1
|
Li Z, Song Y, Lin Z, Zhang T, He A, Shi P, Zhang X, Cao Y, Zhu X. Hypoxia-initiated Cysteine-rich protein 61 secretion promotes chemoresistance of acute B lymphoblastic leukemia cells. Am J Cancer Res 2024; 14:3388-3403. [PMID: 39113880 PMCID: PMC11301291 DOI: 10.62347/ckmt4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
The drug resistance is a major obstacle in acute B-lymphoblastic leukemia (B-ALL) treatment. Our previous study has indicated that increased levels of Cysteine-rich protein 61 (Cyr61) in the bone marrow can mitigate the chemosensitivity of B-ALL cells, though the specific source of Cyr61 in the bone marrow remains unknown. In this study, we aimed to investigate whether hypoxia can induce Cyr61 production in B-ALL cells, delineates the underlying mechanisms, and evaluates the effect of Cyr61 on the chemosensitivity of B-ALL cells under hypoxia conditions. The results indicate that hypoxia promotes Cyr61 production in B-ALL cells by activating the NF-κB pathway. Increased Cyr61 expression appears to reduce the chemosensitivity of B-ALL cell to vincristine (VCR) and daunorubicin (DNR) through autophagy under hypoxia. Notably, inhibition of Cyr61 restores the chemosensitivity of B-ALL cells to both chemotherapeutic agents. This study is the first time to report that hypoxia decreases the chemosensitivity of B-ALL cells by inducing Cyr61 production, suggesting that targeting Cyr61 or its associated pathways could potentially improve the clinical response of B-ALL patients.
Collapse
Affiliation(s)
- Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yanfang Song
- Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese MedicineNo. 602 Bayiqi Road, Fuzhou 350001, Fujian, China
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Taigang Zhang
- Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese MedicineNo. 602 Bayiqi Road, Fuzhou 350001, Fujian, China
| | - Aoyu He
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Pengcong Shi
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xiaoli Zhang
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yinping Cao
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| |
Collapse
|
2
|
Majdinasab M, Lamy de la Chapelle M, Marty JL. Recent Progresses in Optical Biosensors for Interleukin 6 Detection. BIOSENSORS 2023; 13:898. [PMID: 37754132 PMCID: PMC10526799 DOI: 10.3390/bios13090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Interleukin 6 (IL-6) is pleiotropic cytokine with pathological pro-inflammatory effects in various acute, chronic and infectious diseases. It is involved in a variety of biological processes including immune regulation, hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic control, and sleep. Due to its important role as a biomarker of many types of diseases, its detection in small amounts and with high selectivity is of particular importance in medical and biological fields. Laboratory methods including enzyme-linked immunoassays (ELISAs) and chemiluminescent immunoassays (CLIAs) are the most common conventional methods for IL-6 detection. However, these techniques suffer from the complexity of the method, the expensiveness, and the time-consuming process of obtaining the results. In recent years, too many attempts have been conducted to provide simple, rapid, economical, and user-friendly analytical approaches to monitor IL-6. In this regard, biosensors are considered desirable tools for IL-6 detection because of their special features such as high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current progresses in different types of optical biosensors as the most favorable types of biosensors for the detection of IL-6 are discussed, evaluated, and compared.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM—UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France;
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
3
