1
|
Fang CS, Wang W, Schroff C, Movahed-Ezazi M, Vasudevaraja V, Serrano J, Sulman EP, Golfinos JG, Orringer D, Galbraith K, Feng Y, Snuderl M. Racial distribution of molecularly classified brain tumors. Neurooncol Adv 2024; 6:vdae135. [PMID: 39220243 PMCID: PMC11362849 DOI: 10.1093/noajnl/vdae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background In many cancers, specific subtypes are more prevalent in specific racial backgrounds. However, little is known about the racial distribution of specific molecular types of brain tumors. Public data repositories lack data on many brain tumor subtypes as well as diagnostic annotation using the current World Health Organization classification. A better understanding of the prevalence of brain tumors in different racial backgrounds may provide insight into tumor predisposition and development, and improve prevention. Methods We retrospectively analyzed the racial distribution of 1709 primary brain tumors classified by their methylation profiles using clinically validated whole genome DNA methylation. Self-reported race was obtained from medical records. Our cohort included 82% White, 10% Black, and 8% Asian patients with 74% of patients reporting their race. Results There was a significant difference in the racial distribution of specific types of brain tumors. Blacks were overrepresented in pituitary adenomas (35%, P < .001), with the largest proportion of FSH/LH subtype. Whites were underrepresented at 47% of all pituitary adenoma patients (P < .001). Glioblastoma (GBM) IDH wild-type showed an enrichment of Whites, at 90% (P < .001), and a significantly smaller percentage of Blacks, at 3% (P < .001). Conclusions Molecularly classified brain tumor groups and subgroups show different distributions among the three main racial backgrounds suggesting the contribution of race to brain tumor development.
Collapse
Affiliation(s)
- Camila S Fang
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Wanyi Wang
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Chanel Schroff
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Misha Movahed-Ezazi
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Varshini Vasudevaraja
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Jonathan Serrano
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - John G Golfinos
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Daniel Orringer
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Kristyn Galbraith
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Yang Feng
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Matija Snuderl
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Lim MJR, Zheng Y, Eng SWO, Seah CWT, Fu S, Lam LZL, Seng Wong JY, Vellayappan B, Wong ALA, Teo K, Weng Nga VD, Lwin S, Yeo TT. Presenting characteristics, histological subtypes and outcomes of adult central nervous system tumours: retrospective review of a surgical cohort. Singapore Med J 2023:384054. [PMID: 37675681 DOI: 10.4103/singaporemedj.smj-2022-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Introduction The most recent local study on the incidence of histological subtypes of all brain and spinal tumours treated surgically was published in 2000. In view of the outdated data, we investigated the presenting characteristics, histological subtypes and outcomes of adult patients who underwent surgery for brain or spinal tumours at our institution. Methods A single-centre retrospective review of 501 patients who underwent surgery for brain or spinal tumours from 2016 to 2020 was conducted. The inclusion criteria were (a) patients who had a brain or spinal tumour that was histologically verified and (b) patients who were aged 18 years and above at the time of surgery. Results Four hundred and thirty-five patients (86.8%) had brain tumours and 66 patients (13.2%) had spinal tumours. Patients with brain tumours frequently presented with cranial nerve palsy, headache and weakness, while patients with spinal tumours frequently presented with weakness, numbness and back pain. Overall, the most common histological types of brain and spinal tumours were metastases, meningiomas and tumours of the sellar region. The most common complications after surgery were cerebrospinal fluid leak, diabetes insipidus and urinary tract infection. In addition, 15.2% of the brain tumours and 13.6% of the spinal tumours recurred, while 25.7% of patients with brain tumours and 18.2% of patients with spinal tumours died. High-grade gliomas and metastases had the poorest survival and highest recurrence rates. Conclusion This study serves as a comprehensive update of the epidemiology of brain and spinal tumours and could help guide further studies on brain and spinal tumours.
