC cells was confirmed experimentally, and the inhibition of ERK/MAPK, P38/MAPK, and PI3K/AKT pathways was validated by Western blot. Mechanistically, solasonine suppressed the expression of NRP1 protein, but not that of mRNA. Further results of molecular docking and molecular dynamics simulation analysis indicated that solasonine could directly bind to the b1 domain of NRP1 protein with a reasonable and stable docking conformation. We previously found that targeting NRP1 is a potential antitumor strategy. Combined with these findings, it can be speculated that the binding of solasonine with NRP1 on the cell membrane could prevent the formation of NRP1/VEGFA/VEGFR2 and NRP1/EGFR complexes, resulting in the inhibition of downstream signaling, including ERK/MAPK, P38/MAPK, and PI3K/AKT pathways. Additionally, intracellular solasonine could inhibit the membrane localization of NRP1 and provoke its cytoplasmic retention, facilitating the degradation of NRP1 protein in the cytoplasm. The dual effects induced by the binding of solasonine to NRP1 extracellularly and intracellularly could account for the antiproliferative and proapoptotic effects of solasonine on BC.
Collapse
|
11
|
Zhang X, Zhou W, Zhang Y, Liu Z. CBX3 is a Prognostic Biomarker Correlated with ATR Activation and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Int J Gen Med 2022; 15:1497-1508. [PMID: 35210823 PMCID: PMC8857981 DOI: 10.2147/ijgm.s344390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chromobox protein homolog (CBX) family members play important roles in the progression and prognosis of many cancers. However, their functional role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. METHODS In this study, we analyzed the expression and functions of CBX family members using The Cancer Genome Atlas data. Most CBX family members were found to be differentially expressed in various tumors, including HNSCC, compared to normal tissues. Multivariate Cox regression analysis showed that CBX3 expression is an independent prognostic factor for HNSCC patients. A nomogram based on CBX3 expression was constructed for use as a diagnostic indicator for HNSCC patients. We also used qPCR to validate the expression of CBX3. RESULTS Gene set enrichment analysis suggested that CBX3 participates in ataxia-telangiectasia mutated and Rad3-related protein kinase (ATR) activation and tumor progression. Analysis of immune infiltration indicated that CBX3 expression is negatively correlated with mast cells, DCs, immature DCs, and neutrophils. CONCLUSION Our findings show that high CBX3 expression predicts poor prognosis in HNSCC and that CBX3 may act as an oncoprotein by activating ATR and affecting immune infiltration.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Yu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Zheqi Liu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
12
|
Shan S, Yang Y, Jiang J, Yang B, Yang Y, Sun F, Zhang J, Lin Y, Xu H. Extracellular vesicle-derived lncRNAs as circulating biomarkers for endometriosis. Reprod Biomed Online 2021; 44:923-933. [DOI: 10.1016/j.rbmo.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
|
13
|
Changes in the Proteome in the Development of Chronic Human Papillomavirus Infection-A Prospective Study in HIV Positive and HIV Negative Rwandan Women. Cancers (Basel) 2021; 13:cancers13235983. [PMID: 34885095 PMCID: PMC8656715 DOI: 10.3390/cancers13235983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Effects on the proteome when a high risk (HR)-HPV infection occurs, when it is cleared and when it becomes chronic were investigated. Moreover, biomarker panels that could identify cervical risk lesions were assessed. METHODS Cytology, HPV screening and proteomics were performed on cervical samples from Rwandan HIV+ and HIV- women at baseline, at 9 months, at 18 months and at 24 months. Biological pathways were identified using the String database. RESULTS The most significantly affected pathway when an incident HR-HPV infection occurred was neutrophil degranulation, and vesicle-mediated transport was the most significantly affected pathway when an HR-HPV infection was cleared; protein insertion into membrane in chronic HR-HPV lesions and in lesions where HR-HPVs were cleared were compared; and cellular catabolic process in high-grade lesions was compared to that in negative lesions. A four-biomarker panel (EIF1; BLOC1S5; LIMCH1; SGTA) was identified, which was able to distinguish chronic HR-HPV lesions from cleared HR-HPV/negative lesions (sensitivity 100% and specificity 91%). Another four-biomarker panel (ERH; IGKV2-30; TMEM97; DNAJA4) was identified, which was able to distinguish high-grade lesions from low-grade/negative lesions (sensitivity 100% and specificity 81%). CONCLUSIONS We have identified the biological pathways triggered in HR-HPV infection, when HR-HPV becomes chronic and when cervical risk lesions develop. Moreover, we have identified potential biomarkers that may help to identify women with cervical risk lesions.