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Nygaard V, Ree AH, Dagenborg VJ, Børresen-Dale AL, Edwin B, Fretland ÅA, Grzyb K, Haugen MH, Mælandsmo GM, Flatmark K. A PRRX1 Signature Identifies TIM-3 and VISTA as Potential Immune Checkpoint Targets in a Subgroup of Microsatellite Stable Colorectal Cancer Liver Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:235-244. [PMID: 36968142 PMCID: PMC10035516 DOI: 10.1158/2767-9764.crc-22-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Disease recurrence and drug resistance are major challenges in the clinical management of patients with colorectal cancer liver metastases (CLM), and because tumors are generally microsatellite stable (MSS), responses to immune therapies are poor. The mesenchymal phenotype is overrepresented in treatment-resistant cancers and is associated with an immunosuppressed microenvironment. The aim of this work was to molecularly identify and characterize a mesenchymal subgroup of MSS CLM to identify novel therapeutic approaches. We here generated a mesenchymal gene expression signature by analysis of resection specimens from 38 patients with CLM using ranked expression level of the epithelial-to-mesenchymal transition-related transcription factor PRRX1. Downstream pathway analysis based on the resulting gene signature was performed and independent, publicly available datasets were used to validate the findings. A subgroup comprising 16% of the analyzed CLM samples were classified as mesenchymal, or belonging to the PRRX1 high group. Analysis of the PRRX1 signature genes revealed a distinct immunosuppressive phenotype with high expression of immune checkpoints HAVCR2/TIM-3 and VISTA, in addition to the M2 macrophage marker CD163. The findings were convincingly validated in datasets from three external CLM cohorts. Upregulation of immune checkpoints HAVCR2/TIM-3 and VISTA in the PRRX1 high subgroup is a novel finding, and suggests immune evasion beyond the PD-1/PD-L1 axis, which may contribute to poor response to PD-1/PD-L1-directed immune therapy in MSS colorectal cancer. Importantly, these checkpoints represent potential novel opportunities for immune-based therapy approaches in a subset of MSS CLM. Significance CLM is an important cause of colorectal cancer mortality where the majority of patients have yet to benefit from immunotherapies. In this study of gene expression profiling analyses, we uncovered novel immune checkpoint targets in a subgroup of patients with MSS CLMs harboring a mesenchymal phenotype.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Vegar Johansen Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Åsmund Avdem Fretland
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Luo C, Zhu Y, Zhou J, Sun X, Zhang S, Tan S, Li Z, Lin H, Zhang W. Increased CYR61 expression activates CCND1/c-Myc pathway to promote nasal epithelial cells proliferation in chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 247:109235. [PMID: 36681101 DOI: 10.1016/j.clim.2023.109235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-β1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
6
|
Xu H, Bao X, Yang J, Kong H, Li Y, Sun Z. Cysteine-rich 61(CYR61) alleviates cyclophosphamide-induced proliferation inhibition in ovarian granulosa cells via suppressing NLRP3/caspase1-mediated pyroptosis. Hum Exp Toxicol 2023; 42:9603271231152831. [PMID: 36650058 DOI: 10.1177/09603271231152831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND We investigated the level of Cysteine-rich 61 (CYR61) in premature ovarian failure as well as its regulatory molecular mechanism in this study. METHODS AND RESULTS Cyclophosphamide (CTX) was used to induce OGCs (rat ovarian granulosa cells) and rats to establish in vivo and in vitro premature ovarian failure models. H&E staining was used to detect the pathological changes of ovarian histopathology. Si-NLRP3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3) and si-CYR61 were transfected into OGCs using lipofectamine 3000. RT-qPCR and western blot were used to detect the expressions of CYR61 in ovarian tissue and OGCs. It showed that the expression of CYR61 was significantly down-regulated in premature ovarian failure model. Cell viability was detected using a Cell Counting Kit-8 (CCK-8) kit. TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling) staining was used to detect the apoptosis. 5-Ethynyl-2'-deoxyuridine (EdU) and SA-β-gal (senescence-associated β-galactosidase) staining were used to assess the proliferation and senescence. The expression of CYR61 in OGCs and ovarian tissues were detected by immunofluorescence and immunohistochemical staining. Overexpression of CYR61 significantly promoted OGCs proliferation and inhibited pyroptosis and apoptosis. Western blot was used to detect the protein expressions of p53 and p21 in OGCs. Flow cytometry was used to detect the pyroptosis. CYR61 overexpression inhibited the expression of NLRP3 and caspase-1 in CTX-induced OGCs according to western blot results. Moreover, we found that CYR61 overexpression down-regulated the protein expressions of p53 and p21 in CTX-induced OGCs. CONCLUSION CYR61 inhibited CTX-induced OGCs senescence, and the mechanism may be related to the regulation of caspase-1/NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Hongxia Xu
