1
|
Huang Y, Zeng H, Zhang G, Ren F, Yuan Z, Ren J, Xu J, Song Z, Li W, Ying J, Feng F, Tan F. Pooled Analysis of the Prognostic Significance of Epidermal Growth Factor Receptor (EGFR) Mutational Status in Combination with Other Driver Genomic Alterations in Stage I Resected Invasive Lung Adenocarcinoma for Recurrence-Free Survival: A Population-Based Study. Ann Surg Oncol 2024:10.1245/s10434-024-16528-7. [PMID: 39586954 DOI: 10.1245/s10434-024-16528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The prognostic significance of epidermal growth factor receptor (EGFR) mutations in stage I invasive lung adenocarcinoma (LUAD) remains debated. Improving the lung cancer staging system requires further investigation into actionable mutations and their association with survival outcomes. PATIENTS AND METHODS A total of 410 patients with stage I invasive LUAD were analyzed for their driver mutations. Survival analysis of EGFR mutations, exon 19 deletion, L858R in exon 21, and minor genotypes were stratified by clinicopathologic characteristics. Kaplan-Meier and log-rank tests were used to determine prognostic significance. Univariate and multivariate Cox proportional hazard regression models assessed variables' impact on recurrence-free survival (RFS). Patients with further-profiled samples were divided into training and validation datasets by computer-generated random numbers. Multiple machine learning algorithms were applied to construct genomic prediction models, with C index evaluated for each. RESULTS EGFR mutations occurred in 210 patients (51.2%). In stage I invasive LUAD, EGFR mutations strongly correlated with poor RFS (P = 0.022), especially in never smoker (P < 0.001), female (P = 0.024), part-solid (P = 0.002), and stage IA subgroups (P = 0.020). The most frequently co-mutated gene was TP53. Moreover, patients with EGFR/TP53 co-mutations, regardless of mutant types, exhibited worse prognosis. A mutational prognostic model based on the random survival forest (RSF) algorithm achieved the highest mean C index (C index: 0.87 in training cohort versus 0.74 in validation cohort), and demonstrated strong RFS estimation performance [area under the curve (AUC):1-year, 0.87, versus 3-year, 0.92, versus 5-year, 0.92]. CONCLUSIONS EGFR mutations are robust biomarkers for RFS estimation in stage I invasive LUAD. Combining EGFR mutations with other actionable mutations enhances individualized RFS estimation.
Collapse
Affiliation(s)
- Yufei Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangzhou Ren
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenlong Yuan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Ren
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxi Xu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zehao Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiyue Feng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
3
|
Altuhaifa FA, Win KT, Su G. Predicting lung cancer survival based on clinical data using machine learning: A review. Comput Biol Med 2023; 165:107338. [PMID: 37625260 DOI: 10.1016/j.compbiomed.2023.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Machine learning has gained popularity in predicting survival time in the medical field. This review examines studies utilizing machine learning and data-mining techniques to predict lung cancer survival using clinical data. A systematic literature review searched MEDLINE, Scopus, and Google Scholar databases, following reporting guidelines and using the COVIDENCE system. Studies published from 2000 to 2023 employing machine learning for lung cancer survival prediction were included. Risk of bias assessment used the prediction model risk of bias assessment tool. Thirty studies were reviewed, with 13 (43.3%) using the surveillance, epidemiology, and end results database. Missing data handling was addressed in 12 (40%) studies, primarily through data transformation and conversion. Feature selection algorithms were used in 19 (63.3%) studies, with age, sex, and N stage being the most chosen features. Random forest was the predominant machine learning model, used in 17 (56.6%) studies. While the number of lung cancer survival prediction studies is limited, the use of machine learning models based on clinical data has grown since 2012. Consideration of diverse patient cohorts and data pre-processing are crucial. Notably, most studies did not account for missing data, normalization, scaling, or standardized data, potentially introducing bias. Therefore, a comprehensive study on lung cancer survival prediction using clinical data is needed, addressing these challenges.