Collapse
|
14
|
Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, Fazli L, Gleave M, Manai M, Barthélémy P, Birnbaum D, Bertucci F, Taïeb D, Rocchi P. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene 2021; 41:125-137. [PMID: 34711954 PMCID: PMC8724010 DOI: 10.1038/s41388-021-02039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Disease progression and therapeutic resistance of prostate cancer (PC) are linked to multiple molecular events that promote survival and plasticity. We previously showed that heat shock protein 27 (HSP27) acted as a driver of castration-resistant phenotype (CRPC) and developed an oligonucleotides antisense (ASO) against HSP27 with evidence of anti-cancer activity in men with CRPC. Here, we show that the tumor suppressor Menin (MEN1) is highly regulated by HSP27. Menin is overexpressed in high-grade PC and CRPC. High MEN1 mRNA expression is associated with decreased biochemical relapse-free and overall survival. Silencing Menin with ASO technology inhibits CRPC cell proliferation, tumor growth, and restores chemotherapeutic sensitivity. ChIP-seq analysis revealed differential DNA binding sites of Menin in various prostatic cells, suggesting a switch from tumor suppressor to oncogenic functions in CRPC. These data support the evaluation of ASO against Menin for CRPC. ![]()
Collapse
Affiliation(s)
- Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Dang Tan Nguyen
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thibaud Sefiane
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Max Chaffanet
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Julien Vernerey
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Mohamed Manai
- Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33076 Bordeaux, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Biophysics and Nuclear Medicine Department, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, F-13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.
| |
Collapse
|
15
|
Dong Y, Ma WM, Shi ZD, Zhang ZG, Zhou JH, Li Y, Zhang SQ, Pang K, Li BB, Zhang WD, Fan T, Zhu GY, Xue L, Li R, Liu Y, Hao L, Han CH. Role of NRP1 in Bladder Cancer Pathogenesis and Progression. Front Oncol 2021; 11:685980. [PMID: 34249735 PMCID: PMC8261128 DOI: 10.3389/fonc.2021.685980] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023] Open
Abstract
Bladder urothelial carcinoma (BC) is a fatal invasive malignancy and the most common malignancy of the urinary system. In the current study, we investigated the function and mechanisms of Neuropilin-1 (NRP1), the co-receptor for vascular endothelial growth factor, in BC pathogenesis and progression. The expression of NRP1 was evaluated using data extracted from GEO and HPA databases and examined in BC cell lines. The effect on proliferation, apoptosis, angiogenesis, migration, and invasion of BC cells were validated after NRP1 knockdown. After identifying differentially expressed genes (DEGs) induced by NRP1 silencing, GO/KEGG and IPA® bioinformatics analyses were performed and specific predicted pathways and targets were confirmed in vitro. Additionally, the co-expressed genes and ceRNA network were predicted using data downloaded from CCLE and TCGA databases, respectively. High expression of NRP1 was observed in BC tissues and cells. NRP1 knockdown promoted apoptosis and suppressed proliferation, angiogenesis, migration, and invasion of BC cells. Additionally, after NRP1 silencing the activity of MAPK signaling and molecular mechanisms of cancer pathways were predicted by KEGG and IPA® pathway analysis and validated using western blot in BC cells. NRP1 knockdown also affected various biological functions, including antiviral response, immune response, cell cycle, proliferation and migration of cells, and neovascularisation. Furthermore, the main upstream molecule of the DEGs induced by NRP1 knockdown may be NUPR1, and NRP1 was also the downstream target of