1
|
Zhong G, Shen Q, Zheng X, Yu K, Lu H, Wei B, Cui H, Dai Z, Lou W. CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer. J Transl Med 2024; 22:1149. [PMID: 39731153 DOI: 10.1186/s12967-024-06004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation. In this study, our objective is to investigate the prognostic value of CPSF4 and pinpoint pivotal AS events governed by CPSF4 specifically in TNBC. METHODS We examined the expression levels and prognostic implications of CPSF4 in patients diagnosed with TNBC through public databases. CPSF4-interacting transcripts, global transcriptome, and alternative splicing were captured through RNA immunoprecipitation sequencing (RIP-seq) and RNA sequencing (RNA-seq). The top 10 CPSF4-regulated alternative splicing events (ASEs) were validated using qRT-PCR. TNBC cells transfected with high mobility group 20B (HMG20B) siRNA were subjected to CCK-8 and transwell assays. RESULTS In TNBC, CPSF4 exhibited heightened expression levels and was correlated with unfavorable prognosis. Overexpression of CPSF4 significantly promoted colony formation and migration, whereas knockdown of CPSF4 had the opposite effect. Inhibition of CPSF4 altered the transcriptome profile of MDA-MB-231 cells. CPSF4-regulated numerous genes showed enrichment in cancer-related functional pathways, including mRNA processing, cell cycle, RNA transport, mRNA surveillance pathway, and apoptosis. CPSF4-regulated ASEs were highly validated by qRT-PCR. CPSF4 modulated selective splicing events by inhibiting alternative 3' splice site events of HMG20B and promoted cell proliferation, migration, and invasion. CONCLUSION CPSF4 promotes TNBC progression by regulating AS of HMG20B. These findings contribute to the development of more useful prognostic, diagnostic and potentially therapeutic biomarkers for TNBC.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qinyan Shen
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China
| | - Xinli Zheng
- Department of Eye, Ear, Nose and Throat, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Kun Yu
- Department of Head, Neck & Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Hongjiang Lu
- Department of Radiology, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Bajin Wei
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Haidong Cui
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Weiyang Lou
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
2
|
Pan J, Dong Y, Zou Z, Gu T, Chen L, Li K, Wang L, Shi Q. Serum proteome profiling of plateau acclimatization in men using Olink proteomics approach. Physiol Rep 2024; 12:e70091. [PMID: 39725655 DOI: 10.14814/phy2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Plateau acclimatization involves adaptive changes in the body's neurohumoral regulation and metabolic processes due to hypoxic conditions at high altitudes. This study utilizes Olink targeted proteomics to analyze serum protein expression differences in Han Chinese individuals acclimatized for 6 months-1 year at 4500 and 5300 m altitudes, compared to those residing at sea level. The objective is to elucidate the proteins' roles in tissue and cellular adaptation to hypoxia. We identified 54 metabolism-related differentially expressed proteins (DEPs) in the serum of the high-altitude group versus the sea-level group, comprising 20 significantly upregulated and 34 downregulated proteins. Notably, 2 proteins were upregulated and 11 downregulated at both 4500 and 5300 m altitudes. The top three protein correlations among DEPs included CRKL with CA13, RNASE3 with NADK, and NADK with APEX1, alongside APLP1 with CTSH, CTSH with SOST, and CTSH with NT-proBNP in inverse correlations. KEGG enrichment analysis indicated significant DEP involvement in various metabolic pathways, particularly those associated with hypoxic cellular metabolism like glycolysis/gluconeogenesis and the HIF-1 signaling pathway. Correlation with clinical phenotypes showed positive associations of SOST, RNASE3, CA13, NADK, and CRKL with SaO2 and negative correlations with Hemoglobin and Hematocrit; ALDH1A1 positively correlated with Triglyceride; and SDC4 inversely correlated with Uric acid levels. This study provides insights into specific DEPs linked to metabolic adaptations in high-altitude acclimatized individuals, offering a foundation for understanding acclimatization mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jingyu Pan
- Medical College of Shihezi University, Urumqi, Xinjiang, China
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Yue Dong
- The Second Department of Cadre Health Care, Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhihao Zou
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Tianyan Gu
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ling Chen
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Kai Li
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| | - Qinghai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Zhou X, Wu H. scHiClassifier: a deep learning framework for cell type prediction by fusing multiple feature sets from single-cell Hi-C data. Brief Bioinform 2024; 26:bbaf009. [PMID: 39831891 PMCID: PMC11744636 DOI: 10.1093/bib/bbaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Single-cell high-throughput chromosome conformation capture (Hi-C) technology enables capturing chromosomal spatial structure information at the cellular level. However, to effectively investigate changes in chromosomal structure across different cell types, there is a requisite for methods that can identify cell types utilizing single-cell Hi-C data. Current frameworks for cell type prediction based on single-cell Hi-C data are limited, often struggling with features interpretability and biological significance, and lacking convincing and robust classification performance validation. In this study, we propose four new feature sets based on the contact matrix with clear interpretability and biological significance. Furthermore, we develop a novel deep learning framework named scHiClassifier based on multi-head self-attention encoder, 1D convolution and feature fusion, which integrates information from these four feature sets to predict cell types accurately. Through comprehensive comparison experiments with benchmark frameworks on six datasets, we demonstrate the superior classification performance and the universality of the scHiClassifier framework. We further assess the robustness of scHiClassifier through data perturbation experiments and data dropout experiments. Moreover, we demonstrate that using all feature sets in the scHiClassifier framework yields optimal performance, supported by comparisons of different feature set combinations. The effectiveness and the superiority of the multiple feature set extraction are proven by comparison with four unsupervised dimensionality reduction methods. Additionally, we analyze the importance of different feature sets and chromosomes using the "SHapley Additive exPlanations" method. Furthermore, the accuracy and reliability of the scHiClassifier framework in cell classification for single-cell Hi-C data are supported through enrichment analysis. The source code of scHiClassifier is freely available at https://github.com/HaoWuLab-Bioinformatics/scHiClassifier.
