1
|
Deng Q, Chen L, Zhang G, Liu L, Luo SM, Gao X. TRIAL-based combination therapies in cancers. Int Immunopharmacol 2024; 138:112570. [PMID: 38971105 DOI: 10.1016/j.intimp.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.
Collapse
Affiliation(s)
- Qiumin Deng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Tiwari P, Yadav K, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch Biochem Biophys 2024; 756:110022. [PMID: 38697343 DOI: 10.1016/j.abb.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Sweety Das
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
3
|
Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2790-2806. [PMID: 37261603 PMCID: PMC10234250 DOI: 10.1007/s13346-023-01370-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) are a group of nanoscale membrane-bound organelles including exosomes, microvesicles (MVs), membrane particles, and apoptotic bodies, which are released from almost all eukaryotic cells. Owing to their ingredients, EVs can be employed as biomarkers for human diseases. Interestingly, EVs show favorable features as candidates for targeted drug delivery and thus, they are suggested as ideal drug carriers as well as good vaccines for various human diseases including cancer. Among various drugs loaded in EVs for targeted drug delivery, immune checkpoint inhibitors (ICIs), including antibodies against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), have attracted an increasing attention for cancer researchers and clinicians. Animal and clinical studies have shown combination of EVs and immunotherapy antibodies to improve the efficacy and reduce possible side effects in systemic administration of ICIs. In this review, we discuss the EVs and their significance in drug delivery with a focus on cancer immunotherapy agents.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Qin L. Study on the preoperative value of serum SCC-Ag in predicting the stromal invasion of cervical squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:9167-9171. [PMID: 37184678 DOI: 10.1007/s00432-023-04836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To investigate the preoperative value of serum SCC-Ag in predicting the stromal invasion of cervical squamous cell carcinoma. METHODS This study retrospectively analyzed 78 patients with early cervical squamous cell carcinoma who underwent surgery as initial treatment at the Senior Department of Obstetrics and Gynecology, the Seventh Medical Center of PLA General Hospital from January 2018 to September 2022 was implemented. The clinicopathological characteristics were statistically compared. The ROC curve was drawn to determine the optimal critical level of preoperative serum SCC-Ag value for predicting cervical stromal invasion. RESULTS The depth of myometrial invasion was not related to the age of diagnosis and HPV infection (p > 0.05), while it was related to tumor size, staging, tissue differentiation, LVSI, lymph node metastasis (LNM) and preoperative serum SCC-Ag value (p < 0.05).The area under the curve (AUC) of serum SCC-Ag value was 0.894 (p = 0.000, 95% CI 0.824-0.964), and preoperative serum SCC-Ag value 1.65 ng/ml was the best cutoff for predicting cervical stromal invasion in cervical squamous cell carcinoma. The sensitivity and specificity of diagnosis were 92.3% and 78.8%, respectively. CONCLUSION If the preoperative serum SCC-Ag leval more than 1.65 ng/ml in patients with cervical squamous cell carcinoma, the risk of cervical stromal invasion will increase, which can provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Lin Qin
- Senior Department of Obstetrics & Gynecology, The Seventh Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Vasella M, Gousopoulos E, Guidi M, Storti G, Song SY, Grieb G, Pauli C, Lindenblatt N, Giovanoli P, Kim BS. Targeted therapies and checkpoint inhibitors in sarcoma. QJM 2022; 115:793-805. [PMID: 33486519 DOI: 10.1093/qjmed/hcab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are defined as a group of mesenchymal malignancies with over 100 heterogeneous subtypes. As a rare and difficult to diagnose entity, micrometastasis is already present at the time of diagnosis in many cases. Current treatment practice of sarcomas consists mainly of surgery, (neo)adjuvant chemo- and/or radiotherapy. Although the past decade has shown that particular genetic abnormalities can promote the development of sarcomas, such as translocations, gain-of-function mutations, amplifications or tumor suppressor gene losses, these insights have not led to established alternative treatment strategies so far. Novel therapeutic concepts with immunotherapy at its forefront have experienced some remarkable success in different solid tumors while their impact in sarcoma remains limited. In this review, the most common immunotherapy strategies in sarcomas, such as immune checkpoint inhibitors, targeted therapy and cytokine therapy are concisely discussed. The programmed cell death (PD)-1/PD-1L axis and apoptosis-inducing cytokines, such as TNF-related apoptosis-inducing ligand (TRAIL), have not yielded the same success like in other solid tumors. However, in certain sarcoma subtypes, e.g. liposarcoma or undifferentiated pleomorphic sarcoma, encouraging results in some cases when employing immune checkpoint inhibitors in combination with other treatment options were found. Moreover, newer strategies such as the targeted therapy against the ancient cytokine macrophage migration inhibitory factor (MIF) may represent an interesting approach worth investigation in the future.
