1
|
Rowlands CE, Folberg AM, Beickman ZK, Devor EJ, Leslie KK, Givens BE. Particles and Prejudice: Nanomedicine Approaches to Reducing Health Disparities in Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300096. [PMID: 37312613 PMCID: PMC10716380 DOI: 10.1002/smll.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.
Collapse
Affiliation(s)
- Claire E Rowlands
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| | - Abigail M Folberg
- Department of Psychology, University of Nebraska at Omaha, 6100 W. Dodge Road, ASH 347E, Omaha, NE, 68182, USA
| | - Zachary K Beickman
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center | The University of New Mexico Health Sciences Center, 1021 Medical Arts Ave NE, Albuquerque, NM, 87131, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| |
Collapse
|
2
|
Peng WB, Li YP, Zeng Y, Chen K. Transglutaminase 2 serves as a pathogenic hub gene of KRAS mutant colon cancer based on integrated analysis. World J Gastrointest Oncol 2024; 16:2074-2090. [PMID: 38764826 PMCID: PMC11099438 DOI: 10.4251/wjgo.v16.i5.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide, ranking third in United States regarding incidence and mortality. Notably, approximately 40% of colon cancer cases harbor oncogenic KRAS mutations, resulting in the continuous activation of epidermal growth factor receptor signaling. AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance. METHODS Weighted gene co-expression network analysis, in combination with additional bioinformatics analysis, were conducted to screen the key factors driving the progression of KRAS mutant colon cancer. Meanwhile, various in vitro experiments were also conducted to explore the biological function of transglutaminase 2 (TGM2). RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival. Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer. Additionally, biological roles of the key gene TGM2 was also assessed, suggesting that the downregulation of TGM2 attenuated the proliferation, invasion, and migration of the KRAS mutant colon cancer cell line. CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer. This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings.
Collapse
Affiliation(s)
- Wei-Bin Peng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yu-Ping Li
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yong Zeng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Kai Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong Province, China
| |
Collapse
|
3
|
Matasariu DR, Bausic AIG, Mandici CE, Bujor IE, Cristofor AE, Bratila E, Lozneanu L, Boiculese LV, Grigore M, Ursache A. Effects of Progestin on Modulation of the Expression of Biomarkers in Endometriosis. Biomedicines 2023; 11:2036. [PMID: 37509675 PMCID: PMC10377117 DOI: 10.3390/biomedicines11072036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Our study aimed to examine the osteopontin (OPN) serum levels and tissue expression of CD44 and OPN in endometriosis-affected women both undergoing and not undergoing progestin treatment, and also to determine their involvement in the pathogenesis of endometriosis. METHODS Using an ELISA kit, we evaluated the OPN serum levels of healthy and endometriosis-affected women both undergoing and not undergoing progestin treatment. Immunohistochemical (IHC) analyses were used to assess the endometriotic tissue expressions of CD44 and OPN. RESULTS There were statistically significant higher OPN serum levels in the healthy control group compared to the women with endometriosis. Furthermore, there were higher OPN serum levels in the endometriosis-affected women undergoing the progestin treatment, but the difference did not reach statistical significance. In comparison to OPN, CD44 expression was significantly higher in all the endometriotic tissue glands and stroma, regardless of the patient's treatment status. Compared to the group receiving therapy, the OPN levels were higher in the endometriosis group not receiving therapy. OPN's robust cytoplasmic expression seemed to be associated with the non-treatment group. CONCLUSION Endometriosis, CD44, and OPN appear to be closely related. This study suggests that endometriosis that has not been treated has an immunological profile distinct to endometriosis that has received treatment.