Collapse
Affiliation(s)
| | - Yilong Zheng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sean Wai-Onn Eng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Shuning Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Joel Yat Seng Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Andrea Li-Ann Wong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Kejia Teo
- Division of Neurosurgery, National University Health System, Singapore
| | | | - Sein Lwin
- Division of Neurosurgery, National University Health System, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, National University Health System, Singapore
| |
Collapse
|
3
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
4
|
Silencing of Long Noncoding RNA HLA Complex P5 (HCP5) Suppresses Glioma Progression through the HCP5-miR-205-Vascular Endothelial Growth Factor A Feedback Loop. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3092063. [PMID: 35769676 PMCID: PMC9236799 DOI: 10.1155/2022/3092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
Long noncoding RNA (lncRNA) HLA complex P5 (HCP5) is correlated with multiple diseases, especially cancers. However, it remains to be further studied whether HCP5 is involved in the malignant behaviors of gliomas. This study is aimed at investigating the role and regulation mechanisms of HCP5 in gliomas. HCP5 expression in glioma tumor tissues and its association with glioma patients' survival were analyzed based on RNA-sequencing data. The expression of HCP5 was also examined in glioma cells. Then, HCP5 was downregulated in U251 cells and/or primary glioblastoma cells to explore its effects on cell proliferation and migration. The influence of HCP5 downregulation on tumor growth was confirmed in xenograft mice. About the mechanism, we investigated whether HCP5 functioned via interacting with microRNA- (miR-) 205 and regulating vascular endothelial growth factor A (VEGF-A) expression in gliomas. Results showed that HCP5 upregulation was found in glioma tissues and cell lines. Patients with high HCP5 expression showed lower survival probability and shorter survival time. HCP5 downregulation inhibited cell proliferation and migration and mitigated tumor growth. miR-205 was downregulated in glioma cells. Knockdown of HCP5 led to miR-205 upregulation and VEGF-A downregulation. miR-205 overexpression exhibited the similar effects as HCP5 downregulation on cell viability and proliferation. And VEGF-A overexpression could reverse the effects of HCP5 downregulation on cell viability and proliferation, as well as tumor growth. In conclusion, HCP5 silencing suppressed glioma progression through the HCP5-miR-205-VEGF-A feedback loop.
Collapse
|
5
|
Mirza FA, Baqai MWS, Hani U, Hulou M, Shamim MS, Enam SA, Pittman T. Comparison of Glioblastoma Outcomes in Two Geographically and Ethnically Distinct Patient Populations in Disparate Health Care Systems. Asian J Neurosurg 2022; 17:178-188. [PMID: 36120611 PMCID: PMC9473826 DOI: 10.1055/s-0042-1750779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction
Variations in glioblastoma (GBM) outcomes between geographically and ethnically distinct patient populations has been rarely studied. To explore the possible similarities and differences, we performed a comparative analysis of GBM patients at the University of Kentucky (UK) in the United States and the Aga Khan University Hospital (AKUH) in Pakistan.
Methods
A retrospective review was conducted of consecutive patients who underwent surgery for GBM between January 2013 and December 2016 at UK, and July 2014 and December 2017 at AKUH. Patients with recurrent or multifocal disease on presentation and those who underwent only a biopsy were excluded. SPSS (v.25 IBM, Armonk, New York, United States) was used to collect and analyze data.
Results
Eighty-six patients at UK (mean age: 58.8 years; 37 [43%] < 60 years and 49 [57%] > 60 years) and 38 patients at AKUH (mean age: 49.1 years; 30 (79%) < 60 years and 8 (21%) > 60 years) with confirmed GBM were studied. At UK, median overall survival (OS) was 11.5 (95% confidence interval [CI]: 8.9–14) months, while at AKUH, median OS was 18 (95% CI: 13.9–22) months (
p
= 0.002). With gross-total resection (GTR), median OS at UK was 16 (95% CI: 9.5–22.4) months, whereas at AKUH, it was 24 (95% CI: 17.6–30.3) months (
p
= 0.011).
Conclusion
Median OS at UK was consistent with U.S. data but was noted to be longer at AKUH, likely due to a younger patient cohort and higher preoperative Karnofsky's performance scale (KPS). GTR, particularly in patients younger than 60 years of age and a higher preoperative KPS had a significant positive impact on OS and progression-free survival (PFS) at both institutions.