Collapse
Affiliation(s)
- Fatimah Abdulazim Altuhaifa
- School of Computing and Information Technology, University of Wollongong, NSW, 2500, Australia; Saudi Arabia Ministry of Higher Education, Riyadh, Saudi Arabia.
| | - Khin Than Win
- School of Computing and Information Technology, University of Wollongong, NSW, 2500, Australia
| | - Guoxin Su
- School of Computing and Information Technology, University of Wollongong, NSW, 2500, Australia
| |
Collapse
|
4
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Metabolic heterogeneity in early-stage lung adenocarcinoma revealed by RNA-seq and scRNA-seq. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1844-1855. [PMID: 36692643 DOI: 10.1007/s12094-023-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Cancer cells maintain cell growth, division, and survival through altered energy metabolism. However, research on metabolic reprogramming in lung adenocarcinoma (LUAD) is limited METHODS: We downloaded TCGA and GEO sequencing data. Consistent clustering with the ConsensusClusterPlus package was employed to detect the scores for four metabolism-related pathways. The LUAD samples in the TCGA dataset were clustered with ConsensusClusterPlus, and the optimal number of clusters was determined according to the cumulative distribution function (CDF). The cell score for each sample in the TCGA dataset was calculated using the MCPcounter estimate function of the MCPcounter package. RESULTS We identified two subtypes by scoring the samples based on the 4 metabolism-related pathways and cluster dimensionality reduction. The prognosis of cluster B was obviously poorer than that of cluster A in patients with LUAD. The analysis of single-nucleotide variation (SNV) data showed that the top 15 genes in the four metabolic pathways with the most mutations were TKTL2, PGK2, HK3, EHHADH, GLUD2, PKLR, TKTL1, HADHB, CPT1C, HK1, HK2, PFKL, SLC2A3, PFKFB1, and CPT1A. The IFNγ score of cluster B was significantly higher than that of cluster A. The immune T-cell lytic activity score of cluster B was significantly higher than that of cluster A. We further identified 5 immune cell subsets from single-cell sequencing data. The top 5 marker genes of B cells were IGHM, JCHAIN, IGLC3, IGHA1, and IGKC. The C0 subgroup of monocytes had a higher pentose phosphate pathway (PPP) score than the C6 subgroup. CONCLUSIONS Metabolism-related subtypes could be potential biomarkers in the prognosis prediction and treatment of LUAD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Li Y, Wu X, Yang P, Jiang G, Luo Y. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:850-866. [PMID: 36462630 PMCID: PMC10025752 DOI: 10.1016/j.gpb.2022.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The recent development of imaging and sequencing technologies enables systematic advances in the clinical study of lung cancer. Meanwhile, the human mind is limited in effectively handling and fully utilizing the accumulation of such enormous amounts of data. Machine learning-based approaches play a critical role in integrating and analyzing these large and complex datasets, which have extensively characterized lung cancer through the use of different perspectives from these accrued data. In this review, we provide an overview of machine learning-based approaches that strengthen the varying aspects of lung cancer diagnosis and therapy, including early detection, auxiliary diagnosis, prognosis prediction, and immunotherapy practice. Moreover, we highlight the challenges and opportunities for future applications of machine learning in lung cancer.
Collapse
Affiliation(s)
- Yawei Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ping Yang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 / Scottsdale, AZ 85259, USA
| | - Guoqian Jiang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7842566. [PMID: 35434134 PMCID: PMC9010213 DOI: 10.1155/2022/7842566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023]
Abstract
Purpose Artificial intelligence (AI) techniques are used in precision medicine to explore novel genotypes and phenotypes data. The main aims of precision medicine include early diagnosis, screening, and personalized treatment regime for a patient based on genetic-oriented features and characteristics. The main objective of this study was to review AI techniques and their effectiveness in neoplasm precision medicine. Materials and Methods A comprehensive search was performed in Medline (through PubMed), Scopus, ISI Web of Science, IEEE Xplore, Embase, and Cochrane databases from inception to December 29, 2021, in order to identify the studies that used AI methods for cancer precision medicine and evaluate outcomes of the models. Results Sixty-three studies were included in this systematic review. The main AI approaches in 17 papers (26.9%) were linear and nonlinear categories (random forest or decision trees), and in 21 citations, rule-based systems and deep learning models were used. Notably, 62% of the articles were done in the United States and China. R package was the most frequent software, and breast and lung cancer were the most selected neoplasms in the papers. Out of 63 papers, in 34 articles, genomic data like gene expression, somatic mutation data, phenotype data, and proteomics with drug-response which is functional data was used as input in AI methods; in 16 papers' (25.3%) drug response, functional data was utilized in personalization of treatment. The maximum values of the assessment indicators such as accuracy, sensitivity, specificity, precision, recall, and area under the curve (AUC) in included studies were 0.99, 1.00, 0.96, 0.98, 0.99, and 0.9929, respectively. Conclusion The findings showed that in many cases, the use of artificial intelligence methods had effective application in personalized medicine.