Collapse
Affiliation(s)
- Xiangfei Zhou
- School of Software, Shandong University, No. 1500, Shunhua Road, Hi-Tech Industrial Development Zone, Jinan 250100, Shandong, China
| | - Hao Wu
- School of Software, Shandong University, No. 1500, Shunhua Road, Hi-Tech Industrial Development Zone, Jinan 250100, Shandong, China
- Shenzhen Research Institute of Shandong University, Shandong University, No. 19, Gaoxin South 4th Road, Nanshan District, Shenzhen 518063, Guangdong, China
| |
Collapse
|
4
|
Dong H, Zhou W, Han L, Zhao Q. Propofol inhibits the proliferation, invasion, migration, and angiogenesis of oral squamous cell carcinoma through circ_0008898-mediated pathway. Chem Biol Drug Des 2024; 103:e14393. [PMID: 37955304 DOI: 10.1111/cbdd.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Propofol has been shown to inhibit oral squamous cell carcinoma (OSCC) progression. However, it is not clear whether propofol mediates OSCC progression through regulating circular RNA (circRNA) network. Quantitative real-time PCR was used to detect circ_0008898, miR-545-3p, and CT10 regulator of kinase-like protein (CRKL) expression. Cell functions were determined using CCK8 assay, Edu staining, MTT assay, transwell assay, wound healing assay, tube formation assay, and flow cytometry. Protein levels were examined by western blot analysis. RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. Our data showed that propofol repressed OSCC cell proliferation, invasion, migration, angiogenesis, and promoted apoptosis. circ_0008898 was highly expressed in OSCC, and its expression could be decreased by propofol. circ_0008898 silencing aggravated the suppressive effect of propofol on OSCC progression. In the mechanism, circ_0008898 could target miR-545-3p to positively regulate CRKL. MiR-545-3p inhibitor abolished the regulation of circ_0008898 silencing on propofol-mediated OSCC cell progression. MiR-545-3p inhibited the progression of propofol-treated OSCC cells, and this effect was reversed by CRKL overexpression. Also, circ_0008898 knockdown reduced OSCC tumor growth by regulating miR-545-3p/CRKL. In conclusion, propofol suppressed OSCC progression, which was achieved through regulating the circ_0008898/miR-545-3p/CRKL axis.
Collapse
Affiliation(s)
- Hui Dong
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Weifu Zhou
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| | - Long Han
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Qingjun Zhao
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| |
Collapse
|
5
|
Yu N, Ye S, Yang Z, Chen Z, Zhang C. Disseminated Cunninghamella elegans Infection Diagnosed by mNGS During Induction Therapy in a Child With Intermediate-risk Acute Lymphoblastic Leukemia: A Case Report and Review of Literature. J Pediatr Hematol Oncol 2023; 45:e266-e271. [PMID: 36730964 DOI: 10.1097/mph.0000000000002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/17/2022] [Indexed: 02/04/2023]
Abstract
We described a 14-year-old girl with acute lymphoblastic leukemia who developed disseminated mucormycosis during induction therapy. Disseminated Cunninghamella elegans infection was confirmed by histopathology, microbiological culture, and metagenomic next-generation sequencing analysis of skin tissue, blood, and cerebrospinal fluid. Subsequently, the patient received a combination of liposomal amphotericin B, posaconazole, and caspofungin for antifungal treatment, but eventually died because of severe fungal pneumonia, respiratory failure, and septic shock. Moreover, case reports of pulmonary mucormycosis in children published since 1959 were reviewed. In summary, metagenomic next-generation sequencing is an effective diagnostic method for Cunninghamella with high speed and sensitivity.
