1
|
Heydari Z, Moeinvaziri F, Mirazimi SMA, Dashti F, Smirnova O, Shpichka A, Mirzaei H, Timashev P, Vosough M. Alteration in DNA methylation patterns: Epigenetic signatures in gastrointestinal cancers. Eur J Pharmacol 2024; 973:176563. [PMID: 38593929 DOI: 10.1016/j.ejphar.2024.176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Abnormalities in epigenetic modifications can cause malignant transformations in cells, leading to cancers of the gastrointestinal (GI) tract, which accounts for 20% of all cancers worldwide. Among the epigenetic alterations, DNA hypomethylation is associated with genomic instability. In addition, CpG methylation and promoter hypermethylation have been recognized as biomarkers for different malignancies. In GI cancers, epigenetic alterations affect genes responsible for cell cycle control, DNA repair, apoptosis, and tumorigenic-specific signaling pathways. Understanding the pattern of alterations in DNA methylation in GI cancers could help scientists discover new molecular-based pharmaceutical treatments. This study highlights alterations in DNA methylation in GI cancers. Understanding epigenetic differences among GI cancers may improve targeted therapies and lead to the discovery of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Farideh Moeinvaziri
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Kashan University of Medical Sciences, Kashan, Iran
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
García-Ortiz MV, Cano-Ramírez P, Toledano-Fonseca M, Aranda E, Rodríguez-Ariza A. Diagnosing and monitoring pancreatic cancer through cell-free DNA methylation: progress and prospects. Biomark Res 2023; 11:88. [PMID: 37798621 PMCID: PMC10552233 DOI: 10.1186/s40364-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Pancreatic cancer is one of the most challenging cancers due to its high mortality rates. Considering the late diagnosis and the limited survival benefit with current treatment options, it becomes imperative to optimize early detection, prognosis and prediction of treatment response. To address these challenges, significant research efforts have been undertaken in recent years to develop liquid-biopsy-based biomarkers for pancreatic cancer. In particular, an increasing number of studies point to cell-free DNA (cfDNA) methylation analysis as a promising non-invasive approach for the discovery and validation of epigenetic biomarkers with diagnostic or prognostic potential. In this review we provide an update on recent advancements in the field of cfDNA methylation analysis in pancreatic cancer. We discuss the relevance of DNA methylation in the context of pancreatic cancer, recent cfDNA methylation research, its clinical utility, and future directions for integrating cfDNA methylation analysis into routine clinical practice.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain.
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain.
| | - Pablo Cano-Ramírez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
| | - Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
3
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
4
|
Zhang N, Gao X, Yuan Q, Fu X, Wang P, Cai F, Liu H, Zhang J, Liang H, Nie Y, Deng J. E3 ubiquitin ligase RNF180 prevents excessive PCDH10 methylation to suppress the proliferation and metastasis of gastric cancer cells by promoting ubiquitination of DNMT1. Clin Epigenetics 2023; 15:77. [PMID: 37147733 PMCID: PMC10163782 DOI: 10.1186/s13148-023-01492-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Downregulation of certain tumor-suppressor genes (TSGs) by aberrant methylation of CpG islands in the promoter region contributes a great deal to the oncogenesis and progression of several cancers, including gastric cancer (GC). Protocadherin 10 (PCDH10) is a newly identified TSG in various cancers and is downregulated in GC; however, the specific mechanisms of PCDH10 in GC remain elusive. Here, we elucidated a novel epigenetic regulatory signaling pathway involving the E3 ubiquitin ligase RNF180 and DNA methyltransferase 1 (DNMT1), responsible for modulating PCDH10 expression by affecting its promoter methylation. RESULTS We revealed that PCDH10 was downregulated in GC cells and tissues, and low PCDH10 expression was correlated with lymph node metastasis and poor prognosis in patients with GC. Additionally, PCDH10 overexpression suppressed GC cell proliferation and metastasis. Mechanistically, DNMT1-mediated promoter hypermethylation resulted in decreased expression of PCDH10 in GC tissues and cells. Further analysis revealed that RNF180 can bind directly to DNMT1 and was involved in DNMT1 degradation via ubiquitination. Additionally, a positive correlation was found between RNF180 and PCDH10 expression and an inverse association between DNMT1 and PCDH10 expression showed considerable prognostic significance. CONCLUSION Our data showed that RNF180 overexpression upregulated PCDH10 expression via ubiquitin-dependent degradation of DNMT1, thus suppressing GC cell proliferation, indicating that the RNF180/DNMT1/PCDH10 axis could be a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiangqiang Yuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Fu
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hui Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
5
|