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, China.,Department of Reproductive Medical Centre, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiumin Bao
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, China
| | - Junya Yang
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, China
| | - Hanxin Kong
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, China
| | - Yan Li
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, China
| | - Zhiwei Sun
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, China.,Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan, Kunming, China
| |
Collapse
|
7
|
Ren Y, He J, Zhao W, Ma Y. The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Front Oncol 2022; 12:901922. [PMID: 35785168 PMCID: PMC9249354 DOI: 10.3389/fonc.2022.901922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Ovarian cancer (OC) is the leading cause of gynecological cancer-related mortality. Verbascoside (VB) is a phenylpropanoid glycoside from Chinese herbs, with anti-tumour activities. This study aimed to investigate the effects and mechanism of VB on OC. Methods OC cell lines SKOV3 and A2780 were used in this study. Cell viability, proliferation, and migration were measured using CCK-8, clonogenic, and transwell assays, respectively. Apoptosis and M1/M2 macrophages were detected using flow cytometry. The interaction between VB and CCN1 was predicted by molecular docking. The mRNA expression of CCN1 was detected by RT-qPCR. The protein levels of CCN1, AKT, p-AKT, p65, and p-p65 were determined by western blotting. A xenograft mice model was established for in vivo validation. Results VB inhibited OC cell proliferation and migration in a dose-dependent manner, and promoted apoptosis and M1 macrophage polarization. VB downregulated CCN1 and inhibited the AKT/NF-κB pathway. LY294002, an AKT inhibitor, potentiated the anti-tumour effects of VB. CCN1 overexpression weakened the anti-tumour effects of VB and VB + LY294002. In vivo experiments verified that VB inhibited tumour growth and promoted M1 polarization, which is regulated by the CCN1-mediated AKT/NF-κB pathway. Conclusion VB triggers the CCN1-AKT/NF-κB pathway-mediated M1 macrophage polarization for protecting against OC.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jinying He
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Wenhua Zhao
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yuzhen Ma
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Yuzhen Ma,
| |
Collapse
|
8
|
Cerri P, Shahida B, Lantz M, Planck T. Serum CYR61 Levels are Associated with Graves' Ophthalmopathy and Smoking in Patients with Graves' Disease. Horm Metab Res 2022; 54:168-174. [PMID: 35276742 DOI: 10.1055/a-1743-2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Smoking is a well-known risk factor for Graves' ophthalmopathy (GO) in patients suffering from Graves' disease (GD). Cysteine-rich angiogenic inducer 61 (CYR61), which has multiple physiological functions, has been shown to be associated with GD and GO. In this study, we aimed to investigate the association between smoking and CYR61 concentrations in GD patients with and without GO. Serum CYR61 was measured by ELISA. The association between CYR61 concentration and GO was assessed with binary logistic regression in all patients and in subgroups of smokers and nonsmokers. The Spearman correlation coefficient was used to determine the correlations between CYR61 concentration and clinical parameters. CYR61 levels were significantly higher in GD patients with GO than in patients without GO, in smokers than in nonsmokers and in individuals older than 50 years than in those younger than 50 years. The subgroup of "GO smokers" had the highest CYR61 levels [median (IQR), 119 pg/ml (129.8)], compared with "GO nonsmokers" [84.2 pg/ml (90.8), p=0.04], "no GO smokers" [88.9 pg/ml (109.8), p=0.01] and "no GO nonsmokers" [79.4 pg/ml (129.89), p=0.003]. For each unit increase in CYR61 concentration, the odds of having GO in smokers significantly and independently increased by 1% (OR=1.010; 95% CI: 1.002-1.018, p=0.012). In conclusion, our results indicate that smoking and age increase serum CYR61 levels in patients with GD and GO. The role of CYR61 as a predictor of GO in patients with GD should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Perparim Cerri
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Bushra Shahida