Collapse
Affiliation(s)
- Nan Yu
- Department of PICU, National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
6
|
Liu Y, Peng L, Chen J, Chen L, Wu Y, Cheng M, Chen M, Ye X, Jin Y. EIF5A2 specifically regulates the transcription of aging-related genes in human neuroblastoma cells. BMC Geriatr 2023; 23:83. [PMID: 36750933 PMCID: PMC9906866 DOI: 10.1186/s12877-023-03793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Post-transcriptional regulation plays a critical role in controlling biological processes such as aging. Previous studies have shown that eukaryotic initiation factor 5A (EIF5A) might play a crucial role in aging. It is unknown whether EIF5A2, a second isoform of EIF5A, could impact aging through post-transcriptional regulation. METHODS In the present study, EIF5A2 overexpression (EIF5A2-OE) was induced in SH-SY5Y cells. RNA-seq, bioinformatics analysis and RT-qPCR validation experiments were then performed to explore the molecular mechanism of EIF5A2-mediated transcriptional regulation. Cell viability, proportion of senescent cells and the cell cycle were respectively determined by Cell Counting Kit-8, SA-β‑galactosidase and flow cytometry to evaluate the cell senescence. RESULTS A total of 190 downregulated and 126 upregulated genes related to EIF5A2-OE were identified. Genes closely related to cellular aging processes such as unfolded protein response (UPR), cell adhesion and calcium signaling pathway were under global transcriptional regulation. Moreover, EIF5A2-OE promoted the viability of SH-SY5Y cells and reduced cell senescence in vitro. Among 30 genes with the most significant expression differences in EIF5A2-OE cells, we identified eight genes, including ASNS, ATF3, ATF4, CEBPB, DDIT3, HERPUD1, HSPA5 and XBP1, enriched in the UPR. Through EIF5A2-tanscription factors (TFs)-targets regulation network in EIF5A2-OE cells, we found three TFs, BHLHE40, RHOXF1 and TBX20, that targeted at these eight UPR-related genes. Verification test via the published database of human glial cell tissue showed only BHLHE40 and RHOXF1 were significantly associated with EIF5A2. CONCLUSIONS Our findings suggest that EIF5A2 may alleviate cell senescence in vitro and mediate UPR-related genes via specific TFs. Thus, EIF5A2 could function as a regulator of aging via the regulation of transcription, which greatly expands the current understanding of the mechanisms of EIF5A2-mediated gene regulation.
Collapse
Affiliation(s)
- Yuwei Liu
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China ,grid.49470.3e0000 0001 2331 6153Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Li Peng
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China ,grid.49470.3e0000 0001 2331 6153Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Jing Chen
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Ling Chen
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Ying Wu
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Mengxin Cheng
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Min Chen
- grid.49470.3e0000 0001 2331 6153Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei China
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Yalei Jin
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Peng L, Liu Y, Chen J, Cheng M, Wu Y, Chen M, Zhong Y, Shen D, Chen L, Ye X. APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Med Genomics 2022; 15:147. [PMID: 35780128 PMCID: PMC9250739 DOI: 10.1186/s12920-022-01290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. Previous studies have shown that apurinic-apyrimidinic endonuclease-1 (APEX1) is involved in tumor progression. It is unknown whether APEX1 functions in tumor progression by regulation of AS. It is also unknown whether APEX1 can regulate non-small-cell lung cancer (NSCLC) proliferation and apoptosis. We analyzed APEX1 expression levels in 517 lung NSCLC samples from the TCGA (Cancer Genome Atlas) database. The impact of APEX1 over expression on A549 cell proliferation and apoptosis was detected by the methyl thiazolyl tetrazolium assay and by flow cytometry. The transcriptome of A549 cells with and without APEX1 over expression was determined by Illumina sequencing, followed by analysis of AS. RT-qPCR validated expression of APEX1-related genes in A549 cells. We have successfully applied RNA-seq technology to demonstrate APEX1 regulation of AS. RESULTS APEX1 expression was shown to be upregulated in NSCLC samples and to reduce cell proliferation and induce apoptosis of A549 cells. In addition, APEX1 regulated AS of key tumorigenesis genes involved in cancer proliferation and apoptosis within MAPK and Wnt signaling pathways. Each of these pathways are involved in lung cancer progression. Furthermore, validated AS events regulated by APEX1 were in key tumorigenesis genes; AXIN1 (axis inhibition protein 1), GCNT2 (N-acetyl glucosaminyl transferase 2), and SMAD3 (SMAD Family Member 3). These genes encode signaling pathway transcription regulatory factors. CONCLUSIONS We found that increased expression of APEX1 was an independent prognostic factor related to NSCLC progression. Therefore, APEX1 regulation of AS may serve as a molecular marker or therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Li Peng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.,Department of Cardiology, Zhongnan Hosipital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Mengxin Cheng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ying Wu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ya Zhong
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Dan Shen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
9
|
Lin F, Xu L, Yuan R, Han S, Xie J, Jiang K, Li B, Yu W, Rao T, Zhou X, Cheng F. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA‑binding protein RBFOX1 in this disease. Int J Mol Med 2022; 49:32. [PMID: 35059728 PMCID: PMC8788925 DOI: 10.3892/ijmm.2022.5087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of inflammatory responses and alternative splicing (AS) have been recently reported to be associated with various kidney diseases. The effect of inflammatory response on acute kidney injury (AKI) has not been fully clarified. In the present study, a mouse model of AKI induced by cisplatin and ischemia-reperfusion (IR) was established and genome-wide profiling analysis and identification of differentially expressed genes (DEGs) in kidney tissue was conducted by Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) network analysis and RT-qPCR. The results revealed that common DEGs in AKI induced by cisplatin and IR were enriched in the inflammatory response pathway, including hub genes CSF-1, CXCL1, CXCL10, IL-1β, IL-34, IL-6 and TLR2. AS in AKI was initially reported. Cisplatin-induced AS was enriched in the phosphorylation pathway, involving regulated AS genes CSNK1A1, PAK2, CRK, ADK and IKBKB. IR-induced AS was enriched in apoptosis and proliferation pathways, including DEGs ZDHHC16, BCL2L1 and FGF1 regulated by AS. The ability of RNA-binding proteins (RBPs) to regulate AS was coordinated with the function of context-dependent genetic mechanisms. A total of 49 common differentially expressed RBP genes were screened. RNA binding fox-1 homolog 1 (RBFOX1) was revealed to be the top downregulated gene. The relative levels of RBFOX1 in the nuclei of mouse renal tubular epithelial cells in mRNA and proteins were downregulated by cisplatin and IR. Moreover, the biological functions of RBFOX1 were investigated in human renal proximal tubular epithelial cells (HK-2 cells). Results of in vitro experiments revealed that exogenous RBFOX1 inhibited inflammation and oxidative stress to reduce hypoxia/reoxygenation-induced apoptosis of HK-2 cells. This phenomenon may be related to the inhibition of NF-κB and the activation of the NRF2/HO-1 signaling pathway. In conclusion, the inflammatory cytokines, AS and RBPs in AKI were analyzed in the present study via whole transcriptome sequencing. It was revealed that the RBP gene RBFOX1 was involved in the pathogenesis of AKI. Thus, the present study provided novel insights into the mechanism of AKI pathogenesis.