NUPR1 and essential for regulation of FOXP3 expression to activate neovascularisation. DCBLD2 was positively regulated by NRP1, and PPAR signaling was significantly associated with low NRP1 expression. We also found that NRP1 was a predicted target of miR-204, miR-143, miR-145, and miR-195 in BC development. Our data provide evidence for the biological function and molecular aetiology of NRP1 in BC and for the first time demonstrated an association between NRP1 and NUPR1, FOXP3, and DCBLD2. Specifically, downregulation of NRP1 contributes to BC progression, which is associated with activation of MAPK signaling and molecular mechanisms involved in cancer pathways. Therefore, NRP1 may serve as a target for new therapeutic strategies to treat BC and other cancers.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhi-Guo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jia-He Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Shao-Qi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Bi-Bo Li
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Guang-Yuan Zhu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Park C, Lee WS, Go SI, Jeong SH, Yoo J, Cha HJ, Lee YJ, Kim HS, Leem SH, Kim HJ, Kim GS, Hong SC, Choi YH. Apoptotic Effects of Anthocyanins from Vitis coignetiae Pulliat Are Enhanced by Augmented Enhancer of the Rudimentary Homolog (ERH) in Human Gastric Carcinoma MKN28 Cells. Int J Mol Sci 2021; 22:3030. [PMID: 33809701 PMCID: PMC8002340 DOI: 10.3390/ijms22063030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Evidence suggests that augmented expression of a certain gene can influence the efficacy of targeted and conventional chemotherapies. Here, we tested whether the high expression of enhancer of the rudimentary homolog (ERH), which serves as a prognostic factor in some cancers, can influence the efficacy of anthocyanins isolated from fruits of Vitis coignetiae Pulliat, Meoru in Korea (AIMs) on human gastric cancer cells. The anticancer efficacy of AIMs was augmented in ERH-transfected MKN28 cells (E-MKN28 cells). Molecularly, ERH augmented AIM-induced caspase-dependent apoptosis by activating caspase-3 and -9. The ERH-augmented apoptotic effect was related to mitochondrial depolarization and inhibition of antiapoptotic proteins, XIAP, and Bcl-2. In addition, reactive oxygen species (ROS) generation was augmented in AIMs-treated E-MKN28 cells compared to AIMs-treated naïve MKN28 cells. In conclusion, ERH augmented AIM-induced caspase-dependent mitochondrial-related apoptosis in MKN28 cells. A decrease in expression of Bcl-2 and subsequent excessive ROS generation would be the mechanism for ERH-augmented mitochondrial-related apoptosis in AIMs-treated MKN28 cells. A decrease in expression of XIAP would be another mechanism for ERH-augmented caspase-dependent apoptosis in AIMs-treated MKN28 cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea;
| | - Won Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Se-Il Go
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Sang-Ho Jeong
- Departments of Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (S.-H.J.); (Y.-J.L.); (S.-C.H.)
| | - Jiyun Yoo
- Department of Microbiology/Research Institute of Life Science, College of Natural Sciences, Jinju 660-701, Korea;
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea;
| | - Young-Joon Lee
- Departments of Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (S.-H.J.); (Y.-J.L.); (S.-C.H.)
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Sun-Hee Leem
- Departments of Biology and Biomedical Science, Dong-A University, Busan 49315, Korea;
| | - Hye Jung Kim
- Departments of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Gon Sup Kim
- School of Veterinary Medicine, Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju 660-701, Korea;
| | - Soon-Chan Hong
- Departments of Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (S.-H.J.); (Y.-J.L.); (S.-C.H.)
