1
|
Xiao X, Lv X, Lin T, Li J, Wang R, Tian S, Liu X, Liu S, Jiang H, Yue D, Wang Y. Rho GTPase-activating protein 4 is upregulated in Kidney Renal Clear Cell Carcinoma and associated with poor prognosis and immune infiltration. Cancer Biomark 2024; 40:205-223. [PMID: 38905034 PMCID: PMC11307029 DOI: 10.3233/cbm-230388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that seriously threatens human health. Rho GTPase-activating protein 4 (ARHGAP4) plays an important role in the occurrence and development of tumors. OBJECTIVE The purpose of this study was to explore the role of ARHGAP4 in the progression of KIRC and its diagnostic and prognostic value. METHODS Multiple analytical methods and in vitro cell assays were used to explore the expression of ARHGAP4 and its value in the progression, diagnosis and prognosis of KIRC. The biological function of ARHGAP4 was studied by GO analysis and KEGG pathway analysis, and then the relationship between ARHGAP4 and immune infiltration was analyzed. RESULTS The expression of ARHGAP4 was significantly up-regulated in KIRC. We found that the high expression of ARHGAP4 was related to the progression of KIRC and suggested a poor prognosis. Compared with normal tissues, ARHGAP4 had a better diagnostic value in KIRC. The biological function of ARHGAP4 was related to immunity, and its expression was also closely related to tumor immune infiltration and immune checkpoints. CONCLUSIONS Our study demonstrated that ARHGAP4 may be a biomarker, which is related to the progression, diagnosis and prognosis of KIRC. Its biological functions are related to tumor immune infiltration.
Collapse
Affiliation(s)
- Xuesong Xiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaofei Lv
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Tianyu Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jianqiao Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shaoping Tian
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Xinyu Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shiming Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Huamao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dan Yue
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Xu Y, Xu J, Qiao R, Zhong H, Xia J, Zhong R. Loss of BLK expression as a potential predictor of poor prognosis and immune checkpoint blockade response in NSCLC and contribute to tumor progression. Transl Oncol 2023; 33:101671. [PMID: 37068401 PMCID: PMC10127141 DOI: 10.1016/j.tranon.2023.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has been proved to have significant anti-tumor effect in the clinical treatment of non-small cell lung cancer (NSCLC). Therefore, biomarkers predicting ICB response can provide better treatment for patients with NSCLC. METHODS Differential expression genes (DEGs) were identified by ImmuCellAI database. Copy number alteration (CNA) was analyzed by cBioPortal. The predicted efficiency of 4 genes on cancer immunotherapy was assessed by ROC analysis. The survival value of BLK was analyzed by Kaplan-Meier plotter and Prognoscan analysis. Clinical significance of BLK IHC-TMA score in NSCLC was also explored. The CCK-8 assay, wound healing assay, western blot assay in vitro and subcutaneous xenograft experiments in vivo were used for investigating the functions of BLK. The RNA-sequencing were performed to screen BLK regulated genes and conducted for GO/KEGG enrichment analysis. The transcriptional regulatory factor of BLK promoter region was predicted by ChIP-seq analysis. RESULTS 39 common DEGs between ICB Response (R) group and No Response (NR) group with NSCLC were identified, in which the CNA frequency of BLK deletion (> 6%) was found. The predicted efficiency of BLK on immunotherapy was performed best in NSCLC (AUC>0.7). Low expression of BLK was related to NSCLC with significantly poor prognosis. BLK overexpression can inhibit growth of NSCLC via activating apoptosis pathway, inhibiting the G2M checkpoint and Glycolysis pathway. The enrichment analysis indicated that BLK regulated genes related to oncogenic potential in NSCLC. Besides, BLK expression was inhibited via H3K27me3 modification in A549 and H1299 cells. BLK mRNA level was negatively correlated with methylation and positively correlated with the tumor purity in NSCLC. CONCLUSION Our study provides strong evidence that low expression of BLK may serve as a biomarker for poor prognosis in NSCLC, while response to ICB therapy and contributes to NSCLC tumor progression.