Collapse
Affiliation(s)
- M Vasella
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - E Gousopoulos
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - M Guidi
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - G Storti
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome-'Tor Vergata', Via Montepellier, 1, 00133 Rome, Italy
| | - S Y Song
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea
| | - G Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany
- Department of Plastic Surgery, Hand Surgery and Burn Center, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - C Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - N Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - P Giovanoli
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - B-S Kim
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
6
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
Liu W, Wang S, Yang Q, Feng X, Yu B, Yu X. 20(s)-ginsenoside Rh2 promotes TRAIL-induced apoptosis by upregulating DR5 in human hepatocellular carcinoma cells. Med Oncol 2022; 39:70. [PMID: 35568793 DOI: 10.1007/s12032-022-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand is a potential therapeutic anti-cancer drug with selective cytotoxicity in cancer cells. However, in multiple clinical trials, the therapeutic effect of TRAIL is limited owing to tumor resistance. The combination of small molecules or other drugs may represent a suitable strategy to overcome TRAIL resistance. This study found that 20(s)-ginsenoside Rh2 sensitized non-sensitive human hepatocellular carcinoma cells to TRAIL-induced apoptosis. The combination of TRAIL and Rh2 decreased cell viability and increased caspase cascade-induced apoptosis in several liver cancer cell lines. Moreover, we found that Rh2 reduced the apoptosis-related protein XIAP and Survivin, a negative regulator of the apoptosis pathway. At the same time, Rh2 can further enhance TRAIL-induced apoptosis by upregulating the death receptor 5, thereby significantly enhancing its anti-tumor effect. Furthermore, Rh2 enhanced the therapeutic efficacy of TRAIL in mouse xenograft models, suggesting that Rh2 also sensitizes TRAIL in vivo. Taken together, our study indicates that Rh2 may act as a sensitizer in combination with TRAIL to increase the efficacy of its anti-tumor activity.
Collapse
Affiliation(s)
- Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Siqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Qinchuan Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Gasparello J, Papi C, Zurlo M, Gambari L, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules 2022; 27:molecules27041299. [PMID: 35209084 PMCID: PMC8875359 DOI: 10.3390/molecules27041299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| |
Collapse
|
9
|
Razeghian E, Suksatan W, Sulaiman Rahman H, Bokov DO, Abdelbasset WK, Hassanzadeh A, Marofi F, Yazdanifar M, Jarahian M. Harnessing TRAIL-Induced Apoptosis Pathway for Cancer Immunotherapy and Associated Challenges. Front Immunol 2021; 12:699746. [PMID: 34489946 PMCID: PMC8417882 DOI: 10.3389/fimmu.2021.699746] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Koch A, Jeiler B, Roedig J, van Wijk SJL, Dolgikh N, Fulda S. Smac mimetics and TRAIL cooperate to induce MLKL-dependent necroptosis in Burkitt's lymphoma cell lines. Neoplasia 2021; 23:539-550. [PMID: 33971465 PMCID: PMC8122156 DOI: 10.1016/j.neo.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
Burkitt's lymphoma (BL) is a highly aggressive form of B-cell non-Hodgkin's lymphoma. The clinical outcome in children with BL has improved over the last years but the prognosis for adults is still poor, highlighting the need for novel treatment strategies. Here, we report that the combinational treatment with the Smac mimetic BV6 and TRAIL triggers necroptosis in BL when caspases are blocked by zVAD.fmk (TBZ treatment). The sensitivity of BL cells to TBZ correlates with MLKL expression. We demonstrate that necroptotic signaling critically depends on MLKL, since siRNA-induced knockdown and CRISPR/Cas9-mediated knockout of MLKL profoundly protect BL cells from TBZ-induced necroptosis. Conversely, MLKL overexpression in cell lines expressing low levels of MLKL leads to necroptosis induction, which can be rescued by pharmacological inhibitors, highlighting the important role of MLKL for necroptosis execution. Importantly, the methylation status analysis of the MLKL promoter reveals a correlation between methylation and MLKL expression. Thus, MLKL is epigenetically regulated in BL and might serve as a prognostic marker for treatment success of necroptosis-based therapies. These findings have crucial implications for the development of new treatment options for BL.
