1
|
Wang T, Jin Y, Wang M, Chen B, Sun J, Zhang J, Yang H, Deng X, Cao X, Wang L, Tang Y. SALL4 in gastrointestinal tract cancers: upstream and downstream regulatory mechanisms. Mol Med 2024; 30:46. [PMID: 38584262 PMCID: PMC11000312 DOI: 10.1186/s10020-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Effective therapeutic targets and early diagnosis are major challenges in the treatment of gastrointestinal tract (GIT) cancers. SALL4 is a well-known transcription factor that is involved in organogenesis during embryonic development. Previous studies have revealed that SALL4 regulates cell proliferation, survival, and migration and maintains stem cell function in mature cells. Additionally, SALL4 overexpression is associated with tumorigenesis. Despite its characterization as a biomarker in various cancers, the role of SALL4 in GIT cancers and the underlying mechanisms are unclear. We describe the functions of SALL4 in GIT cancers and discuss its upstream/downstream genes and pathways associated with each cancer. We also consider the possibility of targeting these genes or pathways as potential therapeutic options for GIT cancers.
Collapse
Affiliation(s)
- Tairan Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yan Jin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengyao Wang
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Boya Chen
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinyu Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyao Deng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xingyue Cao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Kim HJ, Batara DC, Jeon YJ, Lee S, Beck S, Kim SH. The impact of MEIS1 TALE homeodomain transcription factor knockdown on glioma stem cell growth. Anim Cells Syst (Seoul) 2024; 28:93-109. [PMID: 38487309 PMCID: PMC10939110 DOI: 10.1080/19768354.2024.2327340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Myeloid ecotropic virus insertion site 1 (MEIS1) is a HOX co-factor necessary for organ development and normal hematopoiesis. Recently, MEIS1 has been linked to the development and progression of various cancers. However, its role in gliomagenesis particularly on glioma stem cells (GSCs) remains unclear. Here, we demonstrate that MEIS1 is highly upregulated in GSCs compared to normal, and glioma cells and to its differentiated counterparts. Inhibition of MEIS1 expression by shRNA significantly reduced GSC growth in both in vitro and in vivo experiments. On the other hand, integrated transcriptomics analyses of glioma datasets revealed that MEIS1 expression is correlated to cell cycle-related genes. Clinical data analysis revealed that MEIS1 expression is elevated in high-grade gliomas, and patients with high MEIS1 levels have poorer overall survival outcomes. The findings suggest that MEIS1 is a prognostic biomarker for glioma patients and a possible target for developing novel therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Samuel Beck
- Department of Dermatology, Center for Aging Research, Chobanian & Avedisian School of Medicine, Boston University, Boston, USA
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Zhang J, Xin Y, Ling X, Liang H, Zhang L, Fang C, Ma J. Nucleoporin 93, a new substrate of the E3 ubiquitin protein ligase HECTD1, promotes esophageal squamous cell carcinoma progression. Hum Cell 2024; 37:245-257. [PMID: 37993750 DOI: 10.1007/s13577-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Nucleoporin 93 (NUP93) is an important component of the nuclear pore complex, exhibiting pro-tumorigenic properties in some cancers. However, its function in esophageal squamous cell carcinoma (ESCC) has not been elucidated. This study aimed to investigate the effects of NUP93 in ESCC and the underlying mechanisms involved. Through analysis of public human cancer datasets, we observed higher expression of NUP93 in esophageal cancer tissues than in normal tissues. Stable ESCC cell lines with NUP93 overexpression or knockdown were established by lentiviral vector transduction and puromycin selection. NUP93 knockdown suppressed the proliferation, colony formation, cell cycle transition, migration, and invasion of ESCC cells, while the overexpression of NUP93 displayed opposite effects. NUP93 positively regulated epithelial-mesenchymal transition and AKT signaling transduction in ESCC cells. In addition, NUP93 increased the expression of programmed death ligand 1 (PD-L1) in ESCC cells and attenuated NK cell-mediated lysis of ESCC cells. In vivo experiments demonstrated that NUP93 promotes the growth of ESCC in nude mice, enhances Ki67 and PD-L1 expression, and promotes AKT signaling transduction in xenografts. Mechanistically, we demonstrated that the HECT domain E3 ubiquitin protein ligase 1 (HECTD1) contributes to the ubiquitination and degradation of NUP93 and acts as a tumor suppressor in ESCC. To conclude, this study has shown that NUP93 has pro-tumor properties in ESCC and that HECTD1 functions as an upstream regulator of NUP93 in ESCC. These findings may contribute to the investigation of potential therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Yanzhong Xin
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Hao Liang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Chengyuan Fang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
A Systematic Pan-Cancer Analysis of MEIS1 in Human Tumors as Prognostic Biomarker and Immunotherapy Target. J Clin Med 2023; 12:jcm12041646. [PMID: 36836180 PMCID: PMC9964192 DOI: 10.3390/jcm12041646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND We intended to explore the potential immunological functions and prognostic value of Myeloid Ecotropic Viral Integration Site 1 (MEIS1) across 33 cancer types. METHODS The data were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Gene expression omnibus (GEO) datasets. Bioinformatics was used to excavate the potential mechanisms of MEIS1 across different cancers. RESULTS MEIS1 was downregulated in most tumors, and it was linked to the immune infiltration level of cancer patients. MEIS1 expression was different in various immune subtypes including C2 (IFN-gamma dominant), C5 (immunologically quiet), C3 (inflammatory), C4 (lymphocyte depleted), C6 (TGF-b dominant) and C1 (wound healing) in various cancers. MEIS1 expression was correlated with Macrophages_M2, CD8+T cells, Macrophages_M1, Macrophages_M0 and neutrophils in many cancers. MEIS1 expression was negatively related to tumor mutational burden (TMB), microsatellite instability (MSI) and neoantigen (NEO) in several cancers. Low MEIS1 expression predicts poor overall survival (OS) in adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell carcinoma (KIRC) patients, while high MEIS1 expression predicts poor OS in colon adenocarcinoma (COAD) and low grade glioma (LGG) patients. CONCLUSION Our findings revealed that MEIS1 is likely to be a potential new target for immuno-oncology.