Collapse
|
7
|
Li J, Wu J, Zhao Z, Zhang Q, Shao J, Wang C, Qiu Z, Li W. Artificial intelligence-assisted decision making for prognosis and drug efficacy prediction in lung cancer patients: a narrative review. J Thorac Dis 2022; 13:7021-7033. [PMID: 35070384 PMCID: PMC8743400 DOI: 10.21037/jtd-21-864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we aim to present frontier studies in patients with lung cancer as it related to artificial intelligence (AI)-assisted decision-making and summarize the latest advances, challenges and future trend in this field. Background Despite increasing survival rate in cancer patients over the last decades, lung cancer remains one of the leading causes of death worldwide. The early diagnosis, accurate evaluation and individualized treatment are vital approaches to improve the survival rate of patients with lung cancer. Thus, decision making based on these approaches requires accuracy and efficiency beyond manpower. Recent advances in AI and precision medicine have provided a fertile environment for the development of AI-based models. These models have the potential to assist radiologists and oncologists in detecting lung cancer, predicting prognosis and developing personalized treatment plans for better outcomes of the patients. Methods We searched literature from 2000 through July 31th, 2021 in Medline/PubMed, the Web of Science, the Cochrane Library, ACM Digital Library, INSPEC and EMBASE. Key words such as “artificial intelligence”, “AI”, “deep learning”, “lung cancer”, “NSCLC”, “SCLC” were combined to identify related literatures. These literatures were then selected by two independent authors. Articles chosen by only one author will be examined by another author to determine whether this article was relative and valuable. The selected literatures were read by all authors and discussed to draw reliable conclusions. Conclusions AI, especially for those based on deep learning and radiomics, is capable of assisting clinical decision making from many aspects, for its quantitatively interpretation of patients’ information and its potential to deal with the dynamics, individual differences and heterogeneity of lung cancer. Hopefully, remaining problems such as insufficient data and poor interpretability may be solved to put AI-based models into clinical practice.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China.,West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Jiayang Wu
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhehao Zhao
- West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Qiran Zhang
- West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Zhixin Qiu
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li Y, Chen D, Wu X, Yang W, Chen Y. A narrative review of artificial intelligence-assisted histopathologic diagnosis and decision-making for non-small cell lung cancer: achievements and limitations. J Thorac Dis 2022; 13:7006-7020. [PMID: 35070383 PMCID: PMC8743410 DOI: 10.21037/jtd-21-806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Objective To summarize the current evidence regarding the applications, workflow, and limitations of artificial intelligence (AI) in the management of patients pathologically-diagnosed with lung cancer. Background Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths worldwide. AI technologies have been applied to daily medical workflow and have achieved an excellent performance in predicting histopathologic subtypes, analyzing gene mutation profiles, and assisting in clinical decision-making for lung cancer treatment. More advanced deep learning for classifying pathologic images with minimal human interactions has been developed in addition to the conventional machine learning scheme. Methods Studies were identified by searching databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, up to February 2021 without language restrictions. Conclusions A number of studies have evaluated AI pipelines and confirmed that AI is robust and efficacious in lung cancer diagnosis and decision-making, demonstrating that AI models are a useful tool for assisting oncologists in health management. Although several limitations that pose an obstacle for the widespread use of AI schemes persist, the unceasing refinement of AI techniques is poised to overcome such problems. Thus, AI technology is a promising tool for use in diagnosing and managing lung cancer.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xuejie Wu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Yang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongbing Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Pandya S, Thakur A, Saxena S, Jassal N, Patel C, Modi K, Shah P, Joshi R, Gonge S, Kadam K, Kadam P. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2021; 21:7786. [PMID: 34883787 PMCID: PMC8659723 DOI: 10.3390/s21237786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same.