Collapse
Affiliation(s)
- Farhan A. Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky, United States
- Department of Neurosurgery, The Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Muhammad Waqas S. Baqai
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Ummey Hani
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Maher Hulou
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky, United States
| | - Muhammad Shahzad Shamim
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Thomas Pittman
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
6
|
He Q, Zhao W, Ren Q. The Prognostic Value of the Prognostic Nutritional Index in Operable High-Grade Glioma Patients and the Establishment of a Nomogram. Front Oncol 2022; 11:724769. [PMID: 35096561 PMCID: PMC8795507 DOI: 10.3389/fonc.2021.724769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Studies confirmed the predictive value of the prognostic nutrition index (PNI) in many malignant tumors. However, it did not reach a consensus in glioma. Therefore, this study investigated the prognostic value of preoperative PNI in operable high-grade glioma and established a nomogram. Methods Clinical data of high-grade glioma patients were retrospectively analyzed. The primary endpoint was overall survival (OS). Survival analysis was conducted by the Kaplan–Meier method, log-rank test, and Cox regression analysis. A nomogram was established. The prediction effect of the nomogram covering PNI was verified by area under the curve (AUC). Results A total of 91 operable high-grade glioma patients were included. Kaplan–Meier analysis showed that among grade IV gliomas (n = 55), patients with higher PNI (>44) showed a trend of OS benefit (p = 0.138). In grade III glioma (n = 36), patients with higher PNI (>47) had longer OS (p = 0.023). However, the intersecting Kaplan–Meier curve suggested that there may be some confounding factors. Cox regression analysis showed that higher PNI was an independent prognostic factor for grade IV glioma (HR = 0.388, p = 0.040). In grade III glioma, there was no statistically relationship between PNI levels and prognosis. When evaluating the prognostic ability of PNI alone by ROC, the AUC in grade III and IV gliomas was low, indicating that PNI alone had poor predictive power for OS. Interestingly, we found that the nomogram including preoperative PNI, age, extent of resection, number of gliomas, and MGMT methylation status could predict the prognosis of patients with grade IV glioma well. Conclusion The PNI level before surgery was an independent prognostic factor for patients with grade IV glioma. The nomogram covering PNI in patients with grade IV glioma also proved the value of PNI. However, the value of PNI in grade III glioma needs to be further evaluated. More prospective studies are needed to verify this conclusion.
Collapse
Affiliation(s)
- Qian He
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Wei Zhao
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglan Ren
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
He Q, Li L, Ren Q. The Prognostic Value of Preoperative Systemic Inflammatory Response Index (SIRI) in Patients With High-Grade Glioma and the Establishment of a Nomogram. Front Oncol 2021; 11:671811. [PMID: 34055639 PMCID: PMC8162213 DOI: 10.3389/fonc.2021.671811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background The predictive value of systemic inflammatory response index (SIRI) was confirmed in some malignant tumors. However, few studies investigated the prognostic value of SIRI in high-grade gliomas. This study aimed to evaluate the prognostic relationship of preoperative SIRI in high-grade gliomas and established a nomogram accordingly. Methods Data of operable high-grade glioma patients were analyzed. Kaplan-Meier, log-rank test, cox regression and propensity score matching (PSM) analysis were used to analyze survival. ROC curve and area under the curve (AUC) were used to compare the ability of preoperative SIRI, neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and monocyte-lymphocyte ratio (MLR) to predict prognosis. A nomogram based on the results was established. The consistency index (C-index) was calculated and a calibration curve was drawn.The prediction effect of the nomogram and WHO grade was compared by AUC. Results A total of 105 patients were included. Kaplan-Meier survival analysis showed that the overall survival (OS) of grade III gliomas patients with lower preoperative SIRI (SIRI<1.26) was significantly prolonged (p=0.037), and grade IV gliomas patients with lower preoperative SIRI had a tendency to obtain longer OS (p = 0.107). Cox regression showed preoperative SIRI was an independent prognostic factor for grade IV and grade III glioma, however, in IDH mutant-type IV gliomas, patients with lower SIRI only showed a tendency to obtain better OS. Similar results were obtained in PSM. The prognostic value of SIRI were better than PLR and MLR by ROC analysis. And in grade IV gliomas, the predictive value of SIRI was better than NLR. The nomogram established based on preoperative SIRI, age, extent of resection, number of gliomas, MGMT methylation status and histological types (only in grade III gliomas) could predict the prognosis more accurately. Conclusion SIRI was valuable for prognosis prediction in high-grade glioma. The nomogram covering SIRI could more accurately predict the survival rate in operable high-grade glioma patients.