Collapse
Affiliation(s)
- Daniela Roxana Matasariu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Alexandra Irma Gabriela Bausic
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, "Prof. Dr. Panait Sîrbu" Obstetrics and Gynecology Hospital, 060251 Bucharest, Romania
| | - Cristina Elena Mandici
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Iuliana Elena Bujor
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Alexandra Elena Cristofor
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Elvira Bratila
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, "Prof. Dr. Panait Sîrbu" Obstetrics and Gynecology Hospital, 060251 Bucharest, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I-Histology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Lucian Vasile Boiculese
- Biostatistics, Department of Preventive Medicine and Interdisciplinarity, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Alexandra Ursache
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| |
Collapse
|
4
|
Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection. Nat Commun 2023; 14:645. [PMID: 36746966 PMCID: PMC9902466 DOI: 10.1038/s41467-023-36374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Various biomarkers targeting cell-free DNA (cfDNA) and circulating proteins have been tested for pan-cancer detection. Oncofetal chondroitin sulfate (ofCS), which distinctively modifies proteoglycans (PGs) of most cancer cells and binds specifically to the recombinant Plasmodium falciparum VAR2CSA proteins (rVAR2), is explored for its potential as a plasma biomarker in pan-cancer detection. To quantitate the plasma ofCS/ofCSPGs, we optimized an ELISA using different capture/detection pairs (rVAR2/anti-CD44, -SDC1, and -CSPG4) in a case-control study with six cancer types. We show that the plasma levels of ofCS/ofCSPGs are significantly higher in cancer patients (P values, 1.2 × 10-2 to 4.4 × 10-10). Validation studies are performed with two independent cohorts covering 11 malignant tumors. The individuals in the top decile of ofCS-CD44 have more than 27-fold cancer risk (OR = 27.8, 95%CI = 18.8-41.4, P = 2.72 × 10-62) compared with the lowest 20%. Moreover, the elevated plasma ofCS-CD44 could be detected at the early stage of pan-cancer with strong dose-dependent odds risk prediction.
Collapse
|
5
|
Karkia R, Wali S, Payne A, Karteris E, Chatterjee J. Diagnostic Accuracy of Liquid Biomarkers for the Non-Invasive Diagnosis of Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14194666. [PMID: 36230588 PMCID: PMC9563808 DOI: 10.3390/cancers14194666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer rates are increasing annually due to an aging population and rising rates of obesity. Currently there is no widely available, accurate, non-invasive test that can be used to triage women for diagnostic biopsy whilst safely reassuring healthy women without the need for invasive assessment. The aim of this systematic review and meta-analysis is to evaluate studies assessing blood and urine-based biomarkers as a replacement test for endometrial biopsy or as a triage test in symptomatic women. For each primary study, the diagnostic accuracy of different biomarkers was assessed by sensitivity, specificity, likelihood ratio and area under ROC curve. Forest plots of summary statistics were constructed for biomarkers which were assessed by multiple studies using data from a random-effect models. All but one study was of blood-based biomarkers. In total, 15 studies reported 29 different exosomal biomarkers; 34 studies reported 47 different proteomic biomarkers. Summary statistic meta-analysis was reported for micro-RNAs, cancer antigens, hormones, and other proteomic markers. Metabolites and circulating tumor materials were also summarized. For the majority of biomarkers, no meta-analysis was possible. There was a low number of small, heterogeneous studies for the majority of evaluated index tests. This may undermine the reliability of summary estimates from the meta-analyses. At present there is no liquid biopsy that is ready to be used as a replacement test for endometrial biopsy. However, to the best of our knowledge this is the first study to report and meta-analyze the diagnostic accuracy of different classes of blood and urine biomarkers for detection of endometrial cancer. This review may thus provide a reference guide for those wishing to explore candidate biomarkers for further research.