Collapse
Affiliation(s)
- Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
10
|
RALY regulate the proliferation and expression of immune/inflammatory response genes via alternative splicing of FOS. Genes Immun 2022; 23:246-254. [PMID: 35941292 PMCID: PMC9758052 DOI: 10.1038/s41435-022-00178-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
RALY is a multifunctional RNA-binding protein involved in cancer metastasis, prognosis, and chemotherapy resistance in various cancers. However, the molecular mechanism of which is still unclear. We have established RALY overexpression cell lines and studied the effect of RALY on proliferation and apoptosis in HeLa cells. Then we used RNA-seq to analyze the transcriptomes data. Lastly, RT-qPCR experiments had performed to confirm the RNA-seq results. We found that the overexpression of RALY in HeLa cells inhibited proliferation. Moreover, the overexpression of RALY changed the gene expression profile, and the significant upregulation of genes involved immune/inflammatory response related biological process by NOD-like receptor signaling pathway cytokine-cytokine receptor interaction. The significant downregulation genes involved innate immune response by the Primary immunodeficiency pathway. Notably, IFIT1, IFIT2, IFTI3, IFI44, HERC4, and OASL expression had inhibited by the overexpression of RALY. Furthermore, RALY negatively regulates the expression of transcription factors FOS and FOSB. Notably, we found that 645 alternative splicing events had regulated by overexpression of RALY, which is highly enriched in transcription regulation, RNA splicing, and cell proliferation biological process by the metabolic pathway. We show that RALY regulates the expression of immune/inflammatory response-related genes via alternative splicing of FOS in HeLa cells. The novel role of RALY in regulating immune/inflammatory gene expression may explain its function in regulating chemotherapy resistance and provides novel insights into further exploring the molecular mechanism of RALY in regulating cancer immunity and chemo/immune therapies.
Collapse
|
11
|
Xie J, Zhang X, Zheng J, Hong X, Tong X, Liu X, Xue Y, Wang X, Zhang Y, Liu S. Two novel RNA-binding proteins identification through computational prediction and experimental validation. Genomics 2021; 114:149-160. [PMID: 34921931 DOI: 10.1016/j.ygeno.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/05/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Since RBPs play important roles in the cell, it's particularly important to find new RBPs. We performed iRIP-seq and CLIP-seq to verify two proteins, CLIP1 and DMD, predicted by RBPPred whether are RBPs or not. The experimental results confirm that these two proteins have RNA-binding activity. We identified significantly enriched binding motifs UGGGGAGG, CUUCCG and CCCGU for CLIP1 (iRIP-seq), DMD (iRIP-seq) and DMD (CLIP-seq), respectively. The computational KEGG and GO analysis show that the CLIP1 and DMD share some biological processes and functions. Besides, we found that the SNPs between DMD and its RNA partners may be associated with Becker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy 3B and Cardiovascular phenotype. Among the thirteen cancers data, CLIP1 and another 300 oncogenes always co-occur, and 123 of these 300 genes interact with CLIP1. These cancers may be associated with the mutations occurred in both CLIP1 and the genes it interacts with.
Collapse
Affiliation(s)
- Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoli Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinfang Zheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoxue Tong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xudong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei 430075, China
| | - Xuelian Wang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
12
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Luo J, Liu H, Li DKJ, Song B, Zhang Y. Repression of the expression of proinflammatory genes by mitochondrial transcription factor A is linked to its alternative splicing regulation in human lung epithelial cells. BMC Immunol 2021; 22:74. [PMID: 34876009 PMCID: PMC8650232 DOI: 10.1186/s12865-021-00464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial transcription factor A (TFAM) is associated with a number of neurodegenerative diseases and also with asthma. TFAM deficiency-induced mitochondrial DNA stress primes the antiviral innate immune response in mouse embryonic fibroblasts. However, the role of TFAM in asthma related inflammation remains obscure. The purpose of this study was to investigate the regulatory mechanism of TFAM in asthma. Results In this study, we overexpressed TFAM in human lung epithelial cells (A549), then obtained the TFAM-regulated transcriptome by Illumina sequencing technology. Transcriptome analysis revealed that TFAM overexpression down-regulated and up-regulated the expression of 642 and 169 differentially expressed genes (DEGs), respectively. The TFAM-repressed genes were strongly enriched in cytokine-mediated signaling pathway, type I interferon- and INF-γ-mediated signaling pathways, and viral response pathways. We also revealed that 2563 alternative splicing events in 1796 alternative splicing genes (ASGs) were de-regulated upon TFAM overexpression. These TFAM-responding ASGs were enriched in DNA repair, nerve growth factor receptor signaling pathway, and also transcription regulation. Further analysis revealed that the promoters of TFAM-repressed DEGs were enriched by DNA binding motifs of transcription factors whose alternative splicing was regulated by TFAM. Conclusions These findings suggest that TFAM regulates not only immune response gene expression in human lung epithelial cells, but also pre-mRNA alternative splicing which may mediate transcriptional regulation; this TFAM-centered gene regulation network could be targeted in developing therapies against various diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00464-2.
