1
|
Pepper NB, Steike DR, Yppärilä-Wolters H, Müther M, Wiewrodt D, Berssenbrügge H, Grauer O, Lenz P, Stummer W, Eich HT. Multidisciplinary treatment is necessary in glioblastoma with extracerebral metastases. Strahlenther Onkol 2025:10.1007/s00066-024-02359-8. [PMID: 39843784 DOI: 10.1007/s00066-024-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
PURPOSE While glioblastoma is the most common malignant brain tumor in adults, extracerebral manifestations are very rare in this highly aggressive disease with poor prognosis. METHODS We conducted a systematic literature review in the PubMed database and complemented the data by inclusion of a case treated in our clinic. In this context, we report on a 60-year-old woman with a right frontal glioblastoma, IDH wildtype, MGMT methylated. RESULTS Six months after initial diagnosis and primary treatment, there was extensive local intracranial progression with additional extension into the subcutaneous and frontotemporal cranial bones. Despite continuation of multimodal treatment, further extracerebral manifestations occurred 11 months after the initial diagnosis, both in the cranial bone as well as metastases in the right parotid gland, cervical lymph nodes, and lungs. While local radiotherapy enabled the cerebral lesions to be controlled, the patient's clinical condition deteriorated rapidly despite simultaneous systemic therapy. The treatment had to be discontinued, and the patient died 5 weeks after confirmation of the multilocal extracerebral manifestations and a total of 12 months after initial diagnosis. CONCLUSION Extracerebral manifestations of glioblastoma require close collaboration and joint decision-making with the patient, with an emphasis on palliative strategies.
Collapse
Affiliation(s)
- Niklas B Pepper
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.
| | - David R Steike
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Heidi Yppärilä-Wolters
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Dorothee Wiewrodt
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Hendrik Berssenbrügge
- Department of ear, nose and throat medicine, University Hospital Muenster, Muenster, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translation Neurology, University Hospital Muenster, Muenster, Germany
| | - Philipp Lenz
- Department of Palliative Care, University Hospital Muenster, Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Hans T Eich
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| |
Collapse
|
2
|
Laurin BJ, Treffy R, Connelly JM, Straza M, Mueller WM, Krucoff MO. Mesenchymal-Type Genetic Mutations Are Likely Prerequisite for Glioblastoma Multiforme to Metastasize Outside the Central Nervous System: An Original Case Series and Systematic Review of the Literature. World Neurosurg 2024; 193:397-426. [PMID: 39419169 DOI: 10.1016/j.wneu.2024.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive and prevalent type of malignant brain tumor, yet it metastasizes outside the central nervous system (CNS) in only 0.4% of cases. Little is known about what enables this subset of GBMs to take root outside the CNS, but genetic mutations likely play a role. METHODS We conducted a PRISMA-compliant systematic review of metastatic GBM wherein we reviewed 3579 search results and 1080 abstracts, analyzing data from 139 studies and 211 unique patients. In addition, we describe 4 cases of patients with pathologically confirmed GBM metastases outside the CNS treated at our institution. RESULTS We found that metastases were discovered near previous surgical sites in at least 36.9% of cases. Other sites of metastasis included bone (47.9%), lung (25.6%), lymph nodes (25.1%), scalp (19.2%), and liver (14.2%). On average, metastases were diagnosed 12.1 months after the most recent resection, and the mean survival from discovery was 5.7 months. In our patients, primary GBM lesions showed mutations in NF1, TERT, TP53, CDK4, and RB1/PTEN genes. Unique to the metastatic lesions were amplifications in genes such as p53 and PDGFRA/KIT, as well as increased vimentin and Ki-67 expression. CONCLUSIONS There is strong evidence that GBMs acquire novel mutations to survive outside the CNS. In some cases, tumor cells likely mutate after seeding scalp tissue during surgery, and in others, they mutate and spread without surgery. Future studies and genetic profiling of primary and metastatic lesions may help uncover the mechanisms of spread.