Montalvo-Javé EE, Nuño-Lámbarri N, López-Sánchez GN, Ayala-Moreno EA, Gutierrez-Reyes G, Beane J, Pawlik TM. Pancreatic Cancer: Genetic Conditions and Epigenetic Alterations. J Gastrointest Surg 2023; 27:1001-1010. [PMID: 36749558 DOI: 10.1007/s11605-022-05553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatic cancer is a lethal proliferative disease driven by multiple genetic and epigenetic alterations. Microarrays and omics-based sequencing techniques are potent tools that have facilitated a broader understanding of the complex biological processes that drive pancreatic ductal adenocarcinoma (PDAC). In turn, these tools have resulted in the identification of novel disease markers, prognostic factors, and therapeutic targets. Herein, we provide a review of the genetic and epigenetic drivers of PDAC relative to recent discoveries that impact patient management. METHODS A review of PubMed, Medline, Clinical Key, and Index Medicus was conducted to identify literature from January 1995 to July 2022 that is related to PDAC genetics and epigenetics. Articles in Spanish and English were considered during selection. RESULTS Molecular, genetic, and epigenetic diagnostic tools, novel biomarkers, and promising therapeutic targets have emerged in the treatment of pancreatic cancer. The implementation of microarray technology and application of large omics-based data repositories have facilitated recent discoveries in PDAC. Multiple molecular analyses based on RNA interference have been instrumental in the identification of novel therapeutic targets for patients with PDAC. Moreover, microarrays and next-generation omics-based discoveries have been instrumental in the characterization of subtypes of pancreatic cancer, thereby improving prognostication and refining patient selection for available targeted therapies. CONCLUSION Advances in molecular biology, genetics, and epigenetics have ushered in a new era of discovery in the pathobiology of PDAC. Current efforts are underway to translate these findings into clinical tools and therapies to improve outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Eduardo E Montalvo-Javé
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico. .,Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | - Edwin A Ayala-Moreno
- Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Gabriela Gutierrez-Reyes
- Liver, Pancreas and Motility Laboratory, Unit of Experimental Medicine, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Joal Beane
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
7
|
Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, Lemeire K, Martens L, Ampe C, van Roy F. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer 2022; 22:451. [PMID: 35468745 PMCID: PMC9040349 DOI: 10.1186/s12885-022-09381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Background Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. Methods For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. Results Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. Conclusions A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09381-y.
Collapse
Affiliation(s)
- Irene Kleinberger
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Ellen Sanders
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Marleen Van Troys
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Hirakata City, Osaka, 573-1010, Japan
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. .,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9052, Ghent, Belgium.
| |
Collapse
|
8
|
Zhang Z, Zhu R, Sun W, Wang J, Liu J. Analysis of Methylation-driven Genes in Pancreatic Ductal Adenocarcinoma for Predicting Prognosis. J Cancer 2021; 12:6507-6518. [PMID: 34659542 PMCID: PMC8489123 DOI: 10.7150/jca.53208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: Considerable variations in methylation profile have been found in various cancers to modulate tumorigenesis and affect prognosis. To provide a theoretical basis for early detection, prognosis evaluation and targeted treatment for patients with pancreatic ductal adenocarcinoma: PDAC, this study identified methylation-driven genes in PDAC and explored their prognostic performance. Methods: The methylation, expression and clinical data of PDAC patients were extracted from TCGA database. Based on the β-mixture model of the MethylMix R package, the differential methylation status and connection between methylation and expression degree were examined to screen out methylation-driven genes in PDAC. COX analyses and lasso regressions were applied to construct a linear risk model based on methylation-driven genes. Univariate and multivariate analyses were performed to ensure the risk model was an independent prognostic factor. Joint survival analyses of methylation and gene expression were conducted to explore the prognostic value of component genes. The methylation sites in the key genes were also investigated. Results: A total of 118 methylation-driven genes in PDAC were identified, and two genes (FOXI2, MYEOV) constituted the risk model whose AUC was 0.722 at one year of overall survival rate, displaying a better performance on survival prediction than other clinical features. Further survival analyses demonstrated that the expression of MYEOV and combined methylation and expression levels of the genes MYEOV and FOXI2 can be potential biomarkers for survival prediction and targets of drug manipulation of PDAC patients. Close relationships were discovered between two sites in MYEOV and one site in FOXI2 and the prognosis of PDAC patients. Conclusion: Concentrating on DNA methylation, our study identified potential biomarkers and developed a reliable short-term predictive model for prognosis of PDAC patients.