Collapse
Affiliation(s)
- Annkathrin Koch
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birte Jeiler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Jens Roedig
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany.
| |
Collapse
|
11
|
Mello CA, Campos FAB, Santos TG, Silva MLG, Torrezan GT, Costa FD, Formiga MN, Nicolau U, Nascimento AG, Silva C, Curado MP, Nakagawa SA, Lopes A, Aguiar S. Desmoplastic Small Round Cell Tumor: A Review of Main Molecular Abnormalities and Emerging Therapy. Cancers (Basel) 2021; 13:cancers13030498. [PMID: 33525546 PMCID: PMC7865637 DOI: 10.3390/cancers13030498] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor is a rare neoplasm with extremely aggressive behavior. Despite the multimodal treatment for newly diagnosed patients with chemotherapy, cytoreductive surgery and radiation, the cure rate is still low. For relapsed or progressive disease, there is limited data regarding second and third-line therapies. Novel agents have shown only modest activity. Recent molecular changes have been identified in this disease and this opens opportunities to be explored in future clinical trials. Abstract Desmoplastic small round cell tumor (DSRCT) is an extremely rare, aggressive sarcoma affecting adolescents and young adults with male predominance. Generally, it originates from the serosal surface of the abdominal cavity. The hallmark characteristic of DSRCT is the EWSR1–WT1 gene fusion. This translocation up-regulates the expression of PDGFRα, VEGF and other proteins related to tumor and vascular cell proliferation. Current management of DSRCT includes a combination of chemotherapy, radiation and aggressive cytoreductive surgery plus intra-peritoneal hyperthermic chemotherapy (HIPEC). Despite advances in multimodal therapy, outcomes remain poor since the majority of patients present disease recurrence and die within three years. The dismal survival makes DSRCT an orphan disease with an urgent need for new drugs. The treatment of advanced and recurrent disease with tyrosine kinase inhibitors, such as pazopanib, sunitinib, and mTOR inhibitors was evaluated by small trials. Recent studies using comprehensive molecular profiling of DSRCT identified potential therapeutic targets. In this review, we aim to describe the current studies conducted to better understand DSRCT biology and to explore the new therapeutic strategies under investigation in preclinical models and in early phase clinical trials.
Collapse
Affiliation(s)
- Celso Abdon Mello
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
- Correspondence: ; Tel.: +55-11-2189-2779
| | - Fernando Augusto Batista Campos
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Tiago Goss Santos
- Laboratory of Tumor Biology and Biomarkers, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil;
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
| | | | - Giovana Tardin Torrezan
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Felipe D’Almeida Costa
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.D.C.); (A.G.N.)