Collapse
|
5
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
6
|
Jin Y, Wang J, Zhao M, Lin J, Hong L. Myeloid ecotropic viral integration site-1 inhibition promotes apoptosis, suppresses proliferation of acute myeloid leukemia cells, accentuates the effects of anticancer drugs. Bioengineered 2022; 13:5700-5708. [PMID: 35212611 PMCID: PMC8974192 DOI: 10.1080/21655979.2021.2000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate the effects of myeloid ecotropic viral integration site-1 (MEIS1) on the proliferation and apoptosis of acute myeloid leukemia (AML) cells and the anticancer effects of the drug, we screened Kasumi-6, KG-1, and Kasumi-1 cells using quantitative reverse transcription polymerase chain reaction. Kasumi-6 and Kasumi-1 cells were subjected to human antigen R (HuR)-mediated interference (IV). Hexokinase 2 (HK2) expression and phosphorylation of protein kinase B (p-AKT) and mammalian target of rapamycin (p-mTOR) were observed with Western blotting. Cell proliferation was assessed using Cell Counting Kit-8, apoptosis was examined using Hoechst 33,258 staining, and glucose uptake was detected with a colorimetric biochemical assay kit. We found that, among the three cell lines tested, MEIS1 expression was highest in Kasumi-1 cells, which were therefore selected for subsequent experiments. Kasumi-1 cells receiving IV showed significantly decreased proliferation (p < 0.05) and increased apoptosis compared to the control group. Compared with the controls, IV significantly increased the expression of HK2, p-AKT, p-mTOR, multidrug resistance-associated protein 1 and P-glycoprotein (P < 0.05), but decreased glucose uptake. Treatment with adriamycin, daunorubicin and imatinib resulted in a progressive increase in inhibition of cell proliferation, with the IV group showing the highest inhibition rate among the three groups (P < 0.05). Thus, inhibition of MEIS1 activity promoted apoptosis, inhibited the proliferation of Kasumi-1 and Kasumi-6 cells, and increaseed the anticancer effect of the drugs, suggesting that inhibition of MEIS1 may be a potential strategy for the treatment of AML.
Collapse
Affiliation(s)
- Yinglan Jin
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhao
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyi Lin
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Trosko JE. The Concept of "Cancer Stem Cells" in the Context of Classic Carcinogenesis Hypotheses and Experimental Findings. Life (Basel) 2021; 11:1308. [PMID: 34947839 PMCID: PMC8708536 DOI: 10.3390/life11121308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
In this Commentary, the operational definition of cancer stem cells or cancer initiating cells includes the ability of certain cells, found in a heterogeneous mixture of cells within a tumor, which are able to sustain growth of that tumor. However, that concept of cancer stem cells does not resolve the age-old controversy of two opposing hypotheses of the origin of the cancer, namely the stem cell hypothesis versus the de-differentiation or re-programming hypothesis. Moreover, this cancer stem concept has to take into account classic experimental observations, techniques, and concepts, such as the multi-stage, multi-mechanism process of carcinogenesis; roles of mutagenic, cytotoxic and epigenetic mechanisms; the important differences between errors of DNA repair and errors of DNA replication in forming mutations; biomarkers of known characteristics of normal adult organ-specific stem cells and of cancer stem cells; and the characteristics of epigenetic mechanisms involved in the carcinogenic process. In addition, vague and misleading terms, such as carcinogens, immortal and normal cells have to be clarified in the context of current scientific facts. The ultimate integration of all of these historic factors to provide a current understanding of the origin and characteristics of a cancer stem cell, which is required for a rational strategy for prevention and therapy for cancer, does not follow a linear path. Lastly, it will be speculated that there exists evidence of two distinct types of cancer stem cells, one that has its origin in an organ-specific adult stem cell that is 'initiated' in the stem cell stage, expressing the Oct4A gene and not expressing any connexin gene or having functional gap junctional intercellular communication (GJIC). The other cancer stem cell is derived from a stem cell that is initiated early after the Oct4A gene is suppressed and the connexin gene is expressed, which starts early differentiation, but it is blocked from terminal differentiation.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 048864, USA
| |
Collapse
|
8
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
9
|