Collapse
Affiliation(s)
- Zihan Zhang
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wentian Sun
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhang S, Qiu M, Gao S, Tian T. Circular RNA PCDH10 regulates the tumorigenesis of pancreatic cancer through the miR-338-3p/hTERT axis. Am J Transl Res 2021; 13:2181-2197. [PMID: 34017382 PMCID: PMC8129247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Protocadherin-10 (PCDH10) was previously identified as a pancreatic cancer (PC) suppressor by reducing telomerase activity through binding with human telomerase reverse transcriptase (hTERT). However, we did not observe any effects of PCDH10 on hTERT mRNA or protein expression. Our research found that the PCDH10 gene could be transcribed into linear mRNA or circular RNA, and FUS could bind to the introns flanking the circularized exons, inducing the PCDH10 linear mRNA to shift to circPCDH10 in PC cells. Knockdown of circPCDH10 significantly inhibited PC progression. Mechanistically, circPCDH10 acted as a sponge of miR-338-3p, which could negatively regulate hTERT expression in PC cells. The inhibitory effects of circPCDH10 knockdown on PC cells could be notably reversed by miR-338-3p inhibition and ectopic expression of hTERT. Overall, we propose that the increased FUS expression in PC cells made circPCDH10 the preferred product of the PCDH10 gene, and circPCDH10 might promote PC progression through upregulation of hTERT expression by targeting miR-338-3p.
Collapse
Affiliation(s)
- Shenfeng Zhang
- Department of Oncology, Zaozhuang Municipal Hospital Zaozhuang 277000, Shandong Province, China
| | - Meiqing Qiu
- Department of Oncology, Zaozhuang Municipal Hospital Zaozhuang 277000, Shandong Province, China
| | - Shan Gao
- Department of Oncology, Zaozhuang Municipal Hospital Zaozhuang 277000, Shandong Province, China
| | - Tao Tian
- Department of Oncology, Zaozhuang Municipal Hospital Zaozhuang 277000, Shandong Province, China
| |
Collapse
|
10
|
Zhao Z, Li M, Tan X, Xu D, Liu R. Methylation patterns partition pancreatic cancer into distinct prognostic subtypes. Future Oncol 2021; 17:2027-2039. [PMID: 33784823 DOI: 10.2217/fon-2020-0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the initiation and progression of pancreatic cancer, DNA methylation plays a critical role. The present study attempts to explore specific prognosis subtypes based on DNA methylation data and develop an epigenetic signature to predict the overall survival (OS) of patients with pancreatic cancer.147 samples were included in the training cohort, whereas the validation cohort included 226 samples. The 298 OS-related methylation sites in the training cohort were selected for consensus clustering, and the authors identified three subtypes with a significant difference in prognosis. Cluster1 was associated with poor OS, low-grade disease and high lymph node involvement. In addition, we identified 33 specific methylation sites in Cluster1. Subsequently, we developed a robust qualitative signature consisting of 14 methylation sites to individually predict OS in the training cohort, and the predictive accuracy of this model was confirmed in the validation cohort. Functional enrichment analysis showed that the selected genes in the model were mainly enriched in known cancer-related pathways. Patients were divided into high- and low-risk groups by the model, and a significant difference in OS was observed between these groups. Classification based on the modeling of a specific DNA methylation site can reveal the heterogeneity of pancreatic cancer and provide guidance for clinicians in predicting the prognosis of pancreatic cancer and providing personalized treatment.
Collapse
Affiliation(s)
- Zhiming Zhao
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mengyang Li
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xianglong Tan
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Dabin Xu
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Rong Liu
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| |
Collapse
|
11
|
Khan AA, Liu X, Yan X, Tahir M, Ali S, Huang H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev 2021; 40:245-272. [PMID: 33423164 DOI: 10.1007/s10555-020-09952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.