Collapse
Affiliation(s)
- Jinsong Luo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hong Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daniel K Jun Li
- ABLife BioBigData Institute, Wuhan, Hubei, China.,Department of Biology and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, China
| | - Bin Song
- ABLife BioBigData Institute, Wuhan, Hubei, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei, China
| |
Collapse
|
14
|
Yu J, Chen W, Xie W, Chen R, Lin D, You W, Ye W, Zhang H, Lin D, Xu J. Silencing of the CrkL gene reverses the doxorubicin resistance of K562/ADR cells through regulating PI3K/Akt/MRP1 signaling. J Clin Lab Anal 2021; 35:e23817. [PMID: 34114685 PMCID: PMC8373353 DOI: 10.1002/jcla.23817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Doxorubicin is a first-line chemotherapy agent on human myelogenous leukemia clinical treatment, but the development of chemoresistance has largely limited curative effect. In this study, we aimed to evaluate the biological function and molecular mechanisms of CrkL to Doxorubicin resistance. METHODS Quantitative reverse transcription-PCR (qRT-PCR) assay was performed to examine the expression of CrkL in K562 and K562/ADR cells. The expression of CrkL was silenced through RNA interference technology. MTT assay and flow cytometry were performed to detect the proliferation inhibition and apoptosis rate after CrkL siRNA transfection. The protein expression changes of PI3K/AKT/MRP1 pathway induced by CrkL siRNA were observed by Western Blot assay. Xenograft tumor model was carried out to observe tumor growth in vivo. RESULTS We observed that silencing of CrkL could effectively increase apoptosis rate induced by doxorubicin and dramatically reversed doxorubicin resistance in K562/ADR cells. Further studies revealed knockdown CrkL expression suppressed PI3K/Akt/MRP1 signaling, which indicated CrkL siRNA reversed doxorubicin effect through regulating PI3K/Akt/MRP1 pathway. In addition, overexpression of MRP1 could evidently reduce apoptosis rate and reversed the inhibitory effects of doxorubicin resistance caused by CrkL siRNA on K562/ADR cells. Finally, in vivo experiments revealed that CrkL silencing acted a tumor-suppressing role in myelogenous leukemia via regulating PI3K/Akt/MRP1 signaling. CONCLUSION Together, we indicated that CrkL is up-regulated in myelogenous leukemia cells and silencing of CrkL could reverse Doxorubicin resistance effectively. These results show a potential novel strategy for intervention chemoresistance in myelogenous leukemia during chemotherapy.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Wen‐XU Chen
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Wen‐Jing Xie
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Rong‐Wei Chen
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Dan‐Qi Lin
- Department of Pharmacy clinical PharmacyFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Wei‐Wei You
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Wei‐Lin Ye
- Department of Clinical LaboratoryFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Hong‐Qin Zhang
- Department of Pharmacy clinical PharmacyFuzhou Second Hospital Affiliated to Xiamen UniversityFuzhouFujianChina
| | - Dong‐Hong Lin
- Department of Clinical Laboratory MedicineFujian Medical UniversityFuzhouChina
| | - Jian‐Ping Xu
- Department of Clinical Laboratory MedicineFujian Medical UniversityFuzhouChina
| |
Collapse
|
15
|
Identification of prognostic alternative splicing events in sarcoma. Sci Rep 2021; 11:14949. [PMID: 34294833 PMCID: PMC8298452 DOI: 10.1038/s41598-021-94485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Sarcoma is a rare malignancy with unfavorable prognoses. Accumulating evidence indicates that aberrant alternative splicing (AS) events are generally involved in cancer pathogenesis. The aim of this study was to identify the prognostic value of AS-related survival genes as potential biomarkers, and highlight the functional roles of AS events in sarcoma. RNA-sequencing and AS-event datasets were downloaded from The Cancer Genome Atlas (TCGA) sarcoma cohort and TCGA SpliceSeq, respectively. Survival-related AS events were further assessed using a univariate analysis. A multivariate Cox regression analysis was also performed to establish a survival-gene signature to predict patient survival, and the area-under-the-curve method was used to evaluate prognostic reliability. KOBAS 3.0 and Cytoscape were used to functionally annotate AS-related genes and to assess their network interactions. We detected 9674 AS events in 40,184 genes from 236 sarcoma samples, and the 15 most significant genes were then used to construct a survival regression model. We further validated the involvement of ten potential survival-related genes (TUBB3, TRIM69, ZNFX1, VAV1, KCNN2, VGLL3, AK7, ARMC4, LRRC1, and CRIP1) in the occurrence and development of sarcoma. Multivariate survival model analyses were also performed, and validated that a model using these ten genes provided good classifications for predicting patient outcomes. The present study has increased our understanding of AS events in sarcoma, and the gene-based model using AS-related events may serve as a potential predictor to determine the survival of sarcoma patients.