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Mikael Lantz
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Department of Diabetes and Endocrinology, Skåne University Hospital, Malmö, Sweden
| | - Tereza Planck
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Department of Diabetes and Endocrinology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
9
|
Filipe A, Katopodis P, Chudasama D, Kerslake R, Jeyaneethi J, Anikin V, Silva E, Kyrou I, Randeva HS, Sisu C, Hall M, Karteris E. Differential Expression of RAD51AP1 in Ovarian Cancer: Effects of siRNA In Vitro. J Pers Med 2022; 12:jpm12020201. [PMID: 35207688 PMCID: PMC8876735 DOI: 10.3390/jpm12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: DNA double strand breaks can affect genome integrity potentially leading to cancer. RAD51-associated protein 1 (RAD51AP1), an accessory protein to RAD51, is critical for homologous recombination, a key DNA damage response pathway. Emerging studies indicate a novel role for RAD51AP1 in carcinogenesis. Here we provide additional insight into the role of RAD51AP1 in ovarian cancer (OvCa). Methods: Gene expression and patient phenotype data were obtained from TCGA and GTEX project consortia for bioinformatics analysis. Immunohistochemistry of OvCa tissue microarray was undertaken. Functional analyses were performed in a SKOV3 OvCa cell line with down-regulation of RAD51AP1 using siRNA. Results: RAD51AP1 is overexpressed at gene level in primary and recurrent OvCa compared to controls. At protein level, RAD51AP1 was up-regulated in low grade serous tumors compared to high grade OvCa. There was higher expression of RAD51AP1 in OvCa metastatic to lymph nodes compared to primary cancer samples. Gene enrichment analyses identified 12 differentially expressed genes (DEGs) related to OvCa, eight of which are also common in tissue from patients with type 2 diabetes mellitus (T2DM). Conclusions: RAD51AP1 is overexpressed in OvCa, Given the link between OvCa and T2DM, the eight-gene signature shows potential for predictive value.
Collapse
Affiliation(s)
- Alice Filipe
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Periklis Katopodis
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Dimple Chudasama
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Jeyarooban Jeyaneethi
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State, Medical University, 119146 Moscow, Russia
| | - Elisabete Silva
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Marcia Hall
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Mount Vernon Cancer Centre, Northwood, London HA6 2RN, UK
- Correspondence: (M.H.); (E.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
- Correspondence: (M.H.); (E.K.)
| |
Collapse
|
10
|
Amer H, Kartikasari AER, Plebanski M. Elevated Interleukin-6 Levels in the Circulation and Peritoneal Fluid of Patients with Ovarian Cancer as a Potential Diagnostic Biomarker: A Systematic Review and Meta-Analysis. J Pers Med 2021; 11:1335. [PMID: 34945807 PMCID: PMC8704427 DOI: 10.3390/jpm11121335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal cancers, largely due to a late diagnosis. This study aimed to provide a comprehensive meta-analysis on the diagnostic performance of IL6 in the blood and ascites separately for advanced and early-stage OC. We included 37 studies with 6948 participants detecting serum or plasma IL6. The plasma/serum IL6 mean level in the late-stage OC was 23.88 pg/mL (95% CI: 13.84-41.23), and the early-stage OC was 16.67 pg/mL (95% CI: 510.06-27.61), significantly higher than the healthy controls at 3.96 pg/mL (95% CI: 2.02-7.73), but not significantly higher than those found in the controls with benign growths in the ovary, which was 9.63 pg/mL (95% CI: 4.16-22.26). To evaluate IL6 in ascites as a diagnostic marker, we included 26 studies with 1590 participants. The mean level of ascitic IL6 in the late-stage OC was 3676.93 pg/mL (95% CI: 1891.7-7146.7), and the early-stage OC was 1519.21 pg/mL (95% CI: 604.6-3817.7), significantly higher than the benign controls at 247.33 pg/mL (95% CI: 96.2-636.0). There was no significant correlation between the levels of circulating and ascitic IL6. When pooling all OC stages for analysis, we found that serum/plasma IL6 provided 76.7% sensitivity (95% CI: 0.71-0.92) and 72% specificity (95% CI: 0.64-0.79). Ascitic IL6 provided higher sensitivity at 84% (95% CI: 0.710-0.919) and specificity at 74% (95% CI: 0.646-0.826). This study highlights the utility of ascitic IL6 for early detection of OC.