Collapse
Affiliation(s)
- Rebecca Karkia
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Surrey, Guildford GU2 7XX, UK
- Brunel Department of Life Sciences, Brunel University London, Kingston Lane Uxbridge, Middlesex, Uxbridge UB8 3PH, UK
- Correspondence:
| | - Sarah Wali
- Department of Obstetrics and Gynaecology, Chelsea & Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Annette Payne
- Brunel Department of Computational Science, Brunel University London, Kingston Lane Uxbridge, Middlesex, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- Brunel Department of Life Sciences, Brunel University London, Kingston Lane Uxbridge, Middlesex, Uxbridge UB8 3PH, UK
| | - Jayanta Chatterjee
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Surrey, Guildford GU2 7XX, UK
- Brunel Department of Life Sciences, Brunel University London, Kingston Lane Uxbridge, Middlesex, Uxbridge UB8 3PH, UK
| |
Collapse
|
6
|
Research on the Guiding Effect of CTCs on Postoperative Adjuvant Therapy for Patients with Early Stage Endometrial Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4327977. [PMID: 35685426 PMCID: PMC9174000 DOI: 10.1155/2022/4327977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Endometrial tumor has increased in occurrence and fatality in China during the last 11 years, owing to inconsistent hormone use and modifications in people living surrounding and lifestyles. One of the three main gynaecological tumors is endometrial carcinoma (EC). Longer waiting duration of operation was linked to a lower chance of sustainability in endometrial tumor patients. Despite the great sustainability rate of endometrial tumor, only around 46 percent of patients undergo adjuvant treatment. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating free DNA (cfDNA) are the most investigated tumor noninvasive indicators. These circulating biomarkers are important in the knowledge of metastasis and tumorigenesis, and they could help researchers comprehend how cancer dynamics evolve throughout the therapy and illness development. In patients with solid tumor, the existence of circulating tumor cells (CTCs) in the peripheral blood is linked to a weak prognosis. However, there is a scarcity of information on how to detect CTCs in endometrial cancer (EC). Hence, in this paper, we analyze the guiding effect of CTCs on postoperative adjuvant treatment for sufferers with initial phase endometrial tumor using multi-cox regression method. The dataset is selected and the blood samples are collected using plasma separation method. The CTC is detected using differential diagnosis. The morphology and biological features, Immunocytochemistry, Genomic analysis, Transcriptomic analysis, Proteomic analysis, and molecular analysis are performed and the outcomes are evaluated.
Collapse
|
7
|
Xia Y, Wang Y, Xiao Y, Shan M, Hao Y, Zhang L. Identification of a Diagnostic Signature and Immune Cell Infiltration Characteristics in Keloids. Front Mol Biosci 2022; 9:879461. [PMID: 35669563 PMCID: PMC9163372 DOI: 10.3389/fmolb.2022.879461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Keloid disorder is a recurrent fibroproliferative cutaneous tumor. Due to the lack of early identification of keloid patients before the formation of keloids, it is impossible to carry out pre-traumatic intervention and prevention for these patients. This led us to identify and determine signatures with diagnostic significance for keloids. Methods: Public series of matrix files were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were calculated from expression profiling data, and the diagnostic signature was identified by constructing a protein-protein interaction (PPI) network. The diagnostic efficacy of the screened signature was assessed by employing receiver operating characteristic (ROC) curves. Furthermore, we calculated the proportion of different immune cells in the gene expression matrix microenvironment by the “ssGSEA” algorithm, and assessed the difference in immune cell abundance between keloids and control groups and the relationship between the signature and immune cell infiltration. Clinical keloid and normal skin tissues were collected, and the expression of the screened diagnostic signature was validated by RT-qPCR and immunohistochemical assay. Results: By screening the key genes in PPI, TGM2 was recognized and validated as a diagnostic signature and the infiltrating abundance of 10 immune cells was significantly correlated with TGM2 expression. Gene ontology enrichment analysis demonstrated that TGM2 and molecules interacting with it were mainly enriched in processes involving wound healing and collagen fiber organization. TGM2 correlated positively with HIF-1A (R = 0.82, p-value = 1.4e-05), IL6 (R = 0.62, p-value = 0.0053), and FN1 (R = 0.66, p-value = 0.0019). Besides, TGM2 was significantly upregulated in clinical keloid samples compared to normal skin tissues. Conclusion: TGM2 may serve as an auxiliary diagnostic indicator for keloids. However, the role of TGM2 in keloids has not been adequately reported in the current literature, which may provide a new direction for molecular studies of keloids.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Youbin Wang,
| | - Yingjie Xiao
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lingyun Zhang
- Department of Plastic Surgery, Heze Municipal Hospital, Heze, China
| |
Collapse
|
8
|