Collapse
Affiliation(s)
- Bryce J Laurin
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Randall Treffy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Yan Z, Huang L, Zhang X, Yu X, Huang R. Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth. Sci Rep 2024; 14:18444. [PMID: 39117725 PMCID: PMC11310191 DOI: 10.1038/s41598-024-67437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma (GBM) is associated with a median survival rate of less than 15 months, necessitating innovative treatment approaches. This study investigates the safety and efficacy of the low-frequency magnetic field (LFMF) OM-100 instrument in GBM therapy. In vitro experiments utilized normal astrocyte and GBM cell lines, determining that OM-100 at 100 kHz for 72 h selectively targeted GBM cells without harming normal cells. Subsequent analyses revealed OM-100's impact on cell viability, apoptosis, migration, invasion, reactive oxide species levels, and PD-L1 expression. In vivo studies on mice with U87-induced GBM demonstrated OM-100's synergy with anti-PD-1 therapy, leading to significant tumor volume reduction and increased apoptosis. Notably, OM-100 exhibited safety in healthy mice. Overall, OM-100 could enhance anti-PD-1 immunotherapy effectiveness probably by directly inhibiting tumor proliferation and migration as well as promoting PD-L1 expression, offering a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Zhaoxian Yan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lifa Huang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Xinyan Yu
- Department of Medical, Ci Xing Technology Co., Ltd, Hangzhou, 310051, Zhejiang, China
| | - Rui Huang
- Department of Medical, Ci Xing Technology Co., Ltd, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
4
|
Webb LM, Webb MJ, Campian JL, Caron SJ, Ruff MW, Uhm JH, Sener U. A case series of osseous metastases in patients with glioblastoma. Medicine (Baltimore) 2024; 103:e38794. [PMID: 38968484 PMCID: PMC11224798 DOI: 10.1097/md.0000000000038794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.
Collapse
Affiliation(s)
| | - Mason J. Webb
- Department of Hematology/Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samantha J. Caron
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joon H. Uhm
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Yuen CA, Pekmezci M, Bao S, Kong XT. Metastatic glioblastoma to the lungs: a case report and literature review. CNS Oncol 2024; 13:2351789. [PMID: 38864820 PMCID: PMC11172249 DOI: 10.1080/20450907.2024.2351789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Despite its infiltrative nature, extra-cranial glioblastoma metastases are rare. We present a case of a 63-year-old woman with metastatic glioblastoma in the lungs. Sarcomatous histology, a reported risk factor for disseminated disease, was found. Genomic alterations of TP53 mutation, TERT mutation, PTEN mutation, and +7/-10 were also uncovered. Early evidence suggests these molecular aberrations are common in metastatic glioblastoma. Treatment with third-line lenvatinib resulted in a mixed response. This case contributes to the growing body of evidence for the role of genomic alterations in predictive risk in metastatic glioblastoma. There remains an unmet need for treatment of metastatic glioblastoma.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA92868, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA94143, USA
| | - Silin Bao
- Department of Internal Medicine, Division of Neurosciences, Community Regional Medical Center, Fresno, CA93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA92868, USA
| |
Collapse
|
6
|
Jalloh M, Kankam SB. Harnessing imaging biomarkers for glioblastoma metastasis diagnosis: a correspondence. J Neurooncol 2024; 167:365-367. [PMID: 38393522 DOI: 10.1007/s11060-024-04606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Affiliation(s)
- Mohamed Jalloh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Samuel Berchi Kankam
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA.