| | - Maria Nirvana Formiga
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Ulisses Nicolau
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | | | - Cassia Silva
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Maria Paula Curado
- Department of Epidemiology, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil;
| | - Suely Akiko Nakagawa
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Ademar Lopes
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Samuel Aguiar
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| |
Collapse
|
12
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
From head and neck lipoma to liposarcoma: a wide spectrum of differential diagnoses and their therapeutic implications. Curr Opin Otolaryngol Head Neck Surg 2020; 28:136-143. [PMID: 32011399 DOI: 10.1097/moo.0000000000000608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To overview the array of differential diagnoses among lipomatous tumours of the head and neck with special focus on their evaluation, three-dimensional assessment, and their available treatments. RECENT FINDINGS The head and neck is an infrequent localization for lipomatous tumours, even though they represent the most common mesenchymal lesions. Lipoma, spindle cell/pleomorphic lipoma (SC/PL), atypical lipomatous tumour/well differentiated liposarcoma (ALT/WDLPS), de-differentiated liposarcoma (DDLPS), myxoid liposarcoma (MLPS), and pleomorphic liposarcoma (PLPS) are the most distinctive histotypes. Lipoma and SC/PL present alterations of chromosomes 12 and 13, ALT/WDLPS and DDLPS both show the Mouse Double Minute 2 amplification, whereas MLPS presents a CHOP gene fusion. Diagnosis of PLPS is purely morphological as there is no pathognomonic genetic alteration identified to date. Radiological assessment can be challenging for the presence of nonadipose components within the lesion. Surgery is the mainstay of treatment, even though achieving true radicality in terms of a large cuff of healthy tissue surrounding the tumour is not always realistic in the head and neck. Adjuvant radiation, eventually in combination with systemic chemotherapy, has been shown to improve overall survival in patients with positive margins, high-grade, deep, and more than 5 cm lesions. Further studies should be aimed at the evaluation of the role of hadron therapy, as well as targeted drugs against overexpressed proteins. SUMMARY Adequate differential diagnosis of the histotypes collected under the umbrella term of head and neck lipomatous tumours plays a fundamental role in treatment and follow-up of these lesions and requires specific expertise with referral to high-volume centres.
Collapse
|
14
|
Extracellular Vesicles as Biomarkers in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12102825. [PMID: 33007968 PMCID: PMC7600903 DOI: 10.3390/cancers12102825] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are small particles found throughout the body. EVs are released by living cells and contain cargo representing the cell of origin. In recent years, EVs have gained attention in cancer research. Since the cargo found inside EVs can be traced back to the cell of origin, EVs shed from cancer cells, in particular, may be used to better describe and characterize a patient’s tumor. EVs have been found and isolated from a variety of bodily fluids, including blood, saliva, and amniotic fluid, and therefore offer a non-invasive way of also diagnosing and monitoring patients before, during, and after cancer immunotherapy. The aim of this review article was to summarize some of the recent work conducted in this field and the challenges we face moving forward in utilizing EVs for cancer diagnostic and therapeutic purposes in cancer immunotherapy in the clinical setting. Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound vesicles secreted by most cell types during both physiologic conditions as well in response to cellular stress. EVs play an important role in intercellular communication and are emerging as key players in tumor immunology. Tumor-derived EVs (TDEs) harbor a diverse array of tumor neoantigens and contain unique molecular signature that is reflective of tumor’s underlying genetic complexity. As such they offer a glimpse into the immune tumor microenvironment (TME) and have the potential to be a novel, minimally invasive biomarker for cancer immunotherapy. Immune checkpoint inhibitors (ICI), such as anti- programmed death-1(PD-1) and its ligand (PD-L1) antibodies, have revolutionized the treatment of a wide variety of solid tumors including head and neck squamous cell carcinoma, urothelial carcinoma, melanoma, non-small cell lung cancer, and others. Typically, an invasive tissue biopsy is required both for histologic diagnosis and next-generation sequencing efforts; the latter have become more widespread in daily clinical practice. There is an unmet need for noninvasive or minimally invasive (e.g., plasma-based) biomarkers both for diagnosis and treatment monitoring. Targeted analysis of EVs in biospecimens, such as plasma and saliva could serve this purpose by potentially obviating the need for tissue sample. In this review, we describe the current challenges of biomarkers in cancer immunotherapy as well as the mechanistic role of TDEs in modulating antitumor immune response.
