1
|
Ramakrishnan K, Sanjeev D, Rehman N, Raju R. A Network Map of Intracellular Alpha-Fetoprotein Signalling in Hepatocellular Carcinoma. J Viral Hepat 2025; 32:e14035. [PMID: 39668590 DOI: 10.1111/jvh.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
Alpha fetoprotein (AFP) is a glycoprotein of foetal origin belonging to the albumin protein family. Serum AFP is a long-conceived early-diagnostic biomarker for HCC with its elevated expression in different liver pathologies ranging from hepatitis viral infections to fibrosis, cirrhosis, and HCC. Beyond their utility as biomarkers, in support of its contribution to these clinical outcomes, the function of AFP as an immune suppressor and inducer of malignant transformation in HCC patients is well reported. Multiple reports show that AFP is secreted by hepatocytes, binds to its cognate receptor, AFP-receptor (AFPR), and exerts its actions. However, there is only limited information available in this context. There is an urgent need to gather more insight into the AFP signalling pathway and consider it a classical intracellular signalling pathway, among others. AFP is a highly potent intracellular molecule that has the potential to bind to many interactors like PTEN, Caspase, RAR, and so on. It has been shown that cellular AFP and secreted AFP have different roles in HCC pathophysiology, and a comprehensive map of the AFP signalling pathway is warranted for further theranostic applications.
Collapse
Affiliation(s)
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
2
|
Pan Y, Yin Q, Wang Z, Wu G, Liu K, Li X, Liu J, Zeng J, Lin B, Li W, Zhu M, Li M. AFP shields hepatocellular carcinoma from macrophage phagocytosis by regulating HuR-mediated CD47 translocation in cellular membrane. Transl Oncol 2024; 52:102240. [PMID: 39667226 DOI: 10.1016/j.tranon.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Alpha fetoprotein(AFP) overexpression connecting with macrophage dysfunction remain poorly defined. In this study, explore AFP regulates macrophage immunomodulation in hepatocellular carcinoma(HCC) through comprehensive in vitro and in vivo studies. METHODS Immunohistochemical and immunofluorescence staining was used to analyze the relativity of AFP and cellular membrane CD47 expression in clinical 30 HCC tissues, and the expression of AFP and CD47 in HCC cells. The intelligent living-cell high-throughput imaging analyzer was applied to dynamically track and image of macrophages to phagocytize HCC cells. The effect of AFP on regulating the level of CD47 in cellular membrane and growth of tumor in vivo was performed by animal experiment. The association of AFP and CD47 in HCC cells was detected by single cell analysis. RESULTS The present results indicated that AFP upregulated the localization of CD47 on the HCC cell surface. CD47 overexpression stimulates HCC to escape immune surveillance by transmitting "don't eat me" signals to macrophages, lead to inhibit macrophage to phagocytize HCC cells. Mechanistically, the results demonstrated that AFP enhanced CD47 membrane translocation by interacting with Hu-Antigen R(HuR), an RNA-binding protein that regulates mRNA stability and translation. AFP alters the subcellular distribution of HuR, increasing its cytoplasmic accumulation and binding to CD47 transcript. CONCLUSIONS AFP enhanced CD47 membrane translocation by interacting with HuR. These findings proved that AFP could inhibit macrophage to phagocytize HCC cells by upregulating the localization of CD47 on the HCC cell surface. Combination of AFP with CD47 blockade may be a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Yinglian Pan
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Zhaoliang Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Laboratory, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, PR China
| | - Gang Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Laboratory, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, PR China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Xiaowei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jiangzheng Zeng
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Medical Oncology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China.