Collapse
Affiliation(s)
- Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Aanchal Thakur
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Santosh Saxena
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Nandita Jassal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Chirag Patel
- Computer Science & Engineering, Devang Patel Institute of Advance Technology and Research, Changa 388421, India;
| | - Kirit Modi
- Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar 384315, India;
| | - Pooja Shah
- Information Technology Department, Gandhinagar Institute of Technology, Ahmedabad 382010, India;
| | - Rahul Joshi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Sudhanshu Gonge
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Kalyani Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Prachi Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| |
Collapse
|
10
|
Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm Sin B 2021; 11:3393-3405. [PMID: 34900525 PMCID: PMC8642413 DOI: 10.1016/j.apsb.2021.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial intelligence (AI) is a general term that refers to the use of a machine to imitate intelligent behavior for performing complex tasks with minimal human intervention, such as machine learning; this technology is revolutionizing and reshaping medicine. AI has considerable potential to perfect health-care systems in areas such as diagnostics, risk analysis, health information administration, lifestyle supervision, and virtual health assistance. In terms of immunotherapy, AI has been applied to the prediction of immunotherapy responses based on immune signatures, medical imaging and histological analysis. These features could also be highly useful in the management of cancer immunotherapy given their ever-increasing performance in improving diagnostic accuracy, optimizing treatment planning, predicting outcomes of care and reducing human resource costs. In this review, we present the details of AI and the current progression and state of the art in employing AI for cancer immunotherapy. Furthermore, we discuss the challenges, opportunities and corresponding strategies in applying the technology for widespread clinical deployment. Finally, we summarize the impact of AI on cancer immunotherapy and provide our perspectives about underlying applications of AI in the future.
Collapse
Key Words
- AI, artificial intelligence
- Artificial intelligence
- CT, computed tomography
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- Cancer immunotherapy
- DL, deep learning
- Diagnostics
- ICB, immune checkpoint blockade
- MHC-I, major histocompatibility complex class I
- ML, machine learning
- MMR, mismatch repair
- MRI, magnetic resonance imaging
- Machine learning
- PD-1, programmed cell death protein 1
- PD-L1, PD-1 ligand1
- TNBC, triple-negative breast cancer
- US, ultrasonography
- irAEs, immune-related adverse events
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Giulietti M, Cecati M, Sabanovic B, Scirè A, Cimadamore A, Santoni M, Montironi R, Piva F. The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics (Basel) 2021; 11:206. [PMID: 33573278 PMCID: PMC7912267 DOI: 10.3390/diagnostics11020206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Monia Cecati
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Berina Sabanovic
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Francesco Piva
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| |
Collapse
|
12
|
Deng F, Shen L, Wang H, Zhang L. Classify multicategory outcome in patients with lung adenocarcinoma using clinical, transcriptomic and clinico-transcriptomic data: machine learning versus multinomial models. Am J Cancer Res 2020; 10:4624-4639. [PMID: 33415023 PMCID: PMC7783755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023] Open
Abstract
Classification of multicategory survival-outcome is important for precision oncology. Machine learning (ML) algorithms have been used to accurately classify multi-category survival-outcome of some cancer-types, but not yet that of lung adenocarcinoma. Therefore, we compared the performances of 3 ML models (random forests, support vector machine [SVM], multilayer perceptron) and multinomial logistic regression (Mlogit) models for classifying 4-category survival-outcome of lung adenocarcinoma using the TCGA. Mlogit model overall performed similar to SVM and multilayer perceptron models (micro-average area under curve=0.82), while random forests model was inferior. Surprisingly, transcriptomic data alone and clinico-transcriptomic data appeared sufficient to accurately classify the 4-category survival-outcome in these patients, but no models using clinical data alone performed well. Notably, NDUFS5, P2RY2, PRPF18, CCL24, ZNF813, MYL6, FLJ41941, POU5F1B, and SUV420H1 were the top-ranked genes that were associated with alive without disease and inversely linked to other outcomes. Similarly, BDKRB2, TERC, DNAJA3, MRPL15, SLC16A13, CRHBP and ACSBG2 were associated with alive with progression and GAL3ST3, AD2, RAB41, HDC, and PLEKHG1 associated with dead with disease, respectively, while also inversely linked other outcomes. These cross-linked genes may be used for risk-stratification and future treatment development.