Wang Y, Zheng N, Sun T, Zhao H, Chen Y, Liu C. Role of TGM2 in T‑cell lymphoblastic lymphoma via regulation of IL‑6/JAK/STAT3 signalling. Mol Med Rep 2022; 25:76. [PMID: 35014680 PMCID: PMC8778669 DOI: 10.3892/mmr.2022.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Transglutaminase 2 (TGM2) is a Ca2+-dependent enzyme that is closely associated with cancer progression; however, the function of TGM2 in T-cell lymphoma remains unclear. In the present study, TGM2 was identified as an upregulated gene by bioinformatics analysis of the microarray datasets GSE132550 and GSE143382 from the Gene Expression Omnibus database. The effects and mechanisms of TGM2 on T-cell lymphoma cells were evaluated using the Cell Counting Kit-8, colony formation assay, 5-ethynyl-2′-deoxyuridine (EdU) assay, flow cytometry, reverse transcription-quantitative polymerase chain reaction, western blotting and gene set enrichment analysis (GSEA). TGM2 expression was shown to be elevated in formalin-fixed paraffin-embedded skin biopsies from patients with T-cell lymphoma relative to skin tissue from healthy cases. TGM2 expression was also increased in T-cell lymphoma cell lines compared with that in CD4+ T cells. Transfection with TGM2 small interfering RNAs (siRNAs) decreased the number of EdU-positive cells, and the viability and colony formation of T-cell lymphoma cells. Furthermore, TGM2 siRNAs enhanced the apoptosis of T-cell lymphoma cells potentially via cleavage of caspase-3 and poly ADP-ribose polymerase. GSEA identified the IL-6/JAK/STAT3 pathway as a potential downstream signalling pathway of TGM2. Notably, the effects of TGM2 siRNAs on T-cell lymphoma cells were attenuated by IL-6 and accelerated by IL-6/JAK/STAT3 inhibitor AG490. These findings indicated that TGM2 siRNAs inhibited the proliferation of T-cell lymphoma cells by regulating the IL-6/JAK/STAT3 signalling pathway; therefore, TGM2 may function as a potential therapeutic target for T-cell lymphoma.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Ni Zheng
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Tingting Sun
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Hui Zhao
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Ying Chen
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Congcong Liu
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
9
|
Tian Y, Wen F, Wang S, Lv N. LHX1 as a potential biomarker regulates EMT induction and cellular behaviors in uterine corpus endometrial carcinoma. Clinics (Sao Paulo) 2022; 77:100103. [PMID: 36116266 PMCID: PMC9489736 DOI: 10.1016/j.clinsp.2022.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the expression of LHX1 and its role as a biomarker in the diagnosis and prognosis of Uterine Corpus Endometrial Carcinoma (UCEC). METHODS The Cancer Genome Atlas (TCGA) database was used to detect the expression level of LHX1 in UCEC cells and tissues, and to find out the effect of LHX1 on prognosis. Co-expressed genes were then identified by Spearman correlation analysis, and the protein-protein interaction network was constructed using Cytoscape software. The R "clusterProfiler" package was used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A series of in vitro experiments were performed to evaluate LHX1 expression and detect UCEC cell proliferation, invasion, and migration. Western blotting was used to determine the effect of LHX1 on expression levels of Epithelial-Mesenchymal Transition (EMT)-related proteins. RESULTS LHX1 was upregulated in UCEC tissues and correlated with poor overall survival and disease-specific survival outcomes. Functional enrichment analysis suggested that genes co-expressed with LHX1 were enriched in cell adhesion. The expression of LHX1 was positively correlated with the expression levels of genes related to EMT induction and invasion. LHX1 can enhance the proliferation, migration, and invasion activities of UCEC cells in vitro, and alter the expression levels of EMT-related proteins. CONCLUSION LHX1 expression was highly upregulated in UCEC cells and tissues, which was correlated with the prognosis of patients with UCEC. LHX1 may regulate UCEC progression at least in part by modulating EMT induction.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China.
| | - Fang Wen
- Department of Gynecology, The First Hospital, China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China
| | - Na Lv
- Blood Collection Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Shokouhifar A, Firouzi J, Nouri M, Sarab GA, Ebrahimi M. NK cell upraise in the dark world of cancer stem cells. Cancer Cell Int 2021; 21:682. [PMID: 34923966 PMCID: PMC8684645 DOI: 10.1186/s12935-021-02400-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
One of the obstacles in treating different cancers, especially solid tumors, is cancer stem cells (CSCs) with their ability in resistance to chemo/radio therapy. The efforts for finding advanced treatments to overcome these cells have led to the emergence of advanced immune cell-based therapy (AICBT). Today, NK cells have become the center of attention since they have been proved to show an appropriate cytotoxicity against different cancer types as well as the capability of detecting and killing CSCs. Attempts for reaching an off-the-shelf source of NK cells have been made and resulted in the emergence of chimeric antigen receptor natural killer cells (CAR-NK cells). The CAR technology has then been used for generating more cytotoxic and efficient NK cells, which has increased the hope for cancer treatment. Since utilizing this advanced technology to target CSCs have been published in few studies, the present study has focused on discussing the characteristics of CSCs, which are detected and targeted by NK cells, the advantages and restrictions of using CAR-NK cells in CSCs treatment and the probable challenges in this process.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co., Tehran, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, 14155-4364, Tehran, Iran.