Collapse
|
15
|
Lv S, Wang X, Bai X, Ning H, Li Y, Wen H, Lu W, Wang J. Mesenchymal epithelial transition factor regulates tumor necrosis factor-related apoptotic induction ligand resistance in hepatocellular carcinoma cells through down-regulation of cyclin B1. Int J Biochem Cell Biol 2020; 128:105844. [PMID: 32882404 DOI: 10.1016/j.biocel.2020.105844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor-related apoptotic induction ligand can induce cell apoptosis in various tumor cells. However, many cancer cells are resistant to tumor necrosis factor-related apoptotic induction ligand. Therefore, overcoming the tumor necrosis factor-related apoptotic induction ligand resistance makes it possible for tumor necrosis factor-related apoptotic induction ligand-based anti-cancer therapies. In this study, we took mesenchymal epithelial transition factor as the research target to study its role in tumor necrosis factor-related apoptotic induction ligand-resistant hepatocellular carcinoma. Mesenchymal epithelial transition factor gene has been proved to be an effective predictor of recurrence after hepatocellular carcinoma resection. The expression of mesenchymal epithelial transition factor and cyclin B1 were measured in tumor necrosis factor-related apoptotic induction ligand-resistant and non-resistant hepatocellular carcinoma tissues. Cyclin B1-knockdown and cyclin B1-overexpression hepatocellular carcinoma cells were treated with tumor necrosis factor-related apoptotic induction ligand; mesenchymal epithelial transition factor knockout, mesenchymal epithelial transition factor re-introduction and cyclin B1 restored in hepatocellular carcinoma cells treated with tumor necrosis factor-related apoptotic induction ligand were established. And MTT, bromodeoxyuridine, flow cytometry and western blotting were performed to evaluate the effect of mesenchymal epithelial transition factor and cyclin B1 on hepatocellular carcinoma cells treated with tumor necrosis factor-related apoptotic induction ligand. In addition, subcutaneous tumor transplantation in nude mice was conducted to access the effect of mesenchymal epithelial transition factor and cyclin B1 on tumor formation in vivo. In conclusion, cyclin B1 enhanced the cell growth and inhibited apoptosis in tumor necrosis factor-related apoptotic induction ligand-resistant hepatocellular carcinoma cells. And mesenchymal epithelial transition factor promoted the cell growth and apoptosis in tumor necrosis factor-related apoptotic induction ligand-resistant hepatocellular carcinoma cells by regulating cyclin B1. Therefore, mesenchymal epithelial transition factor regulates the cyclin B1 to regulate tumor necrosis factor-related apoptotic induction ligand resistance in hepatocellular carcinoma cells. Our results suggest a novel molecular mechanism for regulating tumor necrosis factor-related apoptotic induction ligand resistance, which might be helpful to select drug targets in the treatment of liver cancer.
Collapse
Affiliation(s)
- Shuai Lv
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China.
| | - Xijuan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, China
| | - Xia Bai
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Hanbing Ning
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Yingxia Li
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Hongtao Wen
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Wenquan Lu
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Jingyun Wang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| |
Collapse
|
16
|
Zhang Y, Ye M, Huang F, Wang S, Wang H, Mou X, Wang Y. Oncolytic Adenovirus Expressing ST13 Increases Antitumor Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Against Pancreatic Ductal Adenocarcinoma. Hum Gene Ther 2020; 31:891-903. [PMID: 32475172 DOI: 10.1089/hum.2020.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds) are promising agents for cancer therapy, representing a novel therapeutic strategy for pancreatic ductal adenocarcinoma (PDAC). However, there are challenges associated with the successful use of an OAd alone, involving the security of the viral vector and screening of an effective antitumor gene. In the present study, a novel OAd CD55-ST13-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was constructed in which the dual therapeutic genes ST13 and TRAIL were inserted, featuring the carcinoembryonic antigen (CEA) as a promoter to control E1A and deletion of the 55 kDa E1B gene. ST13, known as a colorectal cancer suppressor gene, exhibited lower expression in PDAC than in tumor-adjacent tissues and was associated with poor prognosis in PDAC patients. In vitro studies demonstrated that CD55-ST13-TRAIL was effective in promoting the expression of ST13 and TRAIL in CEA-positive pancreatic cancer cells. Moreover, CD55-ST13-TRAIL exhibited a synergistic effect toward tumor cell death compared with CD55-ST13 alone or CD55-TRAIL alone, and inhibited tumor cell proliferation and induced cell apoptosis dependent on caspase pathways in PDAC cells. Furthermore, xenograft experiments in a mouse model indicated that CD55-ST13-TRAIL significantly inhibited tumor growth and improved the survival of animals with xenografts. The findings demonstrate that oncolytic virotherapy under the control of the promoter CEA enables safe and efficient treatment of PDAC, and suggest that it represents a promising candidate for the treatment of metastatic diseases.