| |
Collapse
|
3
|
Zhang P, Zhang Z, Li J, Xu M, Lu W, Chen M, Shi J, Wang Q, Zhang H, Huang S, Lian C, Liu J, Ma J, Liu J. Advanced PROTAC and Quantitative Proteomics Strategy Reveals Bax Inhibitor-1 as a Critical Target of Icaritin in Burkitt Lymphoma. Int J Mol Sci 2024; 25:12944. [PMID: 39684655 DOI: 10.3390/ijms252312944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Understanding the molecular targets of natural products is crucial for elucidating their mechanisms of action, mitigating toxicity, and uncovering potential therapeutic pathways. Icaritin (ICT), a bioactive flavonoid, demonstrates significant anti-tumor activity but lacks defined molecular targets. This study employs an advanced strategy integrating proteolysis targeting chimera (PROTAC) technology with quantitative proteomics to identify ICT's key targets. A library of 22 ICT-based PROTAC derivatives were synthesized, among which LJ-41 exhibited a superior IC50 of 5.52 μM against Burkitt lymphoma (CA-46) cells. Then, differential proteomic analysis identified Bax inhibitor-1 (BI-1) as a potential target. Target validation techniques, including cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, surface plasmon resonance (SPR) assay, and molecular docking, confirmed LJ-41's high specificity for BI-1. Mechanistic investigations revealed that LJ-41 induces apoptosis through BI-1 degradation, triggering endoplasmic reticulum stress and activating inositol-requiring enzyme 1 α (IRE1α), activating transcription factor 6 (ATF6), and nuclear factor erythroid 2-related factor transcription factor heme oxygenase 1 (NRF2-HO-1) signaling pathways. This study establishes a refined methodological framework for natural product target discovery and highlights ICT-PROTAC derivatives' potential for clinical application in Burkitt lymphoma treatment.
Collapse
Affiliation(s)
- Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ziqing Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jie Li
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Weiming Lu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ming Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jiaqi Shi
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Qiaolai Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Hengyuan Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Shi Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Chenlei Lian
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
4
|
Yu HB, Hu JQ, Han BJ, Du YY, Chen ST, Chen X, Xiong HT, Gao J, Zheng HG. Combinatorial treatment with traditional medicinal preparations and VEGFR-tyrosine kinase inhibitors for middle-advanced primary liver cancer: A systematic review and meta-analysis. PLoS One 2024; 19:e0313443. [PMID: 39576764 PMCID: PMC11584121 DOI: 10.1371/journal.pone.0313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND This study aimed to investigate the therapeutic efficacy and safety of Traditional medicine preparations (TMPs) given in combination with vascular endothelial growth factor receptor (VEGFR)-associated multi-targeted tyrosine kinase inhibitors (TKIs) for the treatment of middle to advanced-stage primary liver cancer (PLC). METHODS This systematic literature survey employed 10 electronic databases and 2 clinical trial registration platforms to identify relevant studies on the use of TMPs + VEGFR-TKIs to treat patients with middle-advanced PLC. Furthermore, a meta-analysis was performed following the PRISMA guidelines using the risk ratio (RR) at 95% confidence intervals (CI) or standardized mean difference as effect measures. RESULTS A total of 26 studies comprising 1678 middle-advanced PLC patients were selected. The meta-analysis revealed that compared with VEGFR-TKI mono-treatment, the co-therapy of TMPs + VEGFR-TKIs considerably enhanced the objective response rate (RR = 1.49, 95% CI: 1.31-1.69), disease control rate (RR = 1.23, 95% CI: 1.16-1.30), and one-year overall survival (RR = 1.49, 95% CI: 1.28-1.74). Furthermore, the co-therapy was associated with reduced incidences of liver dysfunction (RR = 0.64, 95% CI: 0.45-0.91), proteinuria (RR = 0.43, 95% CI: 0.24-0.75), hypertension (RR = 0.66, 95% CI: 0.53-0.83), hand-foot skin reactions (RR = 0.63, 95% CI: 0.49-0.80), myelosuppression (RR = 0.63, 95% CI: 0.46-0.87), and gastrointestinal reactions (RR = 0.64, 95% CI: 0.45-0.92). Moreover, the co-therapy indicated no increase in the incidences of rash and fatigue. CONCLUSION This systematic analysis revealed that co-therapy with TMPs + VEGFR-TKIs has a higher effectiveness and safety profile for treating middle-advanced PLC patients. However, further validation using randomized control trials is required. PROSPERO REGISTRATION NO CRD42022350634.