Collapse
Affiliation(s)
- Qian He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglan Ren
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang Y, Wahafu A, Wu W, Xiang J, Huo L, Ma X, Wang N, Liu H, Bai X, Xu D, Xie W, Wang M, Wang J. FABP5 enhances malignancies of lower-grade gliomas via canonical activation of NF-κB signaling. J Cell Mol Med 2021; 25:4487-4500. [PMID: 33837625 PMCID: PMC8093984 DOI: 10.1111/jcmm.16536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
Low‐grade gliomas (LGGs) are grade III gliomas based on the WHO classification with significant genetic heterogeneity and clinical properties. Traditional histological classification of gliomas has been challenged by the improvement of molecular stratification; however, the reproducibility and diagnostic accuracy of LGGs classification still remain poor. Herein, we identified fatty acid binding protein 5 (FABP5) as one of the most enriched genes in malignant LGGs and elevated FABP5 revealed severe outcomes in LGGs. Functionally, lentiviral suppression of FABP5 reduced malignant characters including proliferation, cloning formation, immigration, invasion and TMZ resistance, contrarily, the malignancies of LGGs were enhanced by exogenous overexpression of FABP5. Mechanistically, epithelial‐mesenchymal transition (EMT) was correlated to FABP5 expression in LGGs and tumour necrosis factor α (TNFα)‐dependent NF‐κB signalling was involved in this process. Furthermore, FABP5 induced phosphorylation of inhibitor of nuclear factor kappa‐B kinase α (IKKα) thus activated nuclear factor kappa‐B (NF‐κB) signalling. Taken together, our study indicated that FABP5 enhances malignancies of LGGs through canonical activation of NF‐κB signalling, which could be used as individualized prognostic biomarker and potential therapeutic target of LGGs.
Collapse
Affiliation(s)
- Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Alafate Wahafu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longwei Huo
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongze Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Prognostic Nomograms for Primary High-Grade Glioma Patients in Adult: A Retrospective Study Based on the SEER Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1346340. [PMID: 32775408 PMCID: PMC7397389 DOI: 10.1155/2020/1346340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Purpose In our study, we aimed to screen the risk factors that affect overall survival (OS) and cancer-specific survival (CSS) in adult glioma patients and to develop and evaluate nomograms. Methods Primary high-grade gliomas patients being retrieved from the surveillance, epidemiology and end results (SEER) database, between 2004 and 2015, then they randomly assigned to a training group and a validation group. Univariate and multivariate Cox analysis models were used to choose the variables significantly correlated with the prognosis of high-grade glioma patients. And these variables were used to construct the nomograms. Next, concordance index (C-index), calibration plot and receiver operating characteristics (ROCs) curve were used to evaluate the accuracy of the nomogram model. In addition, the decision curve analysis (DCA) was used to analyze the benefit of nomogram and prognostic indicators commonly used in clinical practice. Results A total of 6395 confirmed glioma patients were selected from the SEER database, divided into training set (n =3166) and validation set (n =3229). Age at diagnosis, tumor grade, tumor size, histological type, surgical type, radiotherapy and chemotherapy were screened out by Cox analysis model. For OS nomogram, the C-index of the training set was 0.741 (95% CI: 0.751-0.731), and the validation set was 0.738 (95% CI: 0.748-0.728). For CSS nomogram, the C-index of the training set was 0.739 (95% CI: 0.749-0.729), and the validation set was 0.738 (95% CI: 0.748-0.728). The net benefit and net reduction in inverventions of nomograms in the decision curve analysis (DCA) was higher than histological type. Conclusions We developed nomograms to predict 3- and 5-year OS rates and 3- and 5-year CSS rates in adult high-grade glioma patients. Both the training set and the validation set showed good calibration and validation, indicating the clinical applicability of the nomogram and good predictive results.
Collapse
|