Collapse
|
16
|
Gao S, Nelson J, Weinsheimer S, Winkler EA, Rutledge C, Abla AA, Gupta N, Shieh JT, Cooke DL, Hetts SW, Tihan T, Hess CP, Ko N, Walcott BP, McCulloch CE, Lawton MT, Su H, Pawlikowska L, Kim H. Somatic mosaicism in the MAPK pathway in sporadic brain arteriovenous malformation and association with phenotype. J Neurosurg 2021; 136:148-155. [PMID: 34214981 DOI: 10.3171/2020.11.jns202031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sporadic brain arteriovenous malformation (BAVM) is a tangled vascular lesion characterized by direct artery-to-vein connections that can cause life-threatening intracerebral hemorrhage (ICH). Recently, somatic mutations in KRAS have been reported in sporadic BAVM, and mutations in other mitogen-activated protein kinase (MAPK) signaling pathway genes have been identified in other vascular malformations. The objectives of this study were to systematically evaluate somatic mutations in MAPK pathway genes in patients with sporadic BAVM lesions and to evaluate the association of somatic mutations with phenotypes of sporadic BAVM severity. METHODS The authors performed whole-exome sequencing on paired lesion and blood DNA samples from 14 patients with sporadic BAVM, and 295 genes in the MAPK signaling pathway were evaluated to identify genes with somatic mutations in multiple patients with BAVM. Digital droplet polymerase chain reaction was used to validate KRAS G12V and G12D mutations and to assay an additional 56 BAVM samples. RESULTS The authors identified a total of 24 candidate BAVM-associated somatic variants in 11 MAPK pathway genes. The previously identified KRAS G12V and G12D mutations were the only recurrent mutations. Overall, somatic KRAS G12V was present in 14.5% of BAVM lesions and G12D was present in 31.9%. The authors did not detect a significant association between the presence or allelic burden of KRAS mutation and three BAVM phenotypes: lesion size (maximum diameter), age at diagnosis, and age at ICH. CONCLUSIONS The authors confirmed the high prevalence of somatic KRAS mutations in sporadic BAVM lesions and identified several candidate somatic variants in other MAPK pathway genes. These somatic variants may contribute to understanding of the etiology of sporadic BAVM and the clinical characteristics of patients with this condition.
Collapse
Affiliation(s)
- Sen Gao
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Jeffrey Nelson
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Shantel Weinsheimer
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| | | | | | | | | | - Joseph T Shieh
- 4Institute for Human Genetics, University of California, San Francisco, California.,11Pediatrics, and
| | | | | | | | | | | | - Brian P Walcott
- 3Neurological Surgery.,8NorthShore University Health System, Evanston, Illinois; and
| | | | - Michael T Lawton
- 10Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Hua Su
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and
| | - Ludmila Pawlikowska
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| | - Helen Kim
- Departments of1Anesthesia and Perioperative Care.,2Center for Cerebrovascular Research, and.,4Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
17
|
Kim JH, Kim K, Kim I, Seong S, Kook H, Kim KK, Koh JT, Kim N. Bifunctional Role of CrkL during Bone Remodeling. Int J Mol Sci 2021; 22:ijms22137007. [PMID: 34209812 PMCID: PMC8269069 DOI: 10.3390/ijms22137007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts, osteoclasts, and their coupling signals.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-61-379-2835
| |
Collapse
|
18
|
Yao J, Tang YC, Yi B, Yang J, Chai Y, Yin N, Zhang ZX, Wei YJ, Li DC, Zhou J. Signature of gene aberrant alternative splicing events in pancreatic adenocarcinoma prognosis. J Cancer 2021; 12:3164-3179. [PMID: 33976726 PMCID: PMC8100795 DOI: 10.7150/jca.48661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS), as an effective and universal mechanism of transcriptional regulation, is involved in the development and progression of cancer. Therefore, systematic analysis of alternative splicing in pancreatic adenocarcinoma (PAAD) is warranted. The corresponding clinical information of the RNA-Seq data and PAAD cohort was downloaded from the TCGA data portal. Then, a java application, SpliceSeq, was used to evaluate the RNA splicing pattern and calculate the splicing percentage index (PSI). Differentially expressed AS events (DEAS) were identified based on PSI values between PAAD cancer samples and normal samples of adjacent tissues. Kaplan-Meier and Cox regression analyses were used to assess the association between DEAS and patient clinical characteristics. Unsupervised cluster analysis used to reveal four clusters with different survival patterns. At the same time, GEO and TCGA combined with GTEx to verify the differential expression of AS gene and splicing factor. After rigorous filtering, a total of 45,313 AS events were identified, 1,546 of which were differentially expressed AS events. Nineteen DEAS were found to be associated with OS with a five-year overall survival rate of 0.946. And the subtype clusters results indicate that there are differences in the nature of individual AS that affect clinical outcomes. Results also identified 15 splicing factors associated with the prognosis of PAAD. And the splicing factors ESRP1 and RBM5 played an important role in the PAAD-associated AS events. The PAAD-associated AS events, splicing networks, and clusters identified in this study are valuable for deciphering the underlying mechanisms of AS in PAAD and may facilitate the establishment of therapeutic goals for further validation.