Collapse
Affiliation(s)
- Hui-Bo Yu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Qi Hu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Bao-Jin Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Yuan Du
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shun-Tai Chen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Tai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Gang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Samban SS, Hari A, Nair B, Kumar AR, Meyer BS, Valsan A, Vijayakurup V, Nath LR. An Insight Into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma. Mol Biotechnol 2024; 66:2697-2709. [PMID: 37782430 DOI: 10.1007/s12033-023-00890-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary malignancy of hepatocytes and the second most common cause of cancer-related mortality across the globe. Despite significant advancements in screening, diagnosis, and treatment modalities for HCC, the mortality-to-incidence ratio remain unacceptably high. A recent study indicates that a minor population of HCCs are AFP negative or express the normal range of AFP levels. Although it is a gold standard and a more reliable biomarker in the advanced stage of HCC and poorly differentiated tumors, it does not serve as a suitable means for screening HCC. AFP plays a significant role in the development and progression of HCC and understanding its role is crucial. By examining the molecular mechanisms involved in AFP-mediated tumorigenesis, we can better understand HCC pathogenesis and identify potential therapeutic targets. This article details the role of alpha-fetoprotein (AFP) in the carcinogenic transformation of hepatocytes. The article also focuses on information about the structure, biosynthesis, and regulation of AFP at the gene level. Additionally, it discusses the immune evasion, metastasis, and control of gene expression that AFP mediates during HCC.
Collapse
Affiliation(s)
- Swathy S Samban
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Aparna Hari
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Benjamin S Meyer
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Valsan
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Science, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, India
| | - Vinod Vijayakurup
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India.
| |
Collapse
|
7
|
Cui J, Lin L, Hao F, Shi Z, Gao Y, Yang T, Yang C, Wu X, Gao R, Ru Y, Li F, Xiao C, Gao Y, Wang Y. Comprehensive review of the traditional uses and the potential benefits of epimedium folium. Front Pharmacol 2024; 15:1415265. [PMID: 39323630 PMCID: PMC11422139 DOI: 10.3389/fphar.2024.1415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Epimedium Folium has been extensively utilized for medicinal purposes in China for a significant period. This review undertakes a comprehensive examination of literature pertaining to Epimedium and its metabolites over the past decade, drawing from databases such as PubMed. Through meticulous organization and synthesis of pertinent research findings, including disease models, pharmacological effects, and related aspects, this narrative review sheds light on the principal pharmacological activities and associated mechanisms of Epimedium in safeguarding the reproductive system, promoting bone health, mitigating inflammation, and combating tumors and viral infections. Consequently, this review contributes to a more profound comprehension of the recent advances in Epimedium research.
Collapse
Affiliation(s)
- Jialu Cui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Lin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yehui Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingyu Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Rong Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fangyang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuguang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
8
|
Jiao Y, Li W, Yang W, Wang M, Xing Y, Wang S. Icaritin Exerts Anti-Cancer Effects through Modulating Pyroptosis and Immune Activities in Hepatocellular Carcinoma. Biomedicines 2024; 12:1917. [PMID: 39200381 PMCID: PMC11351763 DOI: 10.3390/biomedicines12081917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Icaritin (ICT), a natural compound extracted from the dried leaves of the genus Epimedium, possesses antitumor and immunomodulatory properties. However, the mechanisms through which ICT modulates pyroptosis and immune response in hepatocellular carcinoma (HCC) remain unclear. This study demonstrated that ICT exhibits pyroptosis-inducing and anti-hepatocarcinoma effects. Specifically, the caspase1-GSDMD and caspase3-GSDME pathways were found to be involved in ICT-triggered pyroptosis. Furthermore, ICT promoted pyroptosis in co-cultivation of HepG2 cells and macrophages, regulating the release of inflammatory cytokines and the transformation of macrophages into a proinflammatory phenotype. In the Hepa1-6+Luc liver cancer model, ICT treatment significantly increased the expression of cleaved-caspase1, cleaved-caspase3, and granzyme B, modulated cytokine secretion, and stimulated CD8+ T cell infiltration, resulting in a reduction in tumor growth. In conclusion, the findings in this research suggested that ICT may modulate cell pyroptosis in HCC and subsequently regulate the immune microenvironment of the tumor. These observations may expand the understanding of the pharmacological mechanism of ICT, as well as the therapy of liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Wenqian Li
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Daxue Road, Jinan 250355, China