| |
Collapse
|
7
|
Kurdi M, Baeesa S, Okal F, Bamaga AK, Faizo E, Fathaddin AA, Alkhotani A, Karami MM, Bahakeem B. Extracranial metastasis of brain glioblastoma outside CNS: Pathogenesis revisited. Cancer Rep (Hoboken) 2023; 6:e1905. [PMID: 37814403 PMCID: PMC10728524 DOI: 10.1002/cnr2.1905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND The most prevalent malignant tumor of the CNS in adults is glioblastoma. Despite undergoing surgery and chemoradiotherapy, the prognosis remains unfavorable, with a median survival period ranging between 15 and 20 months. The incidence of glioblastoma metastasis outside CNS is uncommon with only 0.4%-2% reported rate, compared to other tumors that exhibit a 10% incidence rate of metastasis to the brain. On average, it takes about 11 months from the time of initial diagnosis for the tumor to spread beyond CNS. Consequently, the prognosis for metastatic glioblastoma is grim, with a 6-month survival rate following diagnosis. FINDINGS The rarity of extracranial metastasis is attributed to the blood-brain barrier and lack of a lymphatic drainage system, although rare cases of hematogenous spread and direct implantation have been reported. The possible mechanisms remain unclear and require further investigation. Risk factors have been widely described, including previous craniotomy or biopsies, ventricular shunting, young age, radiation therapy, prolonged survival time, and tumor recurrence. Due to the lack of understanding about extracranial metastasis of glioblastoma pathogenesis, no effective treatment exists to date. Aggressive chemotherapies are not recommended for metastatic glioblastoma as their side effects may worsen the patient prognosis. CONCLUSION The optimal treatment for extracranial metastasis of glioblastoma requires further investigation with a wide inclusion of patients. This review discusses the possible causes, factors, and underlying mechanisms of glioblastoma metastasis to different organs.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of MedicineKing Abdulaziz UniversityRabighSaudi Arabia
| | - Saleh Baeesa
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CenterJeddahSaudi Arabia
| | - Fahad Okal
- Department of Neuroscience, Neurosurgery Section, King Abdulaziz Medical CityNational Guard Health AffairsJeddahSaudi Arabia
| | - Ahmed K. Bamaga
- Department of Paediatric, Faculty of MedicineKing Abdulaziz University and HospitalJeddahSaudi Arabia
| | - Eyad Faizo
- Department of Surgery, Faculty of MedicineUniversity of TabukTabukSaudi Arabia
| | - Amany A. Fathaddin
- Department of Pathology, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Alaa Alkhotani
- Department of Pathology, College of MedicineUmm Al‐Qura UniversityMeccaSaudi Arabia
| | - Mohammed M. Karami
- Department of Clinical Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Basem Bahakeem
- Department of Internal MedicineUmm‐Alqura UniversityMeccaSaudi Arabia
| |
Collapse
|
8
|
Sharma S, Kumar P. Decoding the Role of MDM2 as a Potential Ubiquitin E3 Ligase and Identifying the Therapeutic Efficiency of Alkaloids against MDM2 in Combating Glioblastoma. ACS OMEGA 2023; 8:5072-5087. [PMID: 36777618 PMCID: PMC9910072 DOI: 10.1021/acsomega.2c07904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 05/28/2023]
Abstract
Glioblastomas (GBMs) represent the most aggressive form of brain tumor arising from the malignant transformation of astrocytes. Despite various advancements, treatment options remain limited to chemotherapy and radiotherapy followed by surgery giving an overall survival of 14-15 months. These therapies are somewhere restricted in giving a better survival and cure. There is a need for new therapeutics that could potentially target GBM based on molecular pathways and pathology. Here, ubiquitin E3 ligases can be used as targets as they bind a wide array of substrates and therefore can be attractive targets for new inhibitors. Through this study, we have tried to sort various ubiquitin E3 ligases based on their expression, pathways to which these ligases are associated, and mutational frequencies, and then we tried to screen potent inhibitors against the most favorable E3 ligase as very few studies are available concerning inhibition of E3 ligase in GBM. Our study found MDM2 to be the most ideal E3 ligase and further we tried to target MDM2 against various compounds under the alkaloid class. Molecular Docking and MD simulations combined with ADMET properties and BBB scores revealed that only evodiamine and sanguinarine were effective in inhibiting MDM2. We also tried to give a proposed mechanism of how these inhibitors mediate the p53 signaling in GBM. Therefore, the new scaffolds predicted by the computational approach could help in designing promising therapeutic agents targeting MDM2 in glioblastoma.