Collapse
|
11
|
Yeger H, Perbal B. The CCN axis in cancer development and progression. J Cell Commun Signal 2021; 15:491-517. [PMID: 33877533 PMCID: PMC8642525 DOI: 10.1007/s12079-021-00618-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Since the authors first reviewed this subject in 2016 significant progress has been documented in the CCN field with advances made in the understanding of how members of the CCN family of proteins, CCN1-6, contribute to the pathogenesis and progression, positive and negative, of a larger variety of cancers. As termed matricellular proteins, and more recently the connective communication network, it has become clearer that members of the CCN family interact complexly with other proteins in the extracellular microenvironment, membrane signaling proteins, and can also operate intracellularly at the transcriptional level. In this review we expand on this earlier information providing new detailed information and insights that appropriate a much greater involvement and importance of their role in multiple aspects of cancer. Despite all the new information many more questions have been raised and intriguing results generated that warrant greater investigation. In order to permit the reader to smoothly integrate the new information we discuss all relevant CCN members in the context of cancer subtypes. We have harmonized the nomenclature with CCN numbering for easier comparisons. Finally, we summarize what new has been learned and provide a perspective on how our knowledge about CCN1-6 is being used to drive new initiatives on cancer therapeutics.
Collapse
Affiliation(s)
- Herman Yeger
- Program in Developmental and Stem Cell Biology Research Institute, SickKids, Toronto, Canada
| | | |
Collapse
|
12
|
Zhang D, Zou D, Deng Y, Yang L. Systematic analysis of the relationship between ovarian cancer prognosis and alternative splicing. J Ovarian Res 2021; 14:120. [PMID: 34526089 PMCID: PMC8442315 DOI: 10.1186/s13048-021-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer(OC) is the gynecological tumor with the highest mortality rate, effective biomarkers are of great significance in improving its prognosis. In recent years, there have been many studies on alternative splicing (AS) events, and the role of AS events in tumor has become a focus of attention. Methods Data were downloaded from the TCGA database and Univariate Cox regression analysis was performed to determine AS events associated with OC prognosis.Eight prognostic models of OC were constructed in R package, and the accuracy of the models were evaluated by the time-dependent receiver operating characteristic (ROC) curves.Eight types of survival curves were drawn to evaluate the differences between the high and low risk groups.Independent prognostic factors of OC were analyzed by single factor independent analysis and multi-factor independent prognostic analysis.Again, Univariate Cox regression analysis was used to analyze the relationship between splicing factors(SF) and AS events, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on OS-related SFs to understand the pathways. Results Univariate Cox regression analysis showed that among the 15,278 genes, there were 31,286 overall survival (OS) related AS events, among which 1524 AS events were significantly correlated with OS. The area under the time-dependent receiver operating characteristic curve (AUC) of AT and ME were the largest and the RI was the smallest,which were 0.757 and 0.68 respectively. The constructed models have good value for the prognosis assessment of OC patients. Among the eight survival curves, AP was the most significant difference between the high and low risk groups, with a P value of 1.61e − 1.The results of single factor independent analysis and multi-factor independent prognostic analysis showed that risk score calculated by the model and age could be used as independent risk factors.According to univariate COX regression analysis,109 SFs were correlated with AS events and adjusted in two ways: positive and negative. Conclusions SFs and AS events can directly or indirectly affect the prognosis of OC patients. It is very important to find effective prognostic markers to improve the survival rate of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00866-1.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zou