| | - Wen Yang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Mingyu Wang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Yaling Xing
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Shengqi Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| |
Collapse
|
9
|
He JL, Pei LX, Ji BY, Wang HB, Zhong H, Dong CM, Chen SQ, Li XQ, Li PP. Biological characteristics of flowers and examination of pollen viability at different developmental stages of Epimedium sagittatum (Sieb. et Zucc.) Maxim. Sci Rep 2024; 14:18530. [PMID: 39122793 PMCID: PMC11316018 DOI: 10.1038/s41598-024-68606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
To gain a deeper understanding of the flowering pattern and reproductive characteristics of Epimedium sagittatum, to enrich the research on the flower development of E. sagittatum and its reproductive regulation, and to screen the methods suitable for the rapid detection of pollen viability of E. sagittatum and to promote its cross-breeding. The characteristics of its flower parts were observed, recorded and measured, and the pollen viability of E. sagittatumwas determined by five methods, including TTC staining, I2-KI staining, red ink staining, peroxidase method and in vitro germination method. The flowering process of E. sagittatum can be divided into five stages: calyx dehiscence, bract spathe, petal outgrowth, pollen dispersal, and pollination and withering. The results of I2-KI staining and peroxidase method were significantly higher than those of other methods; the in vitro germination method was intuitive and accurate, but the operation was complicated and time-consuming; the red ink staining method was easy to operate and had obvious staining effect, and the results were the closest to those of the in vitro germination method; and it was found that the pollen of E. sagittatum was not as effective as the in vitro germination method at the bud stamen stage, the flower stigma and the flower bud. It was also found that the pollen viability and germination rate of E. sagittatum pollen were higher in the three periods of bud spitting, petal adductor and pollen dispersal. Comparing the five methods, the red ink staining method was found to be a better method for the rapid detection of pollen viability; the best pollination periods of E. sagittatum were the bud stamen stage, petal adductor stage, and pollen dispersal stage of flowers at the peak of bloom. This study on the flowering and fruiting pattern of E. sagittatum, and the related mechanism of sexual reproduction, can be used as a reference for the next step of research on the breeding of E. sagittatum.
Collapse
Affiliation(s)
- Jiang-Long He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Li-Xin Pei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Hai-Bo Wang
- State Drug Administration-Key Laborator Qua It of Chinese Medicinal Materials and Decoction Pieces Control, Zhengzhou, 450048, China.
| | - Hua Zhong
- Rural Agriculture Bureau of Pingyu County, Zhumadian, 463400, China
| | - Cheng-Ming Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiu-Qing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan-Pan Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
10
|
Chen XL, Li SX, Ge T, Zhang DD, Wang HF, Wang W, Li YZ, Song XM. Epimedium Linn: A Comprehensive Review of Phytochemistry, Pharmacology, Clinical Applications and Quality Control. Chem Biodivers 2024; 21:e202400846. [PMID: 38801026 DOI: 10.1002/cbdv.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Epimedium genus is a traditional Chinese medicine, which has functions of tonifying kidney and yang, strengthening tendons and bones, dispelling wind and emoving dampness. It is mainly used for the treatment of impotence and spermatorrhea, osteoporosis, Parkinson's, Alzheimer's, and cardiovascular diseases. The aim of this review is to provide a systematic summary of the phytochemistry, pharmacology, and clinical applications of the Epimedium Linn. In this paper, the relevant literature on Epimedium Linn. was collected from 1987 to the present day, and more than 274 chemical constituents, including flavonoids, phenylpropanoids, lignans, phenanthrenes, and others, were isolated from this genus. Modern pharmacological studies have shown that Epimedium Linn. has osteoprotective, neuroprotective, cardiovascular protective, and immune enhancing pharmacological effects. In addition, Epimedium Linn. has been commonly used to treat osteoporosis, erectile dysfunction, hypertension and cardiovascular disease. In this paper, the distribution of resources, chemical compositions, pharmacological effects, clinical applications and quality control of Epimedium Linn. are progressed to provide a reference for further research and development of the resources of this genus.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Shi-Xing Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Teng Ge
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Hai-Fang Wang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Wei Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
11
|