| |
Collapse
|
11
|
Lehrer S, Rheinstein PH. Druggable genetic targets in endometrial cancer ✰,✰✰. Cancer Treat Res Commun 2021; 30:100502. [PMID: 34933203 PMCID: PMC9277713 DOI: 10.1016/j.ctarc.2021.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND FBXW7 is frequently somatically mutated in grade 3 endometrioid endometrial cancers (G3EECs) and serous endometrial cancers (SECs), high-risk cancers associated with poor prognosis. CRISPR-edited cell lines identified the proteomic and phosphoproteomic effects of FBXW7 mutation in 3 high-risk endometrial cancers (ECs), including altered protein levels of L1CAM and TGM2. This result is important because L1CAM and TGM2 are druggable proteins that could represent new therapeutic targets. METHODS We used cBioPortal for Cancer Genomics to analyze data in The Cancer Genome Atlas (TCGA). We used the UCSC Xena Browser to analyze gene expression. For differential gene expression analysis, the gene ontology molecular function 2018 version was used. The analysis was focused on determined genes. RESULTS FBXW7 mutations affect gene expression of L1CAM but are unrelated to TGM2 gene expression. L1CAM gene expression is significantly related to survival. Patients with lower L1CAM gene expression have better survival. FBXW7 mutations are unrelated to survival. TGM2 gene expression is unrelated to FBXW7 mutations. TGM2 gene expression is unrelated to survival, all tumor grades or grade 3 alone. CONCLUSION We agree with Urick et al. that L1CAM may be a promising druggable target in endometrial carcinoma. The lack of relationship of TGM2 expression with FBXW7 mutations and endometrial cancer survival suggests that TGM2 might not be of as much value as a druggable target, compared to L1CAM. However, the fact that a certain alteration is not prognostic for cancer survival does not necessarily mean that the alteration will not be targetable. More data, such as inhibition of each gene by calculating drug targetability, may be required to support this conclusion.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology Icahn School of Medicine at Mount Sinai New York United States
| | | |
Collapse
|
12
|
Tieng FYF, Abu N, Nasir SN, Lee LH, Ab Mutalib NS. Liquid Biopsy-Based Colorectal Cancer Screening via Surface Markers of Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2136. [PMID: 34829483 PMCID: PMC8618170 DOI: 10.3390/diagnostics11112136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is ranked second for cancer-related deaths worldwide with approximately half of the patients being diagnosed at the late stages. The untimely detection of CRC results in advancement to the metastatic stage and nearly 90% of cancer-related deaths. The early detection of CRC is crucial to decrease its overall incidence and mortality rates. The recent introduction of circulating tumor cells (CTCs) has enabled a less invasive sampling method from liquid biopsies, besides revealing key information toward CRC metastasis. The current gold standard for CTC identification is the CellSearch® system (Veridex). This first-generation instrumentation relies on a single cell surface marker (CSM) to capture and count CTCs. Detection of CTCs allows the identification of patients at risk for metastasis, whereas CTC enumeration could improve risk assessment, monitoring of systemic therapy, and detection of therapy resistance in advanced metastatic CRC. In this review, we compared the pros and cons between single CSM-based CTC enrichment techniques and multi-marker-based systems. We also highlighted the challenges faced in the routine implementation of CSM-dependent CTC detection methods in CRC screening, prediction, prognosis, disease monitoring, and therapy selection toward precision medicine, as well as the dwelling on post-CTC analysis and characterization methods.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
13
|
Cui YQ, Xiang Y, Meng F, Ji CH, Xiao R, Li JP, Dai ZT, Liao XH. ALDH2 promotes uterine corpus endometrial carcinoma proliferation and construction of clinical survival prognostic model. Aging (Albany NY) 2021; 13:23588-23602. [PMID: 34670872 PMCID: PMC8580334 DOI: 10.18632/aging.203605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
UCEC is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. In our research, we explored the expression of the ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.