Collapse
Affiliation(s)
- Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| | - Muhammad Tahir
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China
| | - Sakhawat Ali
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, Beijing, 100124, China.
| |
Collapse
|
12
|
Wang X, Dou N, Wang J, Zhang Y, Li Y, Gao Y. FOXM1-induced miR-552 expression contributes to pancreatic cancer progression by targeting multiple tumor suppressor genes. Int J Biol Sci 2021; 17:915-925. [PMID: 33867818 PMCID: PMC8040302 DOI: 10.7150/ijbs.56733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays important roles during carcinogenesis. Forkhead box M1 (FOXM1), a well-known oncogenic transcription factor, has been implicated in the progression of multiple cancer types. To find out FOXM1-induced abnormal miRNAs in pancreatic cancer, we analyzed TCGA database and figured out miR-552 as the most relevant miRNA with FOXM1. Molecular experimental results demonstrated that FOXM1 transcriptionally activated miR-552 expression by directly binding to the promoter region of miR-552. In a pancreatic cancer tissue microarray, miR-552 expression was positively correlated with FOXM1 and high expression of miR-552 could predict poor patient outcome. Functionally, overexpression of miR-552 promoted pancreatic cancer cell migration and inhibition of miR-552 attenuated this phenotype. The inhibitory effect on cell migration caused by FOXM1 knockdown could be restored by exogenous expression of miR-552. By informatics analysis, we identified three tumor suppressor genes: DACH1, PCDH10 and SMAD4, all of which were negatively associated with FOXM1 and validated as functionally relevant targets of miR-552. Taken together, our findings provide a new FOXM1-miR-552-DACH1/PCDH10/SMAD4 axis to regulate pancreatic cancer cell progression and new opportunities for therapeutic intervention against this disease.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jialin Wang
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
13
|
Gu M, Sun J, Zhang S, Chen J, Wang G, Ju S, Wang X. A novel methylation signature predicts inferior outcome of patients with PDAC. Aging (Albany NY) 2021; 13:2851-2863. [PMID: 33550277 PMCID: PMC7880369 DOI: 10.18632/aging.202347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/10/2020] [Indexed: 04/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) will become the second most common cause of death in North America and Europe over the next 10 years owing to the lack of early diagnosis, poor treatment, and poor prognosis. This study evaluated the methylation array data of 184 patients with PDAC in The Cancer Genome Atlas database to explore methylation biomarkers related to patient outcome. Using Univariable Cox regression analysis and Lasso regression analysis method in the training dataset, it was found that the four DNA methylation markers (CCNT1, ITGB3, SDS, and HMOX2) were significantly correlated with the overall survival of patients with PDAC. Kaplan-Meier analysis showed that these four DNA methylation markers could significantly distinguish high-risk and low-risk patients. Receiver operating characteristic analysis further confirmed that the four DNA methylation markers had high sensitivity and specificity, which could predict the prognosis of patients. Moreover, there was a difference in the genetic mutations between high-risk and low-risk patients distinguished by the four-DNA methylation model, which can provide information for clinical treatment. Finally, compared with known biomarkers, the model was more accurate in predicting the prognosis of PDAC. This four-DNA methylation model has potential as a new independent prognostic indicator, and could be used for the diagnosis, monitoring, and precision medicine of pancreatic cancer.
Collapse
Affiliation(s)
- Minqi Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Sun
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shunhao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Gregório C, Soares-Lima SC, Alemar B, Recamonde-Mendoza M, Camuzi D, de Souza-Santos PT, Rivero R, Machado S, Osvaldt A, Ashton-Prolla P, Pinto LFR. Calcium Signaling Alterations Caused by Epigenetic Mechanisms in Pancreatic Cancer: From Early Markers to Prognostic Impact. Cancers (Basel) 2020; 12:cancers12071735. [PMID: 32629766 PMCID: PMC7407273 DOI: 10.3390/cancers12071735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality rates. PDAC initiation and progression are promoted by genetic and epigenetic dysregulation. Here, we aimed to characterize the PDAC DNA methylome in search of novel altered pathways associated with tumor development. We examined the genome-wide DNA methylation profile of PDAC in an exploratory cohort including the comparative analyses of tumoral and non-tumoral pancreatic tissues (PT). Pathway enrichment analysis was used to choose differentially methylated (DM) CpGs with potential biological relevance. Additional samples were used in a validation cohort. DNA methylation impact on gene expression and its association with overall survival (OS) was investigated from PDAC TCGA (The Cancer Genome Atlas) data. Pathway analysis revealed DM genes in the calcium signaling pathway that is linked to the key pathways in pancreatic carcinogenesis. DNA methylation was frequently correlated with expression, and a subgroup of calcium signaling genes was associated with OS, reinforcing its probable phenotypic effect. Cluster analysis of PT samples revealed that some of the methylation alterations observed in the Calcium signaling pathway seemed to occur early in the carcinogenesis process, a finding that may open new insights about PDAC tumor biology.