Montagnani Marelli M, Macchi C, Ruscica M, Sartori P, Moretti RM. Anticancer Activity of Delta-Tocotrienol in Human Hepatocarcinoma: Involvement of Autophagy Induction. Cancers (Basel) 2024; 16:2654. [PMID: 39123382 PMCID: PMC11311296 DOI: 10.3390/cancers16152654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer. Surgical resection, tumor ablation, and liver transplantation are curative treatments indicated for early-stage HCC. The management of intermediate and advanced stages of pathology is based on the use of systemic therapies which often show important side effects. Vitamin E-derivative tocotrienols (TTs) play antitumoral properties in different tumors. Here, we analyzed the activity of delta-TT (δ-TT) on HCC human cell lines. (2) We analyzed the ability of δ-TT to trigger apoptosis, to induce oxidative stress, autophagy, and mitophagy in HepG2 cell line. We evaluated the correlation between the activation of autophagy with the ability of δ-TT to induce cell death. (3) The data obtained demonstrate that δ-TT exerts an antiproliferative and proapoptotic effect in HCC cells. Furthermore, δ-TT induces the release of mitochondrial ROS and causes a structural and functional alteration of the mitochondria compatible with a fission process. Finally, δ-TT triggers selective autophagy process removing dysfunctional mitochondria. Inhibition of autophagy reversed the cytotoxic action of δ-TT. (4) Our results demonstrate that δ-TT through the activation of autophagy could represent a potential new approach in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
- Department of Cardio-Thoracic-Vascular Diseases-Foundation, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20162 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| |
Collapse
|
12
|
Ding J, Li C, Wang G, Yang Y, Li J. Cancer-Related Therapeutic Potential of Epimedium and Its Extracts. Nutr Cancer 2024; 76:885-901. [PMID: 39066475 DOI: 10.1080/01635581.2024.2383336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Epimedium is a Chinese herb known as "yin and yang fire," first mentioned in the Compendium of Materia Medica. Many of the proprietary Chinese medicines used in clinical practice contain Epimedium as an ingredient, and its main active constituents include icariin, icaritin, and icariside II, among others. In addition to its traditional use in treating fatigue and sexual problems, modern research has confirmed that the main bioactive compounds in Epimedium have pharmacological effects such as antidepressant, antibacterial, antiviral, antioxidant, and anti-inflammatory properties, as well as inhibiting bone destruction, promoting bone growth, improving immune regulation and protecting the cardio-cerebral vascular system. With the continuous development of extraction and purification techniques, the development and use of bioactive compounds in Epimedium have significantly progressed, and the anticancer effect has received widespread attention. Since natural herbs have few side effects on the human body and do not easily develop drug resistance, they have long been the direction of research in cancer treatment. This review summarizes the latest research on the anticancer effects of Epimedium and its extracts, describes the bioactive compounds, pharmacological efficacy, and antitumor mechanism of Epimedium, and gives a new view on the administration and development of Epimedium.
Collapse
Affiliation(s)
- Jipeng Ding
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Guanzheng Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yiming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Sun X, He Z, Lu R, Liu Z, Chiampanichayakul S, Anuchapreeda S, Jiang J, Tima S, Zhong Z. Hyaluronic acid-modified liposomes Potentiated in-vivo anti-hepatocellular carcinoma of icaritin. Front Pharmacol 2024; 15:1437515. [PMID: 39055490 PMCID: PMC11270019 DOI: 10.3389/fphar.2024.1437515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Icaritin (ICT), a promising anti-hepatocellular carcinoma (HCC) prenylated flavonoid, is hindered from being applied due to its low water solubility and high lipophilicity in poorly differentiated HCC which is associated with upregulation of CD44 isoforms. Thus, hyaluronic acid (HA), a natural polysaccharide with high binding ability to CD44 receptors, was used to formulate a modified liposome as a novel targeted ICT-delivery system for HCC treatment. Methods: The ICT-Liposomes (Lip-ICT) with and without HA were prepared by a combined method of thin-film dispersion and post-insertion. The particle size, polydispersity (PDI), zeta potential, encapsulation efficacy (%EE), drug loading content (%DLC), and in vitro drug release profiles were investigated for physicochemical properties, whereas MTT assay was used to assess cytotoxic effects on HCC cells, HepG2, and Huh7 cells. Tumor bearing nude mice were used to evaluate the inhibitory effect of HA-Lip-ICT and Lip-ICT in vivo. Results: Lip-ICT and HA-Lip-ICT had an average particle size of 171.2 ± 1.2 nm and 208.0 ± 3.2 nm, with a zeta potential of -13.9 ± 0.83 and -24.8 ± 0.36, respectively. The PDI resulted from Lip-ICT and HA-Lip-ICT was 0.28 ± 0.02 and 0.26 ± 0.02, respectively. HA-Lip-ICT demonstrated higher in vitro drug release when pH was dropped from 7.4 to 5.5, The 12-h release rate of ICT from liposomes increased from 30% at pH7.4 to more than 60% at pH5.5. HA-Lip-ICT displayed higher toxicity than Lip-ICT in both HCC cells, especially Huh7with an IC50 of 34.15 ± 2.11 μM. The in vivo tissue distribution and anti-tumor experiments carried on tumor bearing nude mice indicated that HA-Lip- ICT exhibited higher tumor accumulation and achieved a tumor growth inhibition rate of 63.4%. Discussion: The nano-sized Lip-ICT was able to prolong the drug release time and showed long-term killing HCC cells ability. Following conjugation with HA, HA-Lip-ICT exhibited higher cytotoxicity, stronger tumor targeting, and tumor suppression abilities than Lip-ICT attributed to HA-CD44 ligand-receptor interaction, increasing the potential of ICT to treat HCC.