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
17
|
Chen SW, Zhou HF, Zhang HJ, He RQ, Huang ZG, Dang YW, Yang X, Liu J, Fu ZW, Mo JX, Tang ZQ, Li CB, Li R, Yang LH, Ma J, Yang LJ, Chen G. The Clinical Significance and Potential Molecular Mechanism of PTTG1 in Esophageal Squamous Cell Carcinoma. Front Genet 2021; 11:583085. [PMID: 33552118 PMCID: PMC7863988 DOI: 10.3389/fgene.2020.583085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major histological type of esophageal cancers worldwide. Transcription factor PTTG1 was seen highly expressed in a variety of tumors and was related to the degree of tumor differentiation, invasion, and metastasis. However, the clinical significance of PTTG1 had yet to be verified, and the mechanism of abnormal PTTG1 expression in ESCC was not clear. In this study, the comprehensive analysis and evaluation of PTTG1 expression in ESCC were completed by synthesizing in-house immunohistochemistry (IHC), clinical sample tissue RNA-seq (in-house RNA-seq), public high-throughput data, and literature data. We also explored the possible signaling pathways and target genes of PTTG1 in ESCC by combining the target genes of PTTG1 (displayed by ChIP-seq), differentially expressed genes (DEGs) of ESCC, and PTTG1-related genes, revealing the potential molecular mechanism of PTTG1 in ESCC. In the present study, PTTG1 protein and mRNA expression levels in ESCC tissues were all significantly higher than in non-cancerous tissues. The pool standard mean difference (SMD) of the overall PTTG1 expression was 1.17 (95% CI: 0.72-1.62, P < 0.01), and the area under curve (AUC) of the summary receiver operating characteristic (SROC) was 0.86 (95% CI: 0.83-0.89). By combining the target genes displayed by ChIP-seq of PTTG1, DEGs of ESCC, and PTTG1-related genes, it was observed that PTTG1 may interact with these genes through chemokines and cytokine signaling pathways. By constructing a protein-protein interaction (PPI) network and combining ChIP-seq data, we obtained four PTTG1 potential target genes, SPTAN1, SLC25A17, IKBKB, and ERH. The gene expression of PTTG1 had a strong positive correlation with SLC25A17 and ERH, which suggested that PTTG1 might positively regulate the expression of these two genes. In summary, the high expression of PTTG1 may play an important role in the formation of ESCC. These roles may be completed by PTTG1 regulating the downstream target genes SLC25A17 and ERH.
Collapse
Affiliation(s)
- Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zong-Wang Fu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University/Wuzhou Gongren Hospital, Wuzhou, China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University/Wuzhou Gongren Hospital, Wuzhou, China
| | - Rong Li
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Jin Y, Meng Q, Zhang B, Xie C, Chen X, Tian B, Wang J, Shih TC, Zhang Y, Cao J, Yang Y, Chen S, Guan X, Chen X, Hong A. Cancer-associated fibroblasts-derived exosomal miR-3656 promotes the development and progression of esophageal squamous cell carcinoma via the ACAP2/PI3K-AKT signaling pathway. Int J Biol Sci 2021; 17:3689-3701. [PMID: 34671193 PMCID: PMC8495391 DOI: 10.7150/ijbs.62571] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common gastrointestinal tumors, accounting for almost half a million deaths per year. Cancer-associated fibroblasts (CAFs) are the major constituent of the tumor microenvironment (TME) and dramatically impact ESCC progression. Recent evidence suggests that exosomes derived from CAFs are able to transmit regulating signals and promote ESCC development. In this study, we compared different the component ratios of miRNAs in exosomes secreted by CAFs in tumors and with those from normal fibroblasts (NFs) in precancerous tissues. The mRNA level of hsa-miR-3656 was significantly upregulated in the former exosomes. Subsequently, by comparing tumor cell development in vitro and in vivo, we found that the proliferation, migration and invasion capabilities of ESCC cells were significantly improved when miR-3656 was present. Further target gene analysis confirmed ACAP2 was a target gene regulated by miR-3656 and exhibited a negative regulatory effect on tumor proliferation. Additionally, the downregulation of ACAP2 triggered by exosomal-derived miR-3656 further promotes the activation of the PI3K/AKT and β-catenin signaling pathways and ultimately improves the growth of ESCC cells both in vitro and in xenograft models. These results may represent a potential therapeutic target for ESCC and provide a new basis for clinical treatment plans.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Chen Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Xue Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Baoqing Tian
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Jiakang Wang
- Cancer Center of Guangzhou Medical University, Guangzhou 510090, P. R. China
| | - Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Yiqi Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Size Chen
- Oncology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
- Guangdong Provincial Engineering Research Center for Precise Therapy of Esophageal Cancer, Guangzhou 510080, P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, P. R. China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
- ✉ Corresponding author: Dr. An Hong and Dr. Xiaojia Chen. (AH) , (XC)
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
- ✉ Corresponding author: Dr. An Hong and Dr. Xiaojia Chen. (AH) , (XC)
| |
Collapse
|
19
|
Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol 2020; 4:1713-1724. [PMID: 32958860 PMCID: PMC7616959 DOI: 10.1038/s41559-020-01310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.
