1
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
2
|
Wang Y, Niu K, Shi Y, Zhou F, Li X, Li Y, Chen T, Zhang Y. A review: targeting UBR5 domains to mediate emerging roles and mechanisms - chance or necessity? Int J Surg 2024; 110:4947-4964. [PMID: 38701508 PMCID: PMC11326040 DOI: 10.1097/js9.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5. The authors discuss the specific domains of UBR5 and explore their biological functions separately. Furthermore, the authors describe the involvement of UBR5 in different pathophysiological conditions, including immune response, virus infection, DNA damage response, and protein quality control. Moreover, the authors provide a thorough summary of the important roles and regulatory mechanisms of UBR5 in cancers and other diseases. On the whole, investigating the domains and functions of UBR5, elucidating the underlying mechanisms of UBR5 with various substrates in detail may provide new theoretical basis for the treatment of diseases, including cancers, which could improve future studies to construct novel UBR5-targeted therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
Du Y, Yang Z, Shi H, Chen Z, Chen R, Zhou F, Peng X, Hong T, Jiang L. E3 ubiquitin ligase UBR5 promotes gemcitabine resistance in pancreatic cancer by inducing O-GlcNAcylation-mediated EMT via destabilization of OGA. Cell Death Dis 2024; 15:340. [PMID: 38755129 PMCID: PMC11099055 DOI: 10.1038/s41419-024-06729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Pancreatic cancer (PC) is among the deadliest malignancies, with an extremely poor diagnosis and prognosis. Gemcitabine (GEM) remains the first-line drug for treating PC; however, only a small percentage of patients benefit from current immunotherapies or targeted therapies. Resistance to GEM is prevalent and affects long-term survival. We found that ubiquitin-protein ligase E3 module N-recognition 5 (UBR5) is a therapeutic target against GEM resistance. UBR5 was markedly upregulated in clinical GEM-resistant PC samples and GEM-resistant PC cells. UBR5 knockdown markedly increased GEM sensitivity in GEM-resistant PC cell lines. UBR5-mediated GEM resistance was accompanied by activation of epithelial-mesenchymal transition (EMT) and could be mitigated by inhibiting EMT. Further analysis revealed that UBR5 promoted GEM resistance in PC cells by enhancing O-GlcNAcylation-mediated EMT. In addition, UBR5 knockdown resulted in increased O-GlcNAase (OGA) levels, an essential negatively regulated enzyme in the O-GlcNAcylation process. We identified a negative association between OGA and UBR5 levels, which further supported the hypothesis that O-GlcNAcylation-mediated GEM resistance induced by UBR5 is OGA-dependent in PC cells. Mechanistic studies revealed that UBR5 acts as an E3 ubiquitin ligase of OGA and regulates O-GlcNAcylation by binding and modulating OGA, facilitating its degradation and ubiquitination. Additionally, high-throughput compound library screening using three-dimensional protein structure analysis and drug screening identified a Food and Drug Administration drug, Y-39983 dihydrochloride, as a potent GEM sensitiser and UBR5 inhibitor. The combination of Y-39983 dihydrochloride and GEM attenuated tumour growth in a mouse xenograft tumour model. Collectively, these data demonstrated that UBR5 plays a pivotal role in the sensitisation of PC to GEM and provides a potential therapeutic strategy to overcome GEM resistance.
Collapse
Affiliation(s)
- Yunyan Du
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China
| | - Zhangjian Yang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China
| | - Hao Shi
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China
| | - Zhihan Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China
| | - Rong Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Tao Hong
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Liping Jiang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Hu B, Chen S. The role of UBR5 in tumor proliferation and oncotherapy. Gene 2024; 906:148258. [PMID: 38331119 DOI: 10.1016/j.gene.2024.148258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Ubiquitin (Ub) protein ligase E3 component n-recognin 5 (UBR5), as a crucial Ub ligase, plays a pivotal role in the field of cell biology, attracting significant attention for its functions in regulating protein degradation and signaling pathways. This review delves into the fundamental characteristics and structure of UBR5. UBR5, through ubiquitination, regulates various key proteins, directly or indirectly participating in cell cycle control, thereby exerting a direct impact on the proliferation of tumor cells. Meanwhile, we comprehensively review the expression levels of UBR5 in different types of tumors and its relationship with tumor development, providing key clues for the role of UBR5 in cancer. Furthermore, we summarize the current research status of UBR5 in cancer treatment. Through literature review, we find that UBR5 may play a crucial role in the sensitivity of tumor cells to radiotherapy chemotherapy, and other anti-tumor treatment, providing new insights for optimizing cancer treatment strategies. Finally, we discuss the challenges faced by UBR5 in cancer treatment, and looks forward to the future research directions. With the continuous breakthroughs in technology and in-depth research, we hope to further study the biological functions of UBR5 and lay the foundation for its anti-tumor treatment.