Collapse
Affiliation(s)
- Xiaoduan Sun
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhenzhen He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ruilin Lu
- Suining First People’s Hospital, Suining, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
14
|
Song WJ, Xu J, Nie Y, Li WM, Li JP, Yang L, Wei MQ, Tao KS. Conversion therapy of a giant hepatocellular carcinoma with portal vein thrombus and inferior vena cava thrombus: A case report and review of literature. World J Clin Cases 2024; 12:2847-2855. [PMID: 38899296 PMCID: PMC11185326 DOI: 10.12998/wjcc.v12.i16.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) combined with portal and hepatic vein cancerous thrombosis is poor, for unresectable patients the combination of targeted therapy and immune therapy was the first-line recommended treatment for advanced HCC, with a median survival time of only about 2.7-6 months. In this case report, we present the case of a patient with portal and hepatic vein cancerous thrombosis who achieved pathologic complete response after conversion therapy. CASE SUMMARY In our center, a patient with giant HCC combined with portal vein tumor thrombus and hepatic vein tumor thrombus was treated with transcatheter arterial chemoembolization (TACE), radiotherapy, targeted therapy and immunotherapy, and was continuously given icaritin soft capsules for oral regulation. After 7 months of conversion therapy, the patient's tumor shrank and the tumor thrombus subsided significantly. The pathology of surgical resection was in complete remission, and there was no progression in the postoperative follow-up for 7 months, which provided a basis for the future strategy of combined conversion therapy. CONCLUSION In this case, atezolizumab, bevacizumab, icaritin soft capsules combined with radiotherapy and TACE had a good effect. For patients with hepatocellular carcinoma combined with hepatic vein/inferior vena cava tumor thrombus, adopting a high-intensity, multimodal proactive strategy under the guidance of multidisciplinary team (MDT) is an important attempt to break through the current treatment dilemma.
Collapse
Affiliation(s)
- Wen-Jie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wei-Min Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian-Ping Li
- Department of Radiotherapy, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710000, Shaanxi Province, China
| | - Meng-Qi Wei
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kai-Shan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
15
|
Du J, Zhang E, Huang Z. The predictive value of next generation sequencing for matching advanced hepatocellular carcinoma patients to targeted and immunotherapy. Front Immunol 2024; 15:1358306. [PMID: 38665910 PMCID: PMC11043782 DOI: 10.3389/fimmu.2024.1358306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background Targeted and Immunotherapy has emerged as a new first-line treatment for advanced hepatocellular carcinoma (aHCC). To identify the appropriate targeted and immunotherapy, we implemented next generation sequencing (NGS) to provide predictive and prognostic values for aHCC patients. Methods Pretreatment samples from 127 HCC patients were examined for genomic changes using 680-gene NGS, and PD-L1 expression was detected by immunohistochemistry. Demographic and treatment data were included for analyses of links among treatment outcomes, drug responses, and genetic profiles. A prognostic index model for predicting benefit from treatment was constructed, taking into account of biomarkers, including TP53, TERT, PD-L1, and tumor mutation burden (TMB) as possible independent prognostic factors. Results The multivariate Cox regression analyses showed that PD-L1≥1% (HR 25.07, 95%CI 1.56 - 403.29, p=0.023), TMB≥5Mb (HR 86.67, 95% CI 4.00 - 1876.48, p=0.004), TERT MU (HR 84.09, 95% CI 5.23 - 1352.70, p=0.002) and TP53 WT (HR 0.01, 95%CI 0.00 - 0.47, p=0.022) were independent risk factors for overall survival (OS), even after adjusting for various confounders. A prognostic nomogram for OS was developed, with an area under the ROC curve of 0.91, 0.85, and 0.98 at 1-, 2-, and 3- year, respectively, and a prognostic index cutoff of 1.2. According to the cutoff value, the patients were divided into the high-risk group (n=29) and low-risk group (n=98). The benefit of targeted and immunotherapy in the low-risk group was not distinguishable according to types of agents. However, treatment of Atezolizumab and Bevacizumab appeared to provide longer OS in the high-risk group (12 months vs 9.2, 9, or 5 months for other treatments, p<0.001). Conclusion The prognostic model constructed by PD-L1, TMB, TERT, and TP53 can identify aHCC patients who would benefit from targeted and immunotherapy, providing insights for the personalized treatment of HCC.