Collapse
|
9
|
Spinal Metastasis in a Patient with Supratentorial Glioblastoma with Primitive Neuronal Component: A Case Report with Clinical and Molecular Evaluation. Diagnostics (Basel) 2023; 13:diagnostics13020181. [PMID: 36672991 PMCID: PMC9858260 DOI: 10.3390/diagnostics13020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) is regarded as an aggressive brain tumor that rarely develops extracranial metastases. Despite well-investigated molecular alterations in GBM, there is a limited understanding of these associated with the metastatic potential. We herein present a case report of a 43-year-old woman with frontal GBM with primitive neuronal component who underwent gross total resection followed by chemoradiation. Five months after surgery, the patient was diagnosed with an intraspinal GBM metastasis. Next-generation sequencing analysis of both the primary and metastatic GBM tissues was performed using the Illumina TruSight Tumor 170 assay. The number of single nucleotide variants observed in the metastatic sample was more than two times higher. Mutations in TP53, PTEN, and RB1 found in the primary and metastatic tissue samples indicated the mesenchymal molecular GBM subtype. Among others, there were two inactivating mutations (Arg1026Ile, Trp1831Ter) detected in the NF1 gene, two novel NOTCH3 variants of unknown significance predicted to be damaging (Pro1505Thr, Cys1099Tyr), one novel ARID1A variant of unknown significance (Arg1046Ser), and one gene fusion of unknown significance, EIF2B5-KIF5B, in the metastatic sample. Based on the literature evidence, the alterations of NF1, NOTCH3, and ARID1A could explain, at least in part, the acquired invasiveness and metastatic potential in this particular GBM case.
Collapse
|
10
|
Glioblastoma Combined With an Extracranial Bone Tumor in the Femur—A Case Report. TOPICS IN GERIATRIC REHABILITATION 2023. [DOI: 10.1097/tgr.0000000000000379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Lin W, Wang Q, Chen Y, Wang N, Ni Q, Qi C, Wang Q, Zhu Y. Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress. Front Aging Neurosci 2022; 14:951197. [PMID: 36118697 PMCID: PMC9476601 DOI: 10.3389/fnagi.2022.951197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that ischemic cerebral infarction contributes to vascular cognitive impairment and dementia in elderly. Ischemic stroke and glioma are two majorly fatal diseases worldwide, which promote each other's development based on some common underlying mechanisms. As a post-transcriptional regulatory protein, RNA-binding protein is important in the development of a tumor and ischemic stroke (IS). The purpose of this study was to search for a group of RNA-binding protein (RBP) gene markers related to the prognosis of glioma and the occurrence of IS, and elucidate their underlying mechanisms in glioma and IS. First, a 6-RBP (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) gene signature (RBPS) showing an independent overall survival prognostic prediction was identified using the transcriptome data from TCGA-glioma cohort (n = 677); following which, it was independently verified in the CGGA-glioma cohort (n = 970). A nomogram, including RBPS, 1p19q codeletion, radiotherapy, chemotherapy, grade, and age, was established to predict the overall survival of patients with glioma, convenient for further clinical transformation. In addition, an automatic machine learning classification model based on radiomics features from MRI was developed to stratify according to the RBPS risk. The RBPS was associated with immunosuppression, energy metabolism, and tumor growth of gliomas. Subsequently, the six RBP genes from blood samples showed good classification performance for IS diagnosis (AUC = 0.95, 95% CI: 0.902–0.997). The RBPS was associated with hypoxic responses, angiogenesis, and increased coagulation in IS. Upregulation of SMAD9 was associated with dementia, while downregulation of POLR2F was associated with aging-related hypoxic stress. Irf5/Trim21 in microglia and Taf7/Trim21 in pericytes from the mouse cerebral cortex were identified as RBPS-related molecules in each cell type under hypoxic conditions. The RBPS is expected to serve as a novel biomarker for studying the common mechanisms underlying glioma and IS.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Qiangwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbin Ni