Collapse
Affiliation(s)
- Bin Hu
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China
| | - Shiyuan Chen
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China.
| |
Collapse
|
5
|
Yang D, Geng T, Harrison AG, Cahoon JG, Xing J, Jiao B, Wang M, Cheng C, Hill RE, Wang H, Vella AT, Cheng G, Wang Y, Wang P. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat Commun 2024; 15:780. [PMID: 38278841 PMCID: PMC10817939 DOI: 10.1038/s41467-024-45141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jian Xing
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Baihai Jiao
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Mark Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, EH4, 2XU, UK
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
6
|
Huo Q, Hu J, Hou B, Zhao M, Han X, Du Y, Li Y. Clinicopathological Features and Prognostic Evaluation of UBR5 in Liver Cancer Patients. Pathol Oncol Res 2022; 28:1610396. [PMID: 36388433 PMCID: PMC9665233 DOI: 10.3389/pore.2022.1610396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/11/2022] [Indexed: 06/28/2024]
Abstract
Background: Typically, liver cancer patients are diagnosed at an advanced stage and have a poor prognosis. N-recognin 5 (UBR5), a component of the ubiquitin protein ligase E3, is involved in the genesis and progression of several types of cancer. As of yet, it is unknown what the exact biological function of UBR5 is in liver cancer. Methods: A Kaplan-Meier survival curve (OS) was used to examine the effect of UBR5 expression on overall survival based on the TCGA database. To determine the molecular functions of UBR5 in liver cancer, we used the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A protein-protein interaction (PPI) network was established for the screening of UBR5-related proteins in liver cancer. Western blot analysis was used to determine the expression levels of UBR5 and YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta), and in order to detect cell proliferation, an MTT assay was used. Results: The expression of UBR5 in liver cancer patient samples is significantly higher than in adjacent normal tissues. A high level of UBR5 expression was associated with older patients, a higher tumor grade, lymph node metastasis, and poor survival. We discovered YWHAZ with high connectivity, and UBR5 expression correlated positively with YWHAZ expression (r = 0.83, p < 0.05). Furthermore, we found that elevated UBR5 levels directly correlated with YWHAZ overexpression, and that UBR5 promoted cell proliferation by affecting YWHAZ expression. Additionally, the TCGA databases confirmed that patients with liver cancer who expressed higher levels of YWHAZ had poorer outcomes. Conclusion: This suggests that UBR5 associated with YWHAZ may influence prognosis in patients with liver cancer, and that UBR5 may be a candidate treatment target for liver cancer. Therefore, UBR5 associated with YWHAZ may influence prognosis in patients with liver cancer, and UBR5 could serve as a potential target for liver cancer treatment.
Collapse
Affiliation(s)
- Qi Huo
- Department of Medical Oncology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Hu
- Department of Medical Oncology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Binfen Hou
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Mei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Han
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Yulin Du
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Yao Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Wu Q, Liu L, Feng Y, Wang L, Liu X, Li Y. UBR5 promotes migration and invasion of glioma cells by regulating the ECRG4/NF-κB pathway. J Biosci 2022. [DOI: 10.1007/s12038-022-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Jiang Z, Zhao Q, Chen L, Luo Y, Shen L, Cao Z, Wang Q. UBR3 promotes inflammation and apoptosis via DUSP1/p38 pathway in the nucleus pulposus cells of patients with intervertebral disc degeneration. Hum Cell 2022; 35:792-802. [PMID: 35332432 DOI: 10.1007/s13577-022-00693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
Intervertebral disc disease (IDD) is a primary cause of low back pain, affecting 5% of individuals. Previous study have shown that dual-specificity (Thr/Tyr) phosphatase 1 (DUSP1) regulates p38 MAPK activity and DUSP1 level is regulated by ubiquitination. As an E3 ubiquitin-protein ligase, UBR3 has been shown to regulate a variety of biological processes through ubiquitination. However, the role of UBR3/DUSP1/p38 in IDD remains to be elucidated. In the current study, we found that UBR3 was significantly increased in the nucleus pulposus tissues of IDD patients and was correlated with IDD severity. Silencing UBR3 promoted the growth, inhibited apoptosis, and inhibited inflammation in primary NPCs. Mechanism study suggested that UBR3 exerted its effects through p38. Co-immunoprecipitation assay indicated that UBR3 promoted DUSP1 ubiquitination. Overexpression of DUSP1 reversed the effect of UBR3 overexpression. Our data also supported that UBR3 was positively correlated with p-p38, but negatively correlated with DUSP1 in IDD. In summary, UBR3 promotes inflammation and apoptosis via inhibiting the p38 signaling pathway by DUSP1 ubiquitination in the NPCs of IDD patients. These findings highlight the importance of UBR3/DUSP1/p38 signaling pathway in IDD and provide new insights for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Zhenhuan Jiang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qinghua Zhao
- Department of Orthopaedics, School of Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Chen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lei Shen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| | - Qiang Wang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| |
Collapse
|
9
|
Ren H, Li Y, Yao Q, Lv H, Tang S, Zhou X, Yang W. Epithelioid leiomyosarcoma of broad ligament harboring PGR-NR4A3 and UBR5-PGR gene fusions: a unique case report. Virchows Arch 2021; 480:933-938. [PMID: 34351486 DOI: 10.1007/s00428-021-03169-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
A novel molecular subset of epithelioid leiomyosarcomas with rhabdoid features harboring PGR gene rearrangements has recently been documented. Herein, we present a unique case of PGR-rearranged smooth muscle tumor with both PGR-NR4A3 and UBR5-PGR gene fusions reported in a 30-year-old woman who had a mass in the broad ligament. The histological examination showed a round/polygonal to spindle cell tumor with abundant myxoid matrix and focal hyalinization, resulting in an epithelioid pattern. Immunohistochemical examination revealed that the tumor had variable staining for desmin, SMA, and h-caldesmon and diffuse nuclear staining of ER, PR, and WT1. Furthermore, targeted RNA sequencing analysis revealed PGR-NR4A3 and UBR5-PGR gene fusions. Our case in addition with the reported cases suggest that myxoid matrix with two types of tumor cells (round/polygonal epithelioid cells and spindle cells) may be significant for the diagnosis of PGR-NR4A3 fusion-positive leiomyosarcoma. UBR5-PGR gene fusion is a novel finding in epithelioid leiomyosarcoma.