Collapse
Affiliation(s)
- Yun-Qian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, PR China
| | - Fei Meng
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Chun-Hui Ji
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China
| | - Rui Xiao
- Hubei Province Hospital of Traditional Chinese and Western Medicine, Hubei 430010, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, PR China
| |
Collapse
|
14
|
Urick ME, Yu EJ, Bell DW. High-risk endometrial cancer proteomic profiling reveals that FBXW7 mutation alters L1CAM and TGM2 protein levels. Cancer 2021; 127:2905-2915. [PMID: 33872388 DOI: 10.1002/cncr.33567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND FBXW7 is frequently somatically mutated in grade 3 endometrioid endometrial cancers (G3EECs) and serous endometrial cancers (SECs), which are high-risk cancers associated with poor outcomes and in need of novel treatment options. The aim of this study was to determine the proteomic effects of 3 FBXW7 mutations in high-risk endometrial cancers (ECs). METHODS Clustered regularly interspaced short palindromic repeats (CRISPR) editing was used to generate 3 HEC-50B G3EEC derivative cell lines, each of which harbored 1 FBXW7 mutation, and to revert an endogenous FBXW7 mutation in HEC-1-B grade 2 endometrioid endometrial cancer (G2EEC) cells to the wild-type genotype. Proteomic profiling based on liquid chromatography-tandem mass spectrometry was used to determine protein differences between the HEC-50B derivative lines and parental cells. Western blot analysis was performed to assess differential protein levels of CRISPR-edited derivative lines originating from HEC-50B, ARK1 (SEC), ARK4 (SEC), HEC-1-B, and JHUEM-1 (G2EEC) cell lines in comparison with parental cells. RESULTS Results of this study demonstrated the effects of FBXW7 mutations on the proteome and phosphoproteome of HEC-50B G3EEC cells and highlighted proteins that also exhibited altered levels in FBXW7-mutated ARK1 and ARK4 SEC cells, including 2 potentially druggable proteins: L1 cell adhesion molecule (L1CAM) and transglutaminase 2 (TGM2). Furthermore, they demonstrated that reversion of an endogenous FBXW7 mutation to the wild-type genotype in JHUEM-1 and HEC-1-B G2EEC cells resulted in decreased L1CAM and TGM2 protein levels. CONCLUSIONS L1CAM and TGM2 protein levels are affected by FBXW7 mutations in ECs.
Collapse
Affiliation(s)
- Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Eun-Jeong Yu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Wang F, Wang L, Qu C, Chen L, Geng Y, Cheng C, Yu S, Wang D, Yang L, Meng Z, Chen Z. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer 2021; 21:396. [PMID: 33845796 PMCID: PMC8042867 DOI: 10.1186/s12885-021-08158-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kaempferol, a natural flavonoid, exhibits anticancer properties by scavenging reactive oxygen species (ROS). However, increasing evidence has demonstrated that, under certain conditions, kaempferol can inhibit tumor growth by upregulating ROS levels. In this study, we aimed to investigate whether kaempferol effectively suppresses pancreatic cancer through upregulation of ROS, and to explore the underlying molecular mechanism. METHODS PANC-1 and Mia PaCa-2 cells were exposed to different concentrations of kaempferol. Cell proliferation and colony formation were evaluated by CCK-8 and colony formation assays. Flow cytometry was performed to assess the ROS levels and cell apoptosis. The mRNA sequencing and KEGG enrichment analysis were performed to identify differentially expressed genes and to reveal significantly enriched signaling pathways in response to kaempferol treatment. Based on biological analysis, we hypothesized that tissue transglutaminase (TGM2) gene was an essential target for kaempferol to induce ROS-related apoptosis in pancreatic cancer. TGM2 was overexpressed by lentivirus vector to verify the effect of TGM2 on the ROS-associated apoptotic signaling pathway. Western blot and qRT-PCR were used to determine the protein and mRNA levels, respectively. The prognostic value of TGM2 was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) tools based on public data from the TCGA database. RESULTS Kaempferol effectively suppressed pancreatic cancer in vitro and in vivo. Kaempferol promoted apoptosis in vitro by increasing ROS generation, which was involved in Akt/mTOR signaling. TGM2 levels were significantly increased in PDAC tissues compared with normal tissues, and high TGM2 expression was positively correlated with poor prognosis in pancreatic cancer patients. Decreased TGM2 mRNA and protein levels were observed in the cells after treatment with kaempferol. Additionally, TGM2 overexpression downregulated ROS production and inhibited the abovementioned apoptotic signaling pathway. CONCLUSIONS Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling, and TGM2 may represent a promising prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lai Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chao Qu