Collapse
Affiliation(s)
- Jun Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yu-Chen Tang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Yi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Yang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yun Chai
- Department of Plastic Surgery, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215006, China
| | - Ni Yin
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yi-Jun Wei
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Chun Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
19
|
Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021; 10:cells10040739. [PMID: 33801580 PMCID: PMC8065463 DOI: 10.3390/cells10040739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
20
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
21
|
Park T, Large N, Curran T. Quantitative assessment of glioblastoma phenotypes in vitro establishes cell migration as a robust readout of Crk and CrkL activity. J Biol Chem 2021; 296:100390. [PMID: 33561443 PMCID: PMC7961105 DOI: 10.1016/j.jbc.2021.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023] Open
Abstract
The expression levels of CT10 regulator of kinase (Crk) and Crk-like (CrkL) are elevated in many human cancers, including glioblastoma (GBM), and are believed to contribute to poor prognosis. Although Crk and CrkL have been proposed as therapeutic targets in these tumors, the lack of a reliable, quantitative assay to measure Crk and CrkL activity has hindered development of inhibitors. Here, we knocked down Crk, CrkL, or both using siRNAs in a human GBM cell line, U-118MG, to determine the respective, quantitative contributions of Crk and CrkL to cellular phenotypes. The combined use of specific and potent Crk and CrkL siRNAs induced effective knockdown of CrkII, CrkI, and CrkL. Whereas Crk knockdown did not affect cell morphology, proliferation, adhesion, or invasion, CrkL knockdown caused shrinkage of cells and inhibition of cell proliferation, adhesion, and invasion. Crk/CrkL double knockdown resulted in more pronounced morphological alterations and more robust inhibition of proliferation, adhesion, and invasion. Furthermore, Crk/CrkL double knockdown completely blocked cell migration, and this effect was rescued by transient overexpression of CrkL but not of Crk. Quantification of protein levels indicated that CrkL is expressed more abundantly than CrkII and CrkI in U-118MG cells. These results demonstrate both the predominant role of CrkL and the essential overlapping functions of Crk and CrkL in U-118MG cells. Furthermore, our study indicates that migration of U-118MG cells depends entirely on Crk and CrkL. Thus, impedance-based, real-time measurement of tumor cell migration represents a robust assay for monitoring Crk and CrkL activities.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | - Neka Large
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Tom Curran
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
22
|
Splicing Genomics Events in Cervical Cancer: Insights for Phenotypic Stratification and Biomarker Potency. Genes (Basel) 2021; 12:genes12020130. [PMID: 33498485 PMCID: PMC7909518 DOI: 10.3390/genes12020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gynaecological cancers are attributed to the second most diagnosed cancers in women after breast cancer. On a global scale, cervical cancer is the fourth most common cancer and the most common cancer in developing countries with rapidly increasing mortality rates. Human papillomavirus (HPV) infection is a major contributor to the disease. HPV infections cause prominent cellular changes including alternative splicing to drive malignant transformation. A fundamental characteristic attributed to cancer is the dysregulation of cellular transcription. Alternative splicing is regulated by several splicing factors and molecular changes in these factors lead to cancer mechanisms such as tumour development and progression and drug resistance. The serine/arginine-rich (SR) proteins and heterogeneous ribonucleoproteins (hnRNPs) have prominent roles in modulating alternative splicing. Evidence shows molecular alteration and expression levels in these splicing factors in cervical cancer. Furthermore, aberrant splicing events in cancer-related genes lead to chemo- and radioresistance. Identifying clinically relevant modifications in alternative splicing events and splicing variants, in cervical cancer, as potential biomarkers for their role in cancer progression and therapy resistance is scrutinised. This review will focus on the molecular mechanisms underlying the aberrant splicing events in cervical cancer that may serve as potential biomarkers for diagnosis, prognosis, and novel drug targets.
Collapse
|
23
|
Fang J, Zhang D, Cao JW, Zhang L, Liu CX, Xing YP, Wang F, Xu HY, Wang SC, Ling Y, Wang W, Zhang YR, Zhou HM. Pathways involved in pony body size development. BMC Genomics 2021; 22:58. [PMID: 33461495 PMCID: PMC7814589 DOI: 10.1186/s12864-020-07323-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanism of body growth in mammals is poorly understood. Here, we investigated the regulatory networks involved in body growth through transcriptomic analysis of pituitary and epiphyseal tissues of smaller sized Debao ponies and Mongolian horses at the juvenile and adult stages. RESULTS We found that growth hormone receptor (GHR) was expressed at low levels in long bones, although growth hormone (GH) was highly expressed in Debao ponies compared with Mongolian horses. Moreover, significant downregulated of the GHR pathway components m-RAS and ATF3 was found in juvenile ponies, which slowed the proliferation of bone osteocytes. However, WNT2 and PLCβ2 were obviously upregulated in juvenile Debao ponies, which led to premature mineralization of the bone extracellular matrix. Furthermore, we found that the WNT/Ca2+ pathway may be responsible for regulating body growth. GHR was demonstrated by q-PCR and Western blot analyses to be expressed at low levels in long bones of Debao ponies. Treatment with WNT antagonistI decreased the expression of WNT pathway components (P < 0.05) in vitro. Transduction of ATDC5 cells with a GHR-RNAi lentiviral vector decreased the expression of the GHR pathway components (P < 0.05). Additionally, the expression of the IGF-1 gene in the liver was lower in Debao ponies than in Mongolian horses at the juvenile and adult stages. Detection of plasma hormone concentrations showed that Debao ponies expressed higher levels of IGF-1 as juveniles and higher levels of GH as adults than Mongolian horses, indicating that the hormone regulation in Debao ponies differs from that in Mongolian horses. CONCLUSION Our work provides insights into the genetic regulation of short stature growth in mammals and can provide useful information for the development of therapeutic strategies for small size.