Collapse
Affiliation(s)
- Youni Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Miaojuan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
17
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
18
|
Pereira J, Santos M, Delabio R, Barbosa M, Smith M, Payão S, Rasmussen L. Analysis of Gene Expression of miRNA-106b-5p and TRAIL in the Apoptosis Pathway in Gastric Cancer. Genes (Basel) 2020; 11:genes11040393. [PMID: 32260540 PMCID: PMC7230378 DOI: 10.3390/genes11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric gancer. TNF-related apoptosis-inducing ligand (TRAIL) is a protein able to promote apoptosis in cancer cells, however not in gastric cancer, which presents resistance to apoptosis via TRAIL. It is believed that MicroRNA-106b-5p might be involved in this resistance, although its role in Gastric Cancer is unclear. We aimed to determine the expression of microRNA-106b-5p and TRAIL in patients with gastric diseases, infected by H. pylori, and understand the relationship between these genes and their role in apoptosis and the gastric cancer pathways. H. pylori was detected by PCR, gene expression analysis was performed by real-time-qPCR, and bioinformatics analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape software. A total of 244 patients were divided into groups (Control, Gastritis, and Cancer); H. pylori was detected in 42.2% of the samples. The cancer group had a poor expression of TRAIL (p < 0.0001) and overexpression of microRNA-106b-5p (p = 0.0005), however, our results confirmed that these genes are not directly related to each other although both are apoptosis-related regulators. Our results also indicated that H. pylori decreases microRNA-106b-5p expression and that this is a carcinogenic bacterium responsible for gastric diseases.
Collapse
Affiliation(s)
- Jéssica Pereira
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Santos
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Roger Delabio
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Barbosa
- Department of Biosciences and Technology of Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, Goiás 74605-050, Brazil;
| | - Marília Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Spencer Payão
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Lucas Rasmussen
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
- Correspondence: ; Tel.: +55-14-34021856
| |
Collapse
|
19
|
Jiao R, Xu F, Huang X, Li H, Liu W, Cao H, Zang L, Li Z, Hua H, Li D. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways. J Enzyme Inhib Med Chem 2020; 35:759-772. [PMID: 32183548 PMCID: PMC7144234 DOI: 10.1080/14756366.2020.1740696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of furoxan derivatives of chromone were prepared. The antiproliferative activities were tested against five cancer cell lines HepG2, MCF-7, HCT-116, B16, and K562, and two normal human cell lines L-02 and PBMCs. Among them, compound 15a exhibited the most potent antiproliferative activity. It was also found 15a produced more than 8 µM of NO at the peak time of 45 min by Griess assay. Generally, antiproliferative activity is positively related to NO release to some extent. Further in-depth studies on apoptosis-related mechanisms showed that 15a caused S-phase cell cycle arrest in a concentration-dependent manner and induced apoptosis significantly through mitochondria-related pathways. Human apoptosis protein array assay also demonstrated 15a increased the expression levels of pro-apoptotic Bax, Bad, HtrA2 and Trail R2/DR5. The expression of catalase and cell cycle blocker claspin were similarly up-regulated. In balance, 15a induced K562 cells death through both endogenous and exogenous pathways.
Collapse
Affiliation(s)
- Runwei Jiao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|