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunhua Qi
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- *Correspondence: Qian Wang
| | - Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
- Yongjian Zhu
| |
Collapse
|
12
|
Chen B, Li R, Zhang J, Xu L, Jiang F. Genomic Landscape of Metastatic Lymph Nodes and Primary Tumors in Non-Small-Cell Lung Cancer. Pathol Oncol Res 2022; 28:1610020. [PMID: 35783357 PMCID: PMC9243222 DOI: 10.3389/pore.2022.1610020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022]
Abstract
Objective: To investigate the genetic mutation characteristics of non-small cell lung cancers (NSCLC) with and without lymph node metastasis.Methods: Primary lesions and metastatic lymph node lesions of 36 Chinese NSCLC patients were tested for somatic mutations, tumor mutation burden, phylogenetic and clonal evolutional analysis using a 1021-gene panel by next-generation sequencing (NGS) with an average sequencing depth of 671X.Results: In this study, eighteen patients with lung adenocarcinoma (LUAD) and 18 with lung squamous cell carcinoma (LUSC) were included. Different groups had distinct characteristics of gene mutations. CTNNB1 gene mutations were only present in Nome_LC LUAD patients (p < 0.05). ARID1A mutation was however the only gene with significant alterations (p < 0.05) in Nome_LC in LUSC. Phylogenetic trees of mutated genes were also constructed. Linear and parallel evolutions of metastatic lymph nodes were observed both in LUAD and LUSC.Conclusion: LUSC exhibited more genetic mutations than LUAD. Intriguingly, there was significant difference in gene mutations between Meta_LC and Nome_LC. CTNNB1 gene alteration was the key mutation in LUAD that seems to promote proliferation of the tumor and then determine T stage. On the other hand, proliferation of the tumor was characterized by ARID1A missense mutation in LUSC, thus influencing the T stage as well. Lymph node metastasis could display both linear and parallel evolutionary characteristics in NSCLC. Different metastatic lymph nodes might have exactly the same or different mutated genes, underlining the heterogeneous genomic characteristics of these cancer types.
Collapse
Affiliation(s)
- Bing Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Rutao Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Junling Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Lin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
- *Correspondence: Lin Xu, ; Feng Jiang,
| | - Feng Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
- *Correspondence: Lin Xu, ; Feng Jiang,
| |
Collapse
|
13
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
14
|
Bone metastasis from glioblastoma: a systematic review. J Neurooncol 2022; 158:379-392. [PMID: 35578056 DOI: 10.1007/s11060-022-04025-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is a devastating disease with poor overall survival. Despite the common occurrence of GBM among primary brain tumors, metastatic disease is rare. Our goal was to perform a systematic literature review on GBM with osseous metastases and understand the rate of metastasis to the vertebral column as compared to the remainder of the skeleton, and how this histology would fit into our current paradigm of treatment for bone metastases. METHODS A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant literature search was performed using the PubMed database from 1952 to 2021. Search terms included "GBM", "glioblastoma", "high-grade glioma", "bone metastasis", and "bone metastases". RESULTS Of 659 studies initially identified, 67 articles were included in the current review. From these 67 articles, a total of 92 distinct patient case presentations of metastatic glioblastoma to bone were identified. Of these cases, 58 (63%) involved the vertebral column while the remainder involved lesions within the skull, sternum, rib cage, and appendicular skeleton. CONCLUSION Metastatic dissemination of GBM to bone occurs. While the true incidence is unknown, workup for metastatic disease, especially involving the spinal column, is warranted in symptomatic patients. Lastly, management of patients with GBM vertebral column metastases can follow the International Spine Oncology Consortium two-step multidisciplinary algorithm for the management of spinal metastases.