Trosko JE. In Search of a Unifying Concept in Human Diseases. Diseases 2021; 9:68. [PMID: 34698126 PMCID: PMC8544458 DOI: 10.3390/diseases9040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Throughout the history of biological/medicine sciences, there has been opposing strategies to find solutions to complex human disease problems. Both empirical and deductive approaches have led to major insights and concepts that have led to practical preventive and therapeutic benefits for the human population. The classic definitions of "science" (to know) has been paired with the classic definition of technology (to do). One knew more as the technology developed, and that development was often based on science. In other words, one could do more if science could improve the technology. In turn, this made possible to know more science with improved technology. However, with the development of new technologies of today in biology and medicine, major advances have been made, such as the information from the Human Genome Project, genetic engineering techniques and the use of bioinformatic uses of sophisticated computer analyses. This has led to the renewed idea that Precision Medicine, while raising some serious ethical concerns, also raises the expectation of improved potential of risk predictions for prevention and treatment of various genetically and environmentally influenced human diseases. This new field Artificial Intelligence, as a major handmaiden to Precision Medicine, is significantly altering the fundamental means of biological discovery. However, can today's fundamental premise of "Artificial Intelligence", based on identifying DNA, as the primary nexus of human health and disease, provide the practical solutions to complex human diseases that involve the interaction of those genes with the broad spectrum of "environmental factors"? Will it be "precise" enough to provide practical solutions for prevention and treatments of diseases? In this "Commentary", with the example of human carcinogenesis, it will be challenged that, without the integration of mechanistic and hypothesis-driven approaches with the "unbiased" empirical analyses of large numbers of data, the Artificial Intelligence approach with fall short.
Collapse
Affiliation(s)
- James Edward Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Trosko JE. On the potential origin and characteristics of cancer stem cells. Carcinogenesis 2021; 42:905-912. [PMID: 34014276 DOI: 10.1093/carcin/bgab042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The 'cancer stem cell' hypothesis has pointed to a specific target for new cancer therapies. The hypothesis is based on the observation that only the 'cancer stem cell' among the other heterogeneous cancer cells can sustain the growth of the cancer. The goal is to identify biomarkers of 'cancer stem cells' to distinguish them from the 'cancer non-stem cells' and normal adult tissue-specific stem cells. This analyst posits a hypothesis that, although all cancers originated from a single cell, there exist two types of 'cancer stem cells' either by the 'Stem Cell hypothesis' or from the 'De-differentiation hypothesis'. It is proposed that there exist two different 'cancer stem cells'. Some 'cancer stem cells' (a) lack the expression of connexins or gap junction genes and lack any form of gap junctional intercellular communication (GJIC) or (b) they have the expressed connexin-coded proteins for functional GJIC but are dysfunctional by some expressed oncogene. This is consistent with the Loewenstein hypothesis that a universal characteristic of cancer cells is they do not have growth control, nor terminally differentiate. This review speculates the normal organ-specific adult stem cell, that is 'initiated', is the origin of the 'cancer stem cells' with expressed Oct4A gene and no expressed connexin genes; whereas the other cancer stem cell has no expressed Oct4A genes but expressed connexin gene, whose coded protein is dysfunctional. Hence. both types of 'cancer stem cells' lack GJIC, for two different reasons, the selective therapies have to be different for these different cell types.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Comparative Transcriptomic Analysis of the Hematopoietic System between Human and Mouse by Single Cell RNA Sequencing. Cells 2021; 10:cells10050973. [PMID: 33919312 PMCID: PMC8143332 DOI: 10.3390/cells10050973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: mouse models are fundamental to the study of hematopoiesis, but comparisons between mouse and human in single cells have been limited in depth. (2) Methods: we constructed a single-cell resolution transcriptomic atlas of hematopoietic stem and progenitor cells (HSPCs) of human and mouse, from a total of 32,805 single cells. We used Monocle to examine the trajectories of hematopoietic differentiation, and SCENIC to analyze gene networks underlying hematopoiesis. (3) Results: After alignment with Seurat 2, the cells of mouse and human could be separated by same cell type categories. Cells were grouped into 17 subpopulations; cluster-specific genes were species-conserved and shared functional themes. The clustering dendrogram indicated that cell types were highly conserved between human and mouse. A visualization of the Monocle results provided an intuitive representation of HSPC differentiation to three dominant branches (Erythroid/megakaryocytic, Myeloid, and Lymphoid), derived directly from the hematopoietic stem cell and the long-term hematopoietic stem cells in both human and mouse. Gene regulation was similarly conserved, reflected by comparable transcriptional factors and regulatory sequence motifs in subpopulations of cells. (4) Conclusions: our analysis has confirmed evolutionary conservation in the hematopoietic systems of mouse and human, extending to cell types, gene expression and regulatory elements.
Collapse
|