- Cancer Center, Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yawen Geng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Cancer Institutes, Fudan University, Shanghai, 200032 China
| | - Lina Yang
- Department of Genetics and Cell Biology, Qingdao University Medical College, Qingdao, 266071 China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Cancer Institutes, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
16
|
Cousins FL, Pandoy R, Jin S, Gargett CE. The Elusive Endometrial Epithelial Stem/Progenitor Cells. Front Cell Dev Biol 2021; 9:640319. [PMID: 33898428 PMCID: PMC8063057 DOI: 10.3389/fcell.2021.640319] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The human endometrium undergoes approximately 450 cycles of proliferation, differentiation, shedding and regeneration over a woman's reproductive lifetime. The regenerative capacity of the endometrium is attributed to stem/progenitor cells residing in the basalis layer of the tissue. Mesenchymal stem cells have been extensively studied in the endometrium, whereas endometrial epithelial stem/progenitor cells have remained more elusive. This review details the discovery of human and mouse endometrial epithelial stem/progenitor cells. It highlights recent significant developments identifying putative markers of these epithelial stem/progenitor cells that reveal their in vivo identity, location in both human and mouse endometrium, raising common but also different viewpoints. The review also outlines the techniques used to identify epithelial stem/progenitor cells, specifically in vitro functional assays and in vivo lineage tracing. We will also discuss their known interactions and hierarchy and known roles in endometrial dynamics across the menstrual or estrous cycle including re-epithelialization at menses and regeneration of the tissue during the proliferative phase. We also detail their potential role in endometrial proliferative disorders such as endometriosis.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Shiying Jin
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes. EBioMedicine 2020; 63:103147. [PMID: 33279861 PMCID: PMC7718461 DOI: 10.1016/j.ebiom.2020.103147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Comprehensive proteomics profiling may offer new insights into the dysregulated metabolic milieu of type 2 diabetes, and in the future, serve as a useful tool for personalized medicine. This calls for a better understanding of circulating protein patterns at the early stage of type 2 diabetes as well as the dynamics of protein patterns during changes in metabolic status. METHODS To elucidate the systemic alterations in early-stage diabetes and to investigate the effects on the proteome during metabolic improvement, we measured 974 circulating proteins in 52 newly diagnosed, treatment-naïve type 2 diabetes subjects at baseline and after 1 and 3 months of guideline-based diabetes treatment, while comparing their protein profiles to that of 94 subjects without diabetes. FINDINGS Early stage type 2 diabetes was associated with distinct protein patterns, reflecting key metabolic syndrome features including insulin resistance, adiposity, hyperglycemia and liver steatosis. The protein profiles at baseline were attenuated during guideline-based diabetes treatment and several plasma proteins associated with metformin medication independently of metabolic variables, such as circulating EPCAM. INTERPRETATION The results advance our knowledge about the biochemical manifestations of type 2 diabetes and suggest that comprehensive protein profiling may serve as a useful tool for metabolic phenotyping and for elucidating the biological effects of diabetes treatments. FUNDING This work was supported by the Swedish Heart and Lung Foundation, the Swedish Research Council, the Erling Persson Foundation, the Knut and Alice Wallenberg Foundation, and the Swedish state under the agreement between the Swedish government and the county councils (ALF-agreement).