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yue Deng
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lihua Yang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Rickard BP, Conrad C, Sorrin AJ, Ruhi MK, Reader JC, Huang SA, Franco W, Scarcelli G, Polacheck WJ, Roque DM, del Carmen MG, Huang HC, Demirci U, Rizvi I. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers (Basel) 2021; 13:4318. [PMID: 34503128 PMCID: PMC8430600 DOI: 10.3390/cancers13174318] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ascites refers to the abnormal accumulation of fluid in the peritoneum resulting from an underlying pathology, such as metastatic cancer. Among all cancers, advanced-stage epithelial ovarian cancer is most frequently associated with the production of malignant ascites and is the leading cause of death from gynecologic malignancies. Despite decades of evidence showing that the accumulation of peritoneal fluid portends the poorest outcomes for cancer patients, the role of malignant ascites in promoting metastasis and therapy resistance remains poorly understood. This review summarizes the current understanding of malignant ascites, with a focus on ovarian cancer. The first section provides an overview of heterogeneity in ovarian cancer and the pathophysiology of malignant ascites. Next, analytical methods used to characterize the cellular and acellular components of malignant ascites, as well the role of these components in modulating cell biology, are discussed. The review then provides a perspective on the pressures and forces that tumors are subjected to in the presence of malignant ascites and the impact of physical stress on therapy resistance. Treatment options for malignant ascites, including surgical, pharmacological and photochemical interventions are then discussed to highlight challenges and opportunities at the interface of drug discovery, device development and physical sciences in oncology.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers (Basel) 2021; 13:cancers13174255. [PMID: 34503065 PMCID: PMC8428223 DOI: 10.3390/cancers13174255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Standard of care includes surgery followed by radiation and temozolomide chemotherapy. Despite treatment, patients have a poor prognosis with a median survival of less than 15 months. The poor prognosis is associated with an increased abundance of tumor-associated microglia and macrophages (TAMs), which are known to play a role in creating a pro-tumorigenic environment and aiding tumor progression. Most treatment strategies are directed against glioblastoma cells; however, accumulating evidence suggests targeting of TAMs as a promising therapeutic strategy. While TAMs are typically dichotomously classified as M1 and M2 phenotypes, recent studies utilizing single cell technologies have identified expression pattern differences, which is beginning to give a deeper understanding of the heterogeneous subpopulations of TAMs in glioblastomas. In this review, we evaluate the role of TAMs in the glioblastoma microenvironment and discuss how their interactions with cancer cells have an extensive impact on glioblastoma progression and treatment resistance. Finally, we summarize the effects and challenges of therapeutic strategies, which specifically aim to target TAMs.