Collapse
Affiliation(s)
- Jun Fang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Jun Wei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Li Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Chun Xia Liu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Feng Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Hong Yang Xu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Shi Chao Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Wei Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| | - Huan Min Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| |
Collapse
|
24
|
Ouyang D, Yang P, Cai J, Sun S, Wang Z. Comprehensive analysis of prognostic alternative splicing signature in cervical cancer. Cancer Cell Int 2020; 20:221. [PMID: 32528230 PMCID: PMC7282181 DOI: 10.1186/s12935-020-01299-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Alternative splicing (AS) is a key factor in protein-coding gene diversity, and is associated with the development and progression of malignant tumours. However, the role of AS in cervical cancer is unclear. Methods The AS data for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq website. Few prognostic AS events were identified through univariate Cox analysis. We further identified the prognostic prediction models of the seven subtypes of AS events and assessed their predictive power. We constructed a clinical prediction model through global analysis of prognostic AS events and established a nomogram using the risk score calculated from the prognostic model and relevant clinical information. Unsupervised cluster analysis was used to explore the relationship between prognostic AS events in the model and clinical features. Results A total of 2860 prognostic AS events in cervical cancer were identified. The best predictive effect was shown by a single alternate acceptor subtype with an area under the curve of 0.96. Our clinical prognostic model included a nine-AS event signature, and the c-index of the predicted nomogram model was 0.764. SNRPA and CCDC12 were hub genes for prognosis-associated splicing factors. Unsupervised cluster analysis through the nine prognostic AS events revealed three clusters with different survival patterns. Conclusions AS events affect the prognosis and biological progression of cervical cancer. The identified prognostic AS events and splicing regulatory networks can increase our understanding of the underlying mechanisms of cervical cancer, providing new therapeutic strategies.
Collapse
Affiliation(s)
- Dong Ouyang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Department of Obstetrics and Gynecology, Akesu Hospital of Traditional Chinese Medicine, Akesu, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
25
|
Kostrzewska-Poczekaj M, Bednarek K, Jarmuz-Szymczak M, Bodnar M, Filas V, Marszalek A, Bartochowska A, Grenman R, Kiwerska K, Szyfter K, Giefing M. Copy number gains of the putative CRKL oncogene in laryngeal squamous cell carcinoma result in strong nuclear expression of the protein and influence cell proliferation and migration. Sci Rep 2020; 10:24. [PMID: 31913340 PMCID: PMC6949282 DOI: 10.1038/s41598-019-56870-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/10/2019] [Indexed: 02/03/2023] Open
Abstract
Laryngeal squamous cell carcinoma is a major medical problem worldwide. Although our understanding of genetic changes and their consequences in laryngeal cancer has opened new therapeutic pathways over the years, the diagnostic as well as treatment options still need to be improved. In our previous study, we identified CRKL (22q11) as a novel putative oncogene overexpressed and amplified in a subset of LSCC tumors and cell lines. Here we analyze to what extent CRKL DNA copy number gains correlate with the higher expression of CRKL protein by performing IHC staining of the respective protein in LSCC cell lines (n = 3) and primary tumors (n = 40). Moreover, the importance of CRKL gene in regard to proliferation and motility of LSCC cells was analyzed with the application of RNA interference (siRNA). Beside the physiological cytoplasmic expression, the analysis of LSCC tumor samples revealed also nuclear expression of CRKL protein in 10/40 (25%) cases, of which three (7.5%), presented moderate or strong nuclear expression. Similarly, we observed a shift towards aberrantly strong nuclear abundance of the CRKL protein in LSCC cell lines with gene copy number amplifications. Moreover, siRNA mediated silencing of CRKL gene in the cell lines showing its overexpression, significantly reduced proliferation (p < 0.01) as well as cell migration (p < 0.05) rates. Altogether, these results show that the aberrantly strong nuclear localization of CRKL is a seldom but recurrent phenomenon in LSCC resulting from the increased DNA copy number and overexpression of the gene. Moreover, functional analyses suggest that proliferation and migration of the tumor cells depend on CRKL expression.
Collapse
Affiliation(s)
| | - Kinga Bednarek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Malgorzata Jarmuz-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - Violeta Filas
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Center, Poznan, Poland
| | - Andrzej Marszalek
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Center, Poznan, Poland
| | - Anna Bartochowska
- Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - Reidar Grenman
- Department of Otorhinolaryngology, Head and Neck Surgery, Turku University Central Hospital and Turku University, Turku, Finland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumor Pathology, Greater Poland Cancer Center, Poznan, Poland
| | - Krzysztof Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|