Collapse
Affiliation(s)
- Huayan Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Shaoxian Tang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
10
|
Gu YF, Ge XP. UBR5 inhibits the radiosensitivity of non-small cell lung cancer cells via the activation of the PI3K/AKT pathway. J Investig Med 2021; 69:970-975. [PMID: 33811132 DOI: 10.1136/jim-2020-001736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/25/2022]
Abstract
Ubiquitin protein ligase E3 component n-recognin 5 (UBR5) has been identified as an oncogene in diverse cancers; however, whether its expression was associated with radiosensitivities of non-small cell lung cancer (NSCLC) cells remains unclear. Expression levels of UBR5 in NSCLC tissues and cell lines were examined by immunohistochemical staining and western blotting. Colony formation assay, CCK-8 cell viability assay, flow cytometry, and caspase-3 activity assay were performed to evaluate the radiosensitization of UBR5 knockdown in NSCLC cells, and the underlying mechanism in vitro was also investigated. UBR5 was highly expressed in NSCLC tissues, and its high expression was associated with the poor prognosis in 50 patients with NSCLC. After X-ray irradiation, the protein expression levels of UBR5 were also increased in NSCLC cells. UBR5 inhibition enhanced the radiosensitivity of NSCLC cells by inhibiting the cell viability and inducing apoptosis. Further investigation indicated that UBR5 knockdown-mediated radiosensitization involved the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Knockdown of UBR5 radiosensitizes NSCLC cells via the inactivation of the PI3K/AKT signal, which provided a novel therapeutic target for NSCLC radiosensitization.
Collapse
Affiliation(s)
- Yong-Fei Gu
- Radiotherapy Department, Second Ward, Yantai Yantai Shan Hospital, Yantai, Shandong, China
| | - Xing-Ping Ge
- Radiotherapy Department, Second Ward, Yantai Yantai Shan Hospital, Yantai, Shandong, China
| |
Collapse
|
11
|
Li J, Zhang W, Gao J, Du M, Li H, Li M, Cong H, Fang Y, Liang Y, Zhao D, Xiang G, Ma X, Yao M, Tu H, Gan Y. E3 Ubiquitin Ligase UBR5 Promotes the Metastasis of Pancreatic Cancer via Destabilizing F-Actin Capping Protein CAPZA1. Front Oncol 2021; 11:634167. [PMID: 33777788 PMCID: PMC7994773 DOI: 10.3389/fonc.2021.634167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a regulated mechanism of intracellular protein degradation and turnover, and its dysfunction is associated with various diseases including cancer. UBR5, an E3 ubiquitin ligase, is emerging as an important regulator of the UPS in cancers, but its role in pancreatic cancer is poorly understood. Here, we show that UBR5 is significantly upregulated in pancreatic cancer tissues. High UBR5 expression is correlated with increased lymph node metastasis and poor survival of patients. The loss-of-function and gain-of-function studies demonstrated that UBR5 substantially enhanced the in vitro migratory and invasive ability of pancreatic cancer cells. UBR5 knockdown also markedly inhibited in vivo cancer metastasis in the liver metastatic model of pancreatic cancer in nude mice, suggesting UBR5 as a potent metastatic promoter in pancreatic cancer. Furthermore, using co-immunoprecipitation combined with mass spectrometry analyses, CAPZA1, a member of F-actin capping protein α subunit family, was identified as a novel substrate of UBR5. UBR5 overexpression could promote the degradation of CAPZA1 via the UPS and induce the accumulation of F-actin, which has been described as an essential molecular event during the process of CAPZA1 deficiency-induced cancer cells migration and invasion. UBR5 knockdown significantly increased the intracellular level of CAPZA1 and CAPZA1 downregulation largely reversed the UBR5 knockdown-induced suppression of cell migration and invasion in pancreatic cancer cells. Collectively, our findings unveil UBR5 as a novel and critical regulator of pancreatic cancer metastasis and highlight the potential for UBR5-CAPZA1 axis as a therapeutic target for preventing metastasis in pancreatic cancer patients, especially in those with increased UBR5 expression.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Xiang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|