Collapse
Affiliation(s)
- Rikke Sick Andersen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
| | - Atul Anand
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Dylan Scott Lykke Harwood
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
15
|
ZEB2 facilitates peritoneal metastasis by regulating the invasiveness and tumorigenesis of cancer stem-like cells in high-grade serous ovarian cancers. Oncogene 2021; 40:5131-5141. [PMID: 34211089 PMCID: PMC8363099 DOI: 10.1038/s41388-021-01913-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
Peritoneal metastasis is a common issue in the progression of high-grade serous ovarian cancers (HGSOCs), yet the underlying mechanism remains unconfirmed. We demonstrated that ZEB2, the transcription factor of epithelial–mesenchymal transition (EMT), was upregulated in ascites cells from HGSOC patients and in CD133+ cancer stem-like cells (CSLCs) from epithelial ovarian cancer (EOC) cell lines. SiRNA-mediated knockdown of ZEB2 in EOC cells decreased the percentage of CSLCs and reduced the colony forming potential, cell invasion capacity and expression of pluripotent genes Oct4 and Nanog. Inhibition of ZEB2 also induced cellular apoptosis and impacted the tumorigenicity of ovarian CSLCs. The mesenchymal markers N-cadherin and vimentin were downregulated, while the epithelial marker E-cadherin was upregulated after ZEB2 knockdown. MiR-200a, a molecule that downregulates ZEB2, had the opposite effect of ZEB2 expression in EOC-CSLCs. A retrospective study of 98 HGSOC patients on the relationship of ascites volume, pelvic and abdominal metastasis, International Federation of Gynecology and Obstetrics (FIGO) stage and the malignant involvement of abdominal organs and lymph nodes was performed. Patients with high expression of ZEB2 in tumour tissues had a higher metastasis rate and a poorer prognosis than those with low expression. The parameters of ZEB2 expression and ascites volume were strongly linked with the prognostic outcome of HGSOC patients and had higher hazard ratios. These findings illustrated that ZEB2 facilitates the invasive metastasis of EOC-CSLCs and can predict peritoneal metastasis and a poor prognosis in HGSOC patients.
Collapse
|
16
|
Shimizu K, Imai H, Kawashima A, Okada A, Ono I, Miyamoto S, Kataoka H, Aoki T. Induction of CCN1 in Growing Saccular Aneurysms: A Potential Marker Predicting Unstable Lesions. J Neuropathol Exp Neurol 2021; 80:695-704. [PMID: 33885814 DOI: 10.1093/jnen/nlab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 11/14/2022] Open
Abstract
Growing evidence has suggested that inflammatory responses promote the progression of saccular intracranial aneurysms (IAs). However, a biomarker predicting the progression has yet to be established. This study aimed to identify novel molecules upregulated during the progression using a previously established rat aneurysm model. In this model, aneurysms are induced at the surgically created common carotid artery (CCA) bifurcation. Based on sequential morphological data, the observation periods after the surgical manipulations were defined as the growing phase (on the 10th day) or the stable phase (on the 30th day). Total cell lysates from the CCA with or without an aneurysm lesion were prepared to perform protein array analysis. The protein array analysis revealed that the matricellular protein cellular communication network factor 1 (CCN1) is induced in lesions during the growing phase. Immunohistochemistry corroborated the significant upregulation of CCN1 in the growing phase compared with the stable phase. Simultaneously with the induction of CCN1, significant increases in the number of CD68-positive macrophages, myeloperoxidase-positive cells, and proliferating smooth muscle cells in lesions were observed. Immunohistochemistry of human IA specimens reproduced the induction of CCN1 in some lesions. These findings imply a potential role of CCN1 as a marker predicting the progression of saccular aneurysms.