Collapse
Affiliation(s)
- Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M Guerrero-Bosagna
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- Evolutionary Biology Centrum, Dept of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
20
|
Ramuta TŽ, Jerman UD, Tratnjek L, Janev A, Magatti M, Vertua E, Bonassi Signoroni P, Silini AR, Parolini O, Kreft ME. The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Front Bioeng Biotechnol 2020; 8:554530. [PMID: 33240862 PMCID: PMC7680964 DOI: 10.3389/fbioe.2020.554530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Park JH, Park M, Park SY, Lee YJ, Hong SC, Jung EJ, Ju YT, Jeong CY, Kim JY, Ko GH, Hah YS, Jeong SH. ERH overexpression is associated with decreased cell migration and invasion and a good prognosis in gastric cancer. Transl Cancer Res 2020; 9:5281-5291. [PMID: 35117894 PMCID: PMC8797358 DOI: 10.21037/tcr-20-1498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
Background The enhancer of rudimentary homolog (ERH) protein is implicated in transcriptional regulation, cell cycle progression, and malignancy. We previously conducted a proteomics analysis using gastric cancer (GC) tissues and identified ERH as a biomarker candidate. The aim of this study was to investigate whether ERH may be useful as a prognostic marker for GC. Methods Surgically resected GC tissue specimens were obtained from 327 patients who underwent gastrectomy at Gyeongsang National University Hospital. Immunohistochemistry (IHC) was used to validate ERH as a prognostic marker in these tissues. SNU601 and MKN74 cells with siRNA-mediated knockdown of ERH expression and ERH-overexpressing SNU601 and MKN74 knock-in cells were used for analysis of ERH function. Results ERH was overexpressed in stomach cancer tissues compared with normal tissues according to proteomics analysis (n=29, P<0.01) of patient samples. Based on IHC, patients with tumors overexpressing ERH had lower T stage and lower TNM stage classifications, lower cancer recurrence rates and longer survival times than did patients with tumors showing low expression of ERH (P=0.04). In vitro, forced expression of ERH significantly decreased GC cell migration and invasion, and depletion of ERH triggered GC cell migration and invasion but had no effect on proliferation in vitro. Conclusions The findings from the present study show that ERH is associated with decreased cancer cell migration and invasion, suggesting that overexpression of ERH may serve as a marker of good prognosis for patients with GC.
Collapse
Affiliation(s)
- Ji-Ho Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Sun Yi Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Young-Joon Lee
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Soon-Chan Hong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Eun-Jung Jung
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Gyung Hyuck Ko
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
22
|
ERH proteins: connecting RNA processing to tumorigenesis? Curr Genet 2020; 66:689-692. [DOI: 10.1007/s00294-020-01065-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022]
|
23
|
Pang K, Hao L, Shi Z, Chen B, Pang H, Dong Y, Zhang Z, Dong B, Han C. Comprehensive gene expression analysis after ERH gene knockdown in human bladder cancer T24 cell lines. Gene 2020; 738:144475. [PMID: 32081697 DOI: 10.1016/j.gene.2020.144475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In this article, we utilized Ingenuity® Pathway Analysis (IPA®) bioinformatics analysis software and Metascape® bioinformatics analysis website tools to analyse the possible mechanism of ERH affecting tumourigenesis (proliferation and apoptosis) in bladder cancer (BC) T24 cells. METHODS The ERH gene was knocked down, and BC T24 cells were divided into ERH normal and knockdown groups. Affymetrix® gene expression microarrays were performed to obtain a differentially expressed gene list (DEGL) between the 2 groups. IPA® data analyses contain five modules: disease and function analysis, upstream analysis, regulator effects analysis, canonical pathway analysis and molecular network analysis. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were analysed by Metascape®. RESULTS The results of the gene expression profiling chip and the DEGL showed that 344 genes were upregulated and 254 genes were downregulated. The IPA® and Metascape® pathway analyses showed that the ERH gene may affect proliferation and apoptosis by affecting the apoptosis, cell cycle, Toll-like receptor (TLR), NF-κB or TGF-beta signalling pathways. Upstream analysis determined that the ERH gene may regulate TNF and NK-κB in the BC T24 cell lines. The ERH gene may be involved in the "cell death and survival" molecular network in BC T24 cells. ERH may be a regulator of KITLG through TNF. CONCLUSIONS The ERH gene may affect apoptosis through the TLR, NF-κB, TNF or TGF-beta signalling pathways in BC T24 cells, and may be a regulator of KITLG to ultimately activate the growth of malignant tumours.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Huiqing Pang