Collapse
|
15
|
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 2022; 20:13. [PMID: 35090496 PMCID: PMC8796413 DOI: 10.1186/s12964-021-00809-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Collapse
Affiliation(s)
- Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Liu H, Chen C, Li F, Zheng Y, Liu J, Yu X, Chen L. Glioblastoma multiforme with vertebral metastases: A case report. CNS Neurosci Ther 2022; 28:310-313. [PMID: 34970850 PMCID: PMC8739038 DOI: 10.1111/cns.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hongyu Liu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.,Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Chuanbiao Chen
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Fangye Li
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.,Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yangrui Zheng
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.,Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Zhang X, Katsakhyan L, LiVolsi VA, Roth JJ, Rassekh CH, Bagley SJ, Nasrallah MP. TP53 Mutation and Extraneural Metastasis of Glioblastoma: Insights From an Institutional Experience and Comprehensive Literature Review. Am J Surg Pathol 2021; 45:1516-1526. [PMID: 34366423 DOI: 10.1097/pas.0000000000001762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extraneural metastases of glioblastoma (GBM), although rare, are becoming an increasingly recognized occurrence. Currently, the biological mechanism underlying this rare occurrence is not understood. To explore the potential genomic drivers of extraneural metastasis in GBM, we present the molecular features of 4 extraneural metastatic GBMs, along with a comprehensive review and analysis of previously reported cases that had available molecular characterization. In addition to our 4 cases, 42 patients from 35 publications are reviewed. To compare the molecular profiles between GBM cases with extraneural metastasis and the general GBM population, genomic data from GBM samples in The Cancer Genome Atlas (TCGA) database were also analyzed. We found that 64.5% (20/31) of the cases with extraneural metastasis that were tested for TP53 changes had at least 1 TP53 pathogenic variant detected in either 1 or both primary and metastatic tumors. In contrast, TP53 mutation was significantly less frequent in the unselected GBM from TCGA (22.6%, 56/248) (P=0.000). In addition, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was more common in unselected TCGA GBM cases (48.6%, 170/350) than in cases with extraneural metastasis (31.8%, 7/22), although not statistically significant. Although isocitrate dehydrogenase (IDH) mutation is a rare occurrence in high-grade astrocytomas, IDH-mutant grade 4 astrocytomas are at least as likely to metastasize as IDH wild-type GBMs; 3 metastatic cases definitively harbored an IDH1 (p.R132H) mutation in our analysis. Our findings not only provide potential biomarkers for earlier screening of extraneural metastasis, but could also suggest clues to understanding biological mechanisms underlying GBM metastasis, and for the development of therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen J Bagley
- Hematology Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
18
|
Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A, Nudelman G, Jesu Raj JG, Bozec D, Lam W, Houldsworth J, Yong R, Zaslavsky E, Hadjipanayis CG, Birtwistle MR, Tsankova NM. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor Verteporfin in preclinical glioblastoma models. Neuro Oncol 2021; 24:694-707. [PMID: 34657158 DOI: 10.1093/neuonc/noab244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) remains a largely incurable disease as current therapy fails to target the invasive nature of GBM growth in disease progression and recurrence. Here we use the FDA-approved drug and small molecule Hippo inhibitor Verteporfin to target YAP-TEAD activity, known to mediate convergent aspects of tumor invasion/metastasis, and assess the drug's efficacy and survival benefit in GBM models. METHODS Up to eight low-passage patient-derived GBM cell lines with distinct genomic drivers, including three primary/recurrent pairs, were treated with Verteporfin or vehicle to assess in-vitro effects on proliferation, migration, YAP-TEAD activity, and transcriptomics. Patient-derived orthotopic xenograft models (PDX) were used to assess Verteporfin's brain penetrance and effects on tumor burden and survival. RESULTS Verteporfin treatment disturbed YAP/TAZ-TEAD activity; disrupted transcriptome signatures related to invasion, epithelial-to-mesenchymal, and proneural-to-mesenchymal transition, phenocopying TEAD1-knockout effects; and impaired tumor migration/invasion dynamics across primary and recurrent GBM lines. In an aggressive orthotopic PDX GBM model, short-term Verteporfin treatment consistently diminished core and infiltrative tumor burden, which was associated with decreased tumor expression of Ki67, nuclear YAP, TEAD1, and TEAD-associated targets EGFR, CDH2 and ITGB1. Finally, long-term Verteporfin treatment appeared non-toxic and conferred survival benefit compared to vehicle in two PDX models: as monotherapy in primary (de-novo) GBM and in combination with Temozolomide chemoradiation in recurrent GBM, where VP treatment associated with increased MGMT methylation. CONCLUSIONS We demonstrate combined anti-invasive and anti-proliferative efficacy for Verteporfin with survival benefit in preclinical GBM models, indicating potential therapeutic value of this already FDA-approved drug if repurposed for glioblastoma patients.