Collapse
Affiliation(s)
- Yingqi Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jianlin Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jinjing Xia
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
3
|
Sun Y, Khan MAAK, Mangiola S, Barrow AD. IL17RB and IL17REL Expression Are Associated with Improved Prognosis in HPV-Infected Head and Neck Squamous Cell Carcinomas. Pathogens 2023; 12:pathogens12040572. [PMID: 37111458 PMCID: PMC10143491 DOI: 10.3390/pathogens12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Changes in the cellular secretome are implicated in virus infection, malignancy, and anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from 24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved prognosis, which was specifically associated with an increased tumor abundance of memory B and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones, chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC patients. The transcriptional parameters that we describe may be optimized to improve prognosis and risk stratification in the clinic and provide insights into gene and cellular targets that may potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected HNSCC patients.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
4
|
Cohen AO, Woo SH, Zhang J, Cho J, Ruiz ME, Gong J, Du R, Yarygina O, Jafri DZ, Bachelor MA, Finlayson MO, Soni RK, Hayden MS, Owens DM. Tbc1d10c is a selective, constitutive suppressor of the CD8 T-cell anti-tumor response. Oncoimmunology 2022; 11:2141011. [PMID: 36338148 PMCID: PMC9635554 DOI: 10.1080/2162402x.2022.2141011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy approaches target signaling pathways that are highly synonymous between CD4 and CD8 T-cell subsets and, therefore, often stimulate nonspecific lymphocyte activation, resulting in cytotoxicity to otherwise healthy tissue. The goal of our study was to identify intrinsic modulators of basic T lymphocyte activation pathways that could discriminately bolster CD8 anti-tumor effector responses. Using a Tbc1d10c null mouse, we observed marked resistance to a range of tumor types conferred by Tbc1d10c deficiency. Moreover, tumor-bearing Tbc1d10c null mice receiving PD-1 or CTLA-4 monotherapy exhibited a 33% or 90% cure rate, respectively. While Tbc1d10c was not expressed in solid tumor cells, Tbc1d10c disruption selectively augmented CD8 T-cell activation and cytotoxic effector responses and adoptive transfer of CD8 T cells alone was sufficient to recapitulate Tbc1d10c null tumor resistance. Mechanistically, Tbc1d10c suppressed CD8 T-cell activation and anti-tumor function by intersecting canonical NF-κB pathway activation via regulation of Map3k3-mediated IKKβ phosphorylation. Strikingly, none of these cellular or molecular perturbations in the NF-κB pathway were featured in Tbc1d10c null CD4 T cells. Our findings identify a Tbc1d10c-Map3k3-NF-κB signaling axis as a viable therapeutic target to promote CD8 T-cell anti-tumor immunity while circumventing CD4 T cell-associated cytotoxicity and NF-κB activation in tumor cells.
Collapse
Affiliation(s)
- Adrienne O. Cohen
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA
| | - Seung-Hyun Woo
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Discovery Biology Division, Velia Therapeutics, San Diego, CA, USA
| | - Junya Zhang
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA
| | - Jiyoon Cho
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Global Safety Assurance, Reckitt Benckiser Inc., Montvale, NJ, USA
| | - Marlon E. Ruiz
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Olink Proteomics, Los Angeles, CA90045, USA
| | - Jianli Gong
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Processing Cell Sciences, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Rong Du
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA
| | - Olga Yarygina
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA
| | - Danya Z. Jafri
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA
| | - Michael A. Bachelor
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Boston Scientific, Center for Biological Innovation, Global Preclinical Sciences, Marlborough, MA, USA
| | - Michael O. Finlayson
- Department of Systems Biology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY, USA,Simons Foundation, New York, NY10010, USA
| | - Rajesh K. Soni
- Proteomics & Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY10032, USA
| | - Matthew S. Hayden
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David M. Owens
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY10032, USA,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, NY, USA,CONTACT David M. Owens Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Ave., Room 312A, New York, NY10032
| |
Collapse
|
5
|
Single-Cell Transcriptome Analysis Reveals Different Immune Signatures in HPV- and HPV + Driven Human Head and Neck Squamous Cell Carcinoma. J Immunol Res 2022; 2022:2079389. [PMID: 36157879 PMCID: PMC9507777 DOI: 10.1155/2022/2079389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a significant health problem and related to poor long-term outcomes, indicating more research to be done to deeply understand the underlying pathways. Objective This current study aimed in the assessment of the viral- (especially human papilloma virus [HPV]) and carcinogen-driven head and neck squamous cell carcinoma (HNSCC) microenvironment based on single-cell sequencing analysis. Methods Data were downloaded from GEO database (GSE139324), including 131224 cells from 18 HP- HNSCC patients and 8 HPV+ HNSCC patients. Following data normalization, all highly variable genes in single cells were identified, and batch correction was applied. Differentially expressed genes were identified using Wilcoxon rank sum test. A gene enrichment analysis was performed in each cell cluster using KEGG analysis. Single-cell pseudotime trajectories were constructed with MONOCLE (version 2.6.4). Cell-cell interactions were analyzed with CellChat R package. Additionally, cell-cell communication patterns in key signal pathways were compared in different tissue groups. A hidden Markov model (HMM) was used to predict gene expression states (on or off) throughout pseudotime. Five-year overall survival outcomes were compared in both HPV+ and HPV- subsets. Results 20,978 high-quality individual cells passed quality control. RNA-seq data were used from 522 HNSCC primary tumor samples. 1,137 differentially expressed genes between HPV+ and HPV- HNSCC patients were investigated. 96 differentially expressed genes were associated with overall survival and highly enriched in B cell associated biological process. Cell composition differed between types of samples. MHC-I, MHC-II, and MIF signaling pathways were found to be most relevant. Within these pathways, some cells were either signal receiver or signal sender, depending on sample type, respectively. Six genes were obtained, AREG and TGFBI (upregulation), CD27, CXCR3, MS4A1, and CD19 (downregulation), whose expression and HPV types were highly associated with worse overall survival. AREG and TGFBI were pDC marker genes, CXCR3 and CD27 were significantly expressed in T cell-related cells, while MS4A1 and CD19 were mainly expressed in B naïve cells. Conclusions This study revealed dynamic changes in cell percentage and heterogeneity of cell subtypes of HNSCC. AREG, TGFBI, CD27, CXCR3, MS4A1, and CD19 were associated with worse overall survival in HPV-related HNSCC. Especially B-cell related pathways were revealed as particularly relevant in HPV-related HNSCC. These findings are a basis for the development of biomarkers and therapeutic targets in respective patients.