- Department of Operating Room, Linyi Central Hospital, No. 17, Jiankang Road, Yishui, Shandong, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Zhiguo Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Bingzheng Dong
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Conghui Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Zhang D, Chu YJ, Song KJ, Chen YL, Liu W, Lv T, Wang J, Zhao H, Ren YZ, Xu JX, Xia NN, Li HX, Yao Q. Knockdown of enhancer of rudimentary homolog inhibits proliferation and metastasis in ovarian cancer by regulating epithelial-mesenchymal transition. Biomed Pharmacother 2020; 125:109974. [PMID: 32036222 DOI: 10.1016/j.biopha.2020.109974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy. The pathogenesis of molecular in epithelial ovarian cancer (EOC), main histological type of OC, has not been completely defined. Enhancer of rudimentary homolog (ERH) had been reported to participate in transcriptional regulation, mRNA splicing, DNA repair and DNA synthesis by binding a variety of proteins. In this study, immunohistochemical staining revealed that the protein expression of ERH was associated with histological type, lymph node metastasis and pathological grade in EOC patients. To verify the association of ERH with the prognosis of OC, a GSE microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. Survival analysis suggested that ERH may be associated with poor prognosis of OC. In addition, shRNA was used to knockdown the protein and mRNA expression levels of ERH in the OC cell line SKOV3. Inhibition of ERH expression slowed proliferation, promoted apoptosis and inhibited metastasis and invasion by regulating epithelial-mesenchymal transition (EMT) in SKOV3 cells. These results indicate that ERH protein promotes the development of OC and provides an experimental basis for ERH as the potential target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Yi-Jing Chu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Ke-Juan Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yu-Long Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Liu
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Wang
- Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yuan-Zhong Ren
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Jin-Xang Xu
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Nan-Nan Xia
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Hong-Xuan Li
- Department of Medicine, Qingdao University, Qingdao, China.
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Matsumura E, Kosuge N, Nakanishi S, Suda T, Sugawa A, Fujimura T, Miyagi R, Yoshimi N, Saito S. Urine Lactoferrin as a Potential Biomarker Reflecting the Degree of Malignancy in Urothelial Carcinoma of the Bladder. TOHOKU J EXP MED 2020; 252:225-244. [PMID: 33162487 DOI: 10.1620/tjem.252.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Urothelial carcinoma of the bladder (UCB) is potentially life-threatening; therefore, we aimed to discover a novel urine biomarker for diagnosis and prognostication of UCB. This is a retrospective case-control study. Exploration of a new biomarker using urine from 20 UCB patients in the present study revealed that urinary level of lactoferrin (LF), a multifunctional glycoprotein released from neutrophils, was higher in 11 of 15 with invasive/high-grade UCB than 5 with non-invasive one, and 2 healthy adults. We therefore focused on LF and assessed the value of urine LF normalized by urine creatinine concentration (LF/Cr) using an enzyme-linked immunosorbent assay. Diagnostic performance of urine LF/Cr was examined using urine from 92 patients with primary (newly diagnosed) untreated UCB and 166 controls without UCB, including 62 patients with pyuria, and 104 subjects without pyuria consisting of 84 patients and 20 healthy adults. However, the diagnostic accuracies were accompanied by the risk of bias. In 92 primary UCB patients, both pyuria and tumor-infiltrating neutrophils (TINs) were independent predictors for urine LF/Cr. In contrast, TINs or urine LF/Cr were independent predictors for invasive histology, whereas pyuria was not. In terms of prognostication, urine LF/Cr and nodal metastasis were independent predictors of disease-specific survival in 22 patients with muscle-invasive bladder cancer, characterized by a high mortality rate, in the Cox proportional hazards model. In conclusion, urine LF/Cr linked to TINs was a predictor of both invasive histology and prognosis in UCB. Urine LF/Cr is a potential biomarker reflecting the degree of malignancy in UCB.
Collapse
Affiliation(s)
- Eiri Matsumura
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Noritake Kosuge
- Department of Tumor Pathology, University of the Ryukyus Graduate School of Medicine
| | - Shotaro Nakanishi
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Tetsuji Suda
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Ai Sugawa
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University
| | - Ryota Miyagi
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Naoki Yoshimi
- Department of Tumor Pathology, University of the Ryukyus Graduate School of Medicine
| | - Seiichi Saito
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| |
Collapse
|