Collapse
Affiliation(s)
- Anne Marie Barrette
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Halle Ronk
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanvi Joshi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zarmeen Mussa
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meenakshi Mehrotra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joe G Jesu Raj
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dominique Bozec
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Lam
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymund Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Bryukhovetskiy I, Kosianova A, Zaitsev S, Pak O, Sharma A, Sharma HS. Glioblastoma: What can we do for these patients today and what will we be able to do in the future? PROGRESS IN BRAIN RESEARCH 2021; 265:99-118. [PMID: 34560928 DOI: 10.1016/bs.pbr.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive primary human brain tumor. The median survival of GBM patients is 15 months in case of completing the modern complex treatment protocol. Chemotherapy can help to extend the life expectancy of patients. GBM treatment resistance is associated with cancer stem cells (CSCs). The present paper analyses the main reasons for ineffectiveness of the existing GBM treatment methods and suggests treating CSCs as a complex phenomenon, resulting from the coordinated interaction of normal stem cells and cancer cells (CCs) in immunosuppressive microsurroundings. The GBM treatment strategy is suggested not for only suppressing strategically important signaling pathways in CCs, but also for regulating interaction between normal stem cells and cancer cells. The paper considers the issue of controlling penetrability of the blood-brain barrier that is one of the main challenges in neuro-oncology. Also, the paper suggests the ways of extending life expectancy of GBM patients today and prospects for the near future.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia.
| | - Aleksandra Kosianova
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Sergeis Zaitsev
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Oleg Pak
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Leung SOA, Foley O, Chapel D, Da Silva A, Nucci M, Muto MG, Campos S. Next-Generation Sequencing in the Diagnosis of Metastatic Lesions: Reclassification of a Glioblastoma as an Endometrial Cancer Metastasis to the Brain. Oncologist 2021; 26:e2102-e2109. [PMID: 34355460 DOI: 10.1002/onco.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Endometrial cancer is the most common gynecologic cancer in the U.S., but metastasis to the brain is rare, and diagnosis can be challenging. Traditional tools for determining if a tumor is a primary or metastatic lesion include pan-imaging, histopathologic studies, and immunohistochemistry. Molecular testing with next-generation sequencing has been increasingly used to augment these tests. We present a case of a patient who initially presented with a brain lesion diagnosed as glioblastoma on histology and immunohistochemistry, but whose diagnosis was later changed to metastasis from an endometrial primary based on molecular findings. The two tumors shared a common microsatellite instability signature and 51 DNA variants, including oncogenic driver mutations KRAS p.G13D, PIK3CA p.E545A, and PTEN p.I135V and p.K267Rfs*9. This highlights the power of molecular analysis in making the diagnosis in cases of rare metastases. KEY POINTS: Brain metastasis from endometrial primary is rare, and histopathological features may be augmented with molecular analysis to aid in diagnosis. Comparison of the molecular makeup of the primary endometrial lesion with the metastatic lesion may reveal high-risk molecular features that may be indicative of metastatic potential.
Collapse
Affiliation(s)
- Shuk On Annie Leung
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, Quebec, Canada
| | - Olivia Foley
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Chapel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annacarolina Da Silva
- Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marisa Nucci
- Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael G Muto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Susana Campos
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Vassilakopoulou M, Won M, Curran WJ, Souhami L, Prados MD, Langer CJ, Rimm DL, Hanna JA, Neumeister VM, Melian E, Diaz AZ, Atkins JN, Komarnicky LT, Schultz CJ, Howard SP, Zhang P, Dicker AP, Knisely JPS. BRCA1 Protein Expression Predicts Survival in Glioblastoma Patients from an NRG Oncology RTOG Cohort. Oncology 2021; 99:580-588. [PMID: 33957633 DOI: 10.1159/000516168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Glioblastoma, the most common malignant brain tumor, was associated with a median survival of <1 year in the pre-temozolomide (TMZ) era. Despite advances in molecular and genetic profiling studies identifying several predictive biomarkers, none has been translated into routine clinical use. Our aim was to investigate the prognostic significance of a panel of diverse cellular molecular markers of tumor formation and growth in an annotated glioblastoma tissue microarray (TMA). METHODS AND MATERIALS A TMA composed of archived glioblastoma tumors from patients treated with surgery, radiation, and non-TMZ chemother-apy, was provided by RTOG. RAD51, BRCA-1, phosphatase and tensin homolog tumor suppressor gene (PTEN), and miRNA-210 expression levels were assessed using quantitative in situ hybridization and automated quantitative protein analysis. The objectives of this analysis were to determine the association of each biomarker with overall survival (OS), using the Cox proportional hazard model. Event-time distributions were estimated using the Kaplan-Meier method and compared by the log-rank test. RESULTS A cohort of 66 patients was included in this study. Among the 4 biomarkers assessed, only BRCA1 expression had a statistically significant correlation with survival. From univariate analysis, patients with low BRCA1 protein expression showed a favorable outcome for OS (p = 0.04; hazard ratio = 0.56) in comparison with high expressors, with a median survival time of 18.9 versus 4.8 months. CONCLUSIONS BRCA1 protein expression was an important survival predictor in our cohort of glioblastoma patients. This result may imply that low BRCA1 in the tumor and the consequent low level of DNA repair cause vulnerability of the cancer cells to treatment.