Collapse
|
6
|
Li H, Wang J, He L, Zhang F, Meng Q, Huang J, Li Y, Liu R, Yang X, Wei J. Construction of a combined hypoxia and EMT index for head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:961858. [PMID: 36046345 PMCID: PMC9420946 DOI: 10.3389/fcell.2022.961858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: In head and neck squamous cell carcinoma (HNSCC), the interaction between epithelial-mesenchymal transformation (EMT) and hypoxia has been confirmed, and corresponding treatment methods have been investigated. Few studies have examined its combined effects and its potential clinical use, however. As a result, we developed a new scoring system based on EMT and hypoxia.Methods: We combined 200 hypoxia-related genes with 1184 EMT-related genes and finally constructed a score risk model containing 14 characteristic factors named the comprehensive index of EMT and hypoxia (CIEH) by the Lasso-Cox regression and univariate Cox regression method, which is used to predict prognosis and to guide treatment planning in HNSCC patients. Furthermore, we examined HNSCC expression of CIEH-related genes using the human protein atlas database.Results: Based on survival analysis results, CIEH value had a high prognostic value in HNSCC patients, a high CIEH value carries a poor prognostic significance in HNSCC. It is noteworthy that the CIEH value was correlated with tumor immune infiltration. Moreover, the CIEH had significant differences in age, stage, N, laterality, and peripheral nerve invasion, and that the CIEH could be an independent prognostic factor.Conclusions: This study constructed a CIEH model containing 14 characteristic factors, including hypoxia-related genes and EMT genes, that may be able to serve as potential biomarkers for HNSCC. According to the 14 characteristic factors in the CIEH model, a diagnostic kit can be packaged in the future to evaluate the survival of patients before tumor surgery and guide the subsequent treatment plan.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jun Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Fengrui Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Qingzhe Meng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Junhong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yahui Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Rong Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jianhua Wei, ; Xinjie Yang,
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jianhua Wei, ; Xinjie Yang,
| |
Collapse
|
7
|
Berglund A, Muenyi C, Siegel EM, Ajidahun A, Eschrich SA, Wong D, Hendrick LE, Putney RM, Kim S, Hayes DN, Shibata D. Characterization of Epigenomic Alterations in HPV16+ Head and Neck Squamous Cell Carcinomas. Cancer Epidemiol Biomarkers Prev 2022; 31:858-869. [PMID: 35064062 PMCID: PMC8983563 DOI: 10.1158/1055-9965.epi-21-0922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epigenetic changes associated with human papillomavirus (HPV)-driven tumors have been described; however, HPV type-specific alterations are less well understood. We sought to compare HPV16-specific methylation changes with those in virus-unassociated head and neck squamous cell carcinomas (HNSCC). METHODS Within The Cancer Genome Atlas, 59 HPV16+ HNSCC, 238 nonviral HNSCC (no detectable HPV or other viruses), and 50 normal head and neck tissues were evaluated. Significant differentially methylated regions (DMR) were selected, and key associated genes were identified. Partial least squares models were generated to predict HPV16 status in additional independent samples. RESULTS HPV infection in HNSCC is associated with type-specific methylomic profiles. Multiple significant DMRs were identified between HPV16+, nonviral, and normal samples. The most significant differentially methylated genes, SYCP2, MSX2, HLTF, PITX2, and GRAMD4, demonstrated HPV16-associated methylation patterns with corresponding alterations in gene expression. Phylogenetically related HPV types (alpha-9 species; HPV31, HPV33, and HPV35) demonstrated a similar methylation profile to that of HPV16 but differed from those seen in other types, such as HPV18 and 45 (alpha-7). CONCLUSIONS HNSCC linked to HPV16 and types from the same alpha species are associated with a distinct methylation profile. This HPV16-associated methylation pattern is also detected in cervical cancer and testicular germ cell tumors. We present insights into both shared and unique methylation alterations associated with HPV16+ tumors and may have implications for understanding the clinical behavior of HPV-associated HNSCC. IMPACT HPV type-specific methylomic changes may contribute to understanding biologic mechanisms underlying differences in clinical behavior among different HPV+ and HPV- HNSCC.