Collapse
Affiliation(s)
- Cleandra Gregório
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Sheila Coelho Soares-Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | - Bárbara Alemar
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
| | - Mariana Recamonde-Mendoza
- Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Diego Camuzi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | | | - Raquel Rivero
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Simone Machado
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
| | - Alessandro Osvaldt
- Grupo de Vias Biliares e Pâncreas, Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil;
- Programa de Pós-graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
- Departamento de Bioquimica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
- Correspondence: ; Tel.: +55-21-3207-6598
| |
Collapse
|
15
|
Wu C, Zhang J, Li H, Xu W, Zhang X. The potential of liquid biopsies in gastrointestinal cancer. Clin Biochem 2020; 84:1-12. [PMID: 32540214 DOI: 10.1016/j.clinbiochem.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liquid biopsy is a novel approach for cancer diagnosis, the value of which in human gastrointestinal (GI) cancer has been confirmed by the previous studies. This article summarized the recent advances in liquid biopsy with a focus on novel technologies and the use of it in the screening, monitoring, and treatment of human GI cancer. CONTENT The concept of liquid biopsy was first used to define the detection of circulating tumor cells (CTCs) in cancer patients, and has been expanded to other biomarkers in blood and body fluids, such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs) and circulating tumor RNA. If analyzed with proper and advanced techniques like next generation sequencing (NGS) or proteomics, liquid biopsies can open an enormous array of potential biomarkers. The amount changes of target biomarkers and the mutation of genetic materials provide quantitative and qualitative information, which can be utilized clinically for cancer diagnosis and disease monitoring. SUMMARY As a highly efficient, minimally invasive, and cost-effective approach to diagnose and evaluate prognosis of GI cancer, liquid biopsy has lots of advantages over traditional biopsy and is promising in future clinical utility. If the challenges are overcome in the near future, liquid biopsy will become a widely available and dependable option.
Collapse
Affiliation(s)
- Chenxi Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
16
|
Shinjo K, Hara K, Nagae G, Umeda T, Katsushima K, Suzuki M, Murofushi Y, Umezu Y, Takeuchi I, Takahashi S, Okuno Y, Matsuo K, Ito H, Tajima S, Aburatani H, Yamao K, Kondo Y. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS One 2020; 15:e0233782. [PMID: 32520974 PMCID: PMC7286528 DOI: 10.1371/journal.pone.0233782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
Despite recent advances in clinical treatment, pancreatic cancer remains a highly lethal malignancy. In order to improve the survival rate of patients with pancreatic cancer, the development of non-invasive diagnostic methods using effective biomarkers is urgently needed. Here, we developed a highly sensitive method to detect DNA methylation in cell-free (cf)DNA samples based on the enrichment of methyl-CpG binding (MBD) protein coupled with a digital PCR method (MBD–ddPCR). Five DNA methylation markers for the diagnosis of pancreatic cancer were identified through DNA methylation microarray analysis in 37 pancreatic cancers. The sensitivity and specificity of the five markers were validated in another independent cohort of pancreatic cancers (100% and 100%, respectively; n = 46) as well as in The Cancer Genome Atlas data set (96% and 90%, respectively; n = 137). MBD–ddPCR analysis revealed that DNA methylation in at least one of the five markers was detected in 23 (49%) samples of cfDNA from 47 patients with pancreatic cancer. Further, a combination of DNA methylation markers and the KRAS mutation status improved the diagnostic capability of this method (sensitivity and specificity, 68% and 86%, respectively). Genome-wide MBD-sequencing analysis in cancer tissues and corresponding cfDNA revealed that more than 80% of methylated regions were overlapping; DNA methylation profiles of cancerous tissues and cfDNA significantly correlated with each other (R = 0.97). Our data indicate that newly developed MBD–ddPCR is a sensitive method to detect cfDNA methylation and that using five marker genes plus KRAS mutations may be useful for the detection of pancreatic cancers.
Collapse
Affiliation(s)
- Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Umezu
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Ichiro Takeuchi
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan.,Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|