Collapse
Affiliation(s)
- Fei Deng
- School of Electrical and Electronic Engineering, Shanghai Institute of TechnologyShanghai, China
| | - Lanlan Shen
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research CenterHouston, TX, USA
| | - He Wang
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical CenterPlainsboro, NJ, USA
- Department of Biological Sciences, Rutgers UniversityNewark, NJ
- Rutgers Cancer Institute of New JerseyNew Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers UniversityPiscataway, NJ, USA
| |
Collapse
|
13
|
Liu X, Hui X, Kang H, Fang Q, Chen A, Hu Y, Lu D, Chen X, Wang Y. A Multi-Gene Model Effectively Predicts the Overall Prognosis of Stomach Adenocarcinomas With Large Genetic Heterogeneity Using Somatic Mutation Features. Front Genet 2020; 11:940. [PMID: 33005171 PMCID: PMC7479248 DOI: 10.3389/fgene.2020.00940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common malignancies worldwide with poor prognosis. It remains unclear whether the prognosis is associated with somatic gene mutations. Methods In this research, we collected two independent STAD cohorts with both genetic profiling and clinical follow-up data, systematically investigated the association between the prognosis and somatic mutations, and analyzed the influence of heterogeneity on the prognosis-genetics association. Results Typical association was identified between somatic mutations and overall prognosis for individual cohorts. In The Cancer Genome Atlas (TCGA) cohort, a list of 24 genes was also identified that tended to mutate within cases of the poorest prognosis. The association showed apparent heterogeneity between different cohorts, although common signatures could be identified. A machine-learning model was trained with 20 common genes that showed a similar mutation rate difference between prognostic groups in the two cohorts, and it classified the cases in each cohort into two groups with significantly different prognosis. The model outperformed both single-gene models and TNM-based staging system significantly. Conclusion The study made a systematic analysis on the association between STAD prognosis and somatic mutations, identified signature genes that showed mutation preference in different prognostic groups, and developed an effective multi-gene model that can effectively predict the overall prognosis of STAD in different cohorts.
Collapse
Affiliation(s)
- Xianming Liu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xinjie Hui
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Huayu Kang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Qiongfang Fang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Aiyue Chen
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Yueming Hu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Desheng Lu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianxiong Chen
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Yejun Wang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
14
|
Watson GA, Doi J, Hansen AR, Spreafico A. Novel strategies in immune checkpoint inhibitor drug development: How far are we from the paradigm shift? Br J Clin Pharmacol 2020; 86:1753-1768. [PMID: 32394468 PMCID: PMC7444803 DOI: 10.1111/bcp.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICI) represents a major milestone in immune-oncology. Over the years these agents have demonstrated efficacy in an increasing array of malignancies. Despite this success however, significant challenges remain. Novel approaches to both drug development and trial design are required to incorporate the unique pharmacokinetic and pharmacodynamic properties of ICIs. Further, it has also been established that the benefit of ICIs is limited to only a subset of patients. The molecular interactions between native immune cells and tumorigenesis and progression represent an active area of biomarker research, and elucidating the mechanisms of response and resistance is crucial to develop rational trial designs for the next wave of immune-oncology (IO) clinical trials, particularly in patients with primary and/or acquired resistance. Efforts are now being made to integrate both biological and clinical information using novel multi-omic approaches which are now being developed to further elucidate the molecular signatures associated with IO treatment response and resistance and enable rational drug development and trial design processes. As such, precision IO and the ability to deliver patient-specific choices for ICI monotherapies or combination therapies has become an increasingly tangible goal. We herein describe the current landscape in ICI drug development and discuss the challenges and future directions in this exciting and evolving era in immune-oncology.
Collapse
Affiliation(s)
- Geoffrey Alan Watson
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Jeffrey Doi
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Aaron Richard Hansen
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Anna Spreafico
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| |
Collapse
|
15
|
Affiliation(s)
- Parnian Jabbari
- a Research Center for Immunodeficiencies , Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies , Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|