Collapse
Affiliation(s)
- Anders Berglund
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Clarisse Muenyi
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erin M Siegel
- Departments of Cancer Epidemiology , H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Abidemi Ajidahun
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven A. Eschrich
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Denise Wong
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah E. Hendrick
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan M. Putney
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - D. Neil Hayes
- Division of Hematology and Oncology, University of Tennessee Health Science Center, Memphis TN, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
8
|
Liu J, Liu M, Chen X. Identification of Potential Key Biomarkers of Atrial Fibrillation and Their Correlation with Immune Infiltration in Atrial Tissue. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4029840. [PMID: 35273648 PMCID: PMC8904093 DOI: 10.1155/2022/4029840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Objective To identify potential key biomarkers and characterize immune infiltration in atrial tissue of patients with atrial fibrillation (AF) through bioinformatics analysis. Methods Differentially expressed genes (DEGs) were identified by the LIMMA package in Bioconductor, and functional and pathway enrichment analyses were undertaken using GO and KEGG. The LASSO logistic regression and BORUTA algorithm were employed to screen for potential novel key markers of AF from all DEGs. Gene set variation analysis was also performed. Single-sample gene set enrichment analysis was employed to quantify the infiltration levels for each immune cell type, and the correlation between hub genes and infiltrating immune cells was analyzed. Results A total of 52 DEGs were identified, including of 26 downregulated DEGs and 26 upregulated DEGs. DEGs were primarily enriched in the Major Histocompatibility Complex class II protein complex, glucose homeostasis, protein tetramerization, regulation of synapse organization, cytokine activity, heart morphogenesis, and blood circulation. Three downregulated genes and three upregulated genes were screened by LASSO logistic regression and the BORUTA algorithm. Finally, immune infiltration analysis indicated that the atrial tissue of AF patients contained significant infiltration of APC_co_inhibition, Mast_cell, neutrophils, pDCs, T_cell_costimulation, and Th1_cells compared with paired sinus rhythm (SR) atrial tissue, and the three downregulated genes were negatively correlated with the six kinds of immune cells mentioned above. Conclusion The hub genes identified in this study and the differences in immune infiltration of atrial tissue observed between AF and SR tissue might help to characterize the occurrence and progression of AF.
Collapse
Affiliation(s)
- Jie Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China 100034
| | - Meilin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China 100034
| | - Xiahuan Chen
- Department of Geriatrics, Peking University First Hospital, Beijing, China 100034
| |
Collapse
|
9
|
Zhang S, Zhang W, Zhang J. Comprehensive analysis of immune cell infiltration and significant genes in head and neck squamous cell carcinoma. Oral Oncol 2022; 126:105755. [PMID: 35144208 DOI: 10.1016/j.oraloncology.2022.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immunotherapy directed at the tumor microenvironment is effective in the treatment of head and neck squamous cell carcinoma (HNSCC). In contrast, there has been a paucity of research on the relationship between the HNSCC microenvironment and prognostic outcome. Meanwhile, tumor immune cell infiltration (ICI) has emerged as a critical step in immunotherapy. METHODS Two algorithms, CIBERSORT and ESTIMATE, were performed to evaluate the ICI view of 885 HNSCC patients using three databases: the Cancer Genome Atlas (TCGA), Arrayexpress, and Gene Expression Omnibus (GEO). RESULTS Different ICI subtypes were identified. Following that, 57 different expression genes (DEGs) were discovered. The ICI scores of all patients were calculated using the Principal Component Analysis (PCA) algorithm. Additionally, an immune-related prognostic signature was developed and validated using 17 of 57 DEGs. Patients with a low-ICI or low-risk score had a higher infiltration immune-activated related cells and higher expression of most immune checkpoint-related molecules, indicating a better prognosis. Furthermore, using the pRRophetic algorithm, the sensitivities of many chemotherapeutic drugs were significantly different between two ICI subtypes or two risk groups. Moreover, a nomogram incorporating the ICI score, risk score, and clinical characteristics was developed and was capable of accurately predicting outcomes. CONCLUSION The ICI score and 17-gene signature could improve HNSCC survival prediction, promote individual treatment strategies, and provide promising novel immunotherapy biomarkers.
Collapse
Affiliation(s)
- Shoujing Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Jian Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China.
| |
Collapse
|