Collapse
Affiliation(s)
- Kampei Shimizu
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Hirohiko Imai
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Akitsugu Kawashima
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Akihiro Okada
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Isao Ono
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Susumu Miyamoto
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Hiroharu Kataoka
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| | - Tomohiro Aoki
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto (KS, AO, IO, SM); Core Research for Evolutional Science and Technology (CREST) From Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka (KS, AO, IO, TA); Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto (HI); Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba (AK); and Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka (HK), Japan
| |
Collapse
|
17
|
Yoon T, Ahn SS, Pyo JY, Lee LE, Song JJ, Park YB, Lee SW. Correlation between serum cysteine-rich protein 61 and disease activity of antineutrophil cytoplasmic antibody-associated vasculitis. Clin Rheumatol 2021; 40:3703-3710. [PMID: 33755835 DOI: 10.1007/s10067-021-05701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Cysteine-rich protein 61 (CYR61) stimulates protein kinase B (Akt)-mediated nuclear factor-kappa B (NF-κB) signalling leading to an increase in pro-inflammatory cytokines, which play important roles in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Hence, we investigated whether serum CYR61 was correlated with disease activity of AAV in a single-centre prospective cohort. METHODS Seventy-two patients with AAV were randomly selected and included. Serum CYR61, interleukin (IL)-6 and IL-8 levels were quantified with the patients' stored sera, and clinical and laboratory data at the time of blood sampling were collected. Spearman's correlation and linear regression analysis was conducted to analyse the correlation between continuous variables. The optimal cut-off of serum CYR61 for predicting high disease activity was identified using the receiver operator characteristic curve. Birmingham vasculitis activity score (BVAS) was used as a measure to assess disease activity, and high disease activity was defined as BVAS ≥ 12. RESULTS Serum CYR61 significantly correlated with BVAS (r = 0.249), erythrocyte sedimentation rate (r = 0.283), C-reactive protein (r = 0.298) and serum IL-6 (r = 0.319). However, a linear association was not found between CYR61 and BVAS (β = 0.102, P = 0.304). The relative risk (RR) for high disease activity in AAV patients with serum CYR61 ≥ 236.2 pg/mL was higher than those with serum CYR61 < 236.2 pg/mL (RR 3.316, P = 0.018). CONCLUSION Even though serum CYR61 was not directly proportional to the increase of BVAS, it could be predictive of high disease activity in AAV. Key Points • Serum CYR61 was significantly correlated with BVAS along with ESR, CRP and serum IL-6. • The cut-off of serum CYR61 for high disease activity of AAV was obtained as 236.2 pg/mL. • AAV patients with serum CYR61 ≥ 236.2 pg/mL had increased risk of having higher disease activity than those with serum CYR61 < 236.2 pg/mL (RR 3.316, P = 0.018).
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Takeda H, Takai A, Iguchi E, Mishima M, Arasawa S, Kumagai K, Eso Y, Shimizu T, Takahashi K, Ueda Y, Taura K, Hatano E, Iijima H, Aoyagi H, Aizaki H, Marusawa H, Wakita T, Seno H. Oncogenic transcriptomic profile is sustained in the liver after the eradication of the hepatitis C virus. Carcinogenesis 2021; 42:672-684. [PMID: 33617626 DOI: 10.1093/carcin/bgab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) developing after hepatitis C virus (HCV) eradication is a serious clinical concern. However, molecular basis for the hepatocarcinogenesis after sustained virologic response (SVR) remains unclear. In this study, we aimed to unveil the transcriptomic profile of post-SVR liver tissues and explore the molecules associated with post-SVR carcinogenesis. We analysed 90 RNA sequencing datasets, consisting of non-cancerous liver tissues including 20 post-SVR, 40 HCV-positive and 7 normal livers, along with Huh7 cell line specimens before and after HCV infection and eradication. Comparative analysis demonstrated that cell cycle- and mitochondrial function-associated pathways were altered only in HCV-positive non-cancerous liver tissues, whereas some cancer-related pathways were up-regulated in the non-cancerous liver tissues of both post-SVR and HCV-positive cases. The persistent up-regulation of carcinogenesis-associated gene clusters after viral clearance was reconfirmed through in vitro experiments, of which, CYR61, associated with liver fibrosis and carcinogenesis in several cancer types, was the top enriched gene and co-expressed with cell proliferation-associated gene modules. To evaluate whether this molecule could be a predictor of hepatocarcinogenesis after cure of HCV infection, we also examined 127 sera from independent HCV-positive cohorts treated with direct-acting antivirals (DAAs), including 60 post-SVR-HCC patients, and found that the elevated serum Cyr61 was significantly associated with early carcinogenesis after receiving DAA therapy. In conclusion, some oncogenic transcriptomic profiles are sustained in liver tissues after HCV eradication, which might be a molecular basis for the liver cancer development even after viral clearance. Among them, up-regulated CYR61 could be a possible biomarker for post-SVR-HCC.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichi Arasawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Ueda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|