Collapse
|
18
|
Lan T, Mu C, Wang Z, Wang Y, Li Y, Mai Y, Li S, Xu H, Gu B, Luo L, Ma P. Diagnostic and Prognostic Values of Serum EpCAM, TGM2, and HE4 Levels in Endometrial Cancer. Front Oncol 2020; 10:1697. [PMID: 33014844 PMCID: PMC7498689 DOI: 10.3389/fonc.2020.01697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study aims to investigate the diagnostic and prognostic values of EpCAM, TGM2, and HE4 in endometrial cancer (EC). Methods: In this study, 42 patients diagnosed with EC (EC group), 41 patients diagnosed with myoma (benign group), and 43 healthy women (healthy group), who applied to Affiliated Hospital of Xuzhou Medical University between March 2018 - September 2019 were recruited. Serum EpCAM, TGM2, and IL-33 levels were measured by ELISA, while serum HE4 and CA-125 levels were measured by ECLIA. The serum markers listed above were also measured in 12 paired pre- and post-operative EC patients. The diagnostic and prognostic values of serum markers were analyzed. Results: The serum EpCAM, TGM2, HE4, CA-125, and IL-33 levels were significantly higher in the EC group. The sensitivity and specificity of combined detection of EpCAM and HE4 was 92.86 and 69.05%, which were significantly higher than using a single marker or other combinations. Among these markers, serum HE4 levels were significantly higher in patients with myometrial invasion, metastasis, and lymphovascular invasion (p = 0.006, p = 0.0004, p = 0.0004, respectively). And serum TGM2 levels were significantly decreased in post-operative than that of pre-operative EC patients (p < 0.001). Conclusions: The combination of EpCAM and HE4 showed the highest specificity and sensitivity in the diagnosis of EC. HE4 was successful in the detection of high-risk individuals preoperatively. Additionally, TGM2 might be a prognostic factor for EC.
Collapse
Affiliation(s)
- Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chunyan Mu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yueqin Mai
- Air Force Jinan Base Security Department Outpatient Department, Jinan, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Tieng FYF, Abu N, Sukor S, Mohd Azman ZA, Mahamad Nadzir N, Lee LH, Ab Mutalib NS. L1CAM, CA9, KLK6, HPN, and ALDH1A1 as Potential Serum Markers in Primary and Metastatic Colorectal Cancer Screening. Diagnostics (Basel) 2020; 10:E444. [PMID: 32630086 PMCID: PMC7400057 DOI: 10.3390/diagnostics10070444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) screening at the earlier stages could effectively decrease CRC-related mortality and incidence; however, accurate screening strategies are still lacking. Considerable interest has been generated in the detection of less invasive tests requiring a small sample volume with the potential to detect several cancer biomarkers simultaneously. Due to this, the ELISA-based method was undertaken in this study. METHODS Concentrations of neural cell adhesion molecule L1 (L1CAM), carbonic anhydrase IX (CA9), mesothelin (MSLN), midkine (MDK), hepsin (HPN), kallikrein 6 (KLK6), transglutaminase 2 (TGM2) aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), epithelial cell adhesion molecule (EpCAM), and cluster of differentiation 44 (CD44) from blood serum of 36 primary CRC and 24 metastatic CRC (mCRC) were calculated via MAGPIX® System (Luminex Corporation, USA). RESULTS Significantly increased concentration (p < 0.05) of three serum biomarkers (L1CAM, CA9, and HPN) were shown in mCRC when compared with primary CRC. HPN and KLK6 showed significant differences (p < 0.05) in concentration among different stages of CRC. In contrast, levels of HPN and ALDH1A1 were significantly elevated (p < 0.05) in chemotherapy-treated CRC patients as compared with nontreated ones. Conclusion: Serum biomarkers could act as a potential early CRC diagnostics test, but further additional testings are needed.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Surani Sukor
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
| | - Zairul Azwan Mohd Azman
- Colorectal Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norshahidah Mahamad Nadzir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (N.M.N.)
| |
Collapse
|
20
|
Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 2019; 39:2040-2054. [PMID: 31801970 DOI: 10.1038/s41388-019-1124-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Midkine is a heparin-binding growth factor, originally reported as the product of a retinoic acid-responsive gene during embryogenesis, but currently viewed as a multifaceted factor contributing to both normal tissue homeostasis and disease development. Midkine is abnormally expressed at high levels in various human malignancies and acts as a mediator for the acquisition of critical hallmarks of cancer, including cell growth, survival, metastasis, migration, and angiogenesis. Several studies have investigated the role of midkine as a cancer biomarker for the detection, prognosis, and management of cancer, as well as for monitoring the response to cancer treatment. Moreover, several efforts are also being made to elucidate its underlying mechanisms in therapeutic resistance and immunomodulation within the tumor microenvironment. We hereby summarize the current knowledge on midkine expression and function in cancer development and progression, and highlight its promising potential as a cancer biomarker and as a future therapeutic target in personalized cancer medicine.
Collapse
|