Collapse
Affiliation(s)
- Maria Vassilakopoulou
- Department of Pathology, Yale University, New Haven, Connecticut, USA, .,Department of Medical Oncology, University of Crete, Heraklion, Greece,
| | - Minhee Won
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
| | - Walter J Curran
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Luis Souhami
- Department of Radiation Oncology, McGill University, Montréal, Québec, Canada
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Corey J Langer
- Division of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L Rimm
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Jason A Hanna
- Department of Pathology, Yale University, New Haven, Connecticut, USA.,Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Veronique M Neumeister
- Department of Pathology, Yale University, New Haven, Connecticut, USA.,Akoya Biosciences, Hopkinton, Massachusetts, USA
| | - Edward Melian
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Aidnag Z Diaz
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois, USA
| | - James N Atkins
- Southeast Cancer Consortium-Upstate NCORP, Winston-Salem, North Carolina, USA
| | - Lydia T Komarnicky
- Department of Radiation Oncology, Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher J Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven P Howard
- Department of Human Oncology, University of Wisconsin Hospital, Madison, Wisconsin, USA
| | - Peixin Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Mohme M, Maire CL, Schliffke S, Joosse SA, Alawi M, Matschke J, Schüller U, Dierlamm J, Martens T, Pantel K, Riethdorf S, Lamszus K, Westphal M. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun 2020; 8:28. [PMID: 32151286 PMCID: PMC7063778 DOI: 10.1186/s40478-020-00906-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral metastases of glioblastoma (GBM) are very rare despite the ability of GBM cells to pass through the blood-brain barrier and be disseminated through the peripheral blood. Here, we describe a detailed genetic and immunological characterization of a GBM metastasis in the skeleton, which occurred during anti-PD-1 immune checkpoint therapy. We performed whole genome sequencing (WGS) and 850 K methylation profiling of the primary and recurrent intracranial GBM as well as one of the bone metastases. Copy number alterations (CNA) and mutational profiles were compared to known genomic alterations in the TCGA data base. In addition, immunophenotyping of the peripheral blood was performed. The patient who was primarily diagnosed with IDH-wildtype GBM. After the resection of the first recurrence, progressive intracranial re-growth was again detected, and chemotherapy was replaced by PD-1 checkpoint inhibition, which led to a complete intracranial remission. Two months later MR-imaging revealed multiple osseous lesions. Biopsy confirmed the GBM origin of the skeleton metastases. Immunophenotyping reflected the effective activation of a peripheral T-cell response, with, however, increase of regulatory T cells during disease progression. WGS sequencing demonstrated distinct genomic alterations of the GBM metastasis, with gains along chromosomes 3 and 9 and losses along chromosome 4, 10, and 11. Mutational analysis showed mutations in potentially immunologically relevant regions. Additionally, we correlated tumour-infiltrating lymphocyte and microglia presence to the occurrence of circulating tumour cells (CTCs) in a larger cohort and found a decreased infiltration of cytotoxic T cells in patients positive for CTCs. This study exemplifies that the tumour microenvironment may dictate the response to immune checkpoint therapy. In addition, our study highlights the fact that despite an effective control of intracranial GBM, certain tumour clones have the ability to evade the tumour-specific T-cell response and cause progression even outside of the CNS.
Collapse
|