Collapse
Affiliation(s)
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Luo P, An Y, He J, Xing X, Zhang Q, Liu X, Chen Y, Yuan H, Chen J, Wong YK, Huang J, Gong Z, Du Q, Xiao W, Wang J. Icaritin with autophagy/mitophagy inhibitors synergistically enhances anticancer efficacy and apoptotic effects through PINK1/Parkin-mediated mitophagy in hepatocellular carcinoma. Cancer Lett 2024; 587:216621. [PMID: 38242198 DOI: 10.1016/j.canlet.2024.216621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest malignancies worldwide and still a pressing clinical problem. Icaritin, a natural compound obtained from the Epimedium genus plant, has garnered significant attention as a potential therapeutic drug for HCC therapies. Mitophagy plays a crucial role in mitochondrial quality control through efficiently eliminating damaged mitochondria. However, the specific mechanisms of the interplay between mitophagy and apoptosis in HCC is still unclear. We aimed to explore the cross-talk between icaritin-induced mitophagy and apoptosis in HCC cells and investigate its potential mechanisms. Firstly, we confirmed that icaritin inhibits proliferation and migration while inducing mitochondrial damage and reactive oxygen species (ROS) production in HCC cells. Secondly, based on proteomics analysis, we discovered that icaritin inhibits the growth of tumor cells and disrupts their mitochondrial homeostasis through the regulation of both mitophagy and apoptosis. Thirdly, icaritin causes mitophagy mediated by PINK1-Parkin signaling via regulating feedforward loop. Furthermore, knockdown of PINK1/Parkin leads to inhibition of mitophagy, which promotes cell death induced by icaritin in HCC cells. Finally, autophagy/mitophagy inhibitors remarkably enhance icaritin-induced cell death and anticancer efficacy. Collectively, our findings reveal that icaritin suppresses growth, proliferation and migration of HCC cell through induction of mitophagy and apoptosis, while inhibition of mitophagy significantly increased the anti-cancer and pro-apoptotic effects of icaritin, indicating that targeting autophagy or mitophagy is a novel approach to overcome drug resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yehai An
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, China
| | - Jingqian He
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuefeng Xing
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xueying Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yu Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haitao Yuan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Junhui Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yin-Kwan Wong
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Jingnan Huang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, China.
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jigang Wang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Zhou X, Wu D, Mi T, Li R, Guo T, Li W. Icaritin activates p53 and inhibits aerobic glycolysis in liver cancer cells. Chem Biol Interact 2024; 392:110926. [PMID: 38431053 DOI: 10.1016/j.cbi.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Tian Mi
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Tao Guo
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| |
Collapse
|
18
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Tang X, Zhang Y, Dong X, Jiang G, Hong D, Liu X. The Synergy of Gene Targeting Drug Icaritin Soft Capsule with Immunomodulator and TACE Brings New Hope for Drug Combination in Patients with Advanced Liver Cancer: A Case Report and Literature Review. Cancer Manag Res 2023; 15:707-717. [PMID: 37485037 PMCID: PMC10362861 DOI: 10.2147/cmar.s414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023] Open
Abstract
At present, the average five-year survival rate of liver cancer in China is only 12.1%. The reason for this association lies in the diagnosis at its middle or/and advanced stage of liver cancer for lacking special clinical symptoms in almost 70% of patients without the chance of effective surgical resection. Epidemiological studies have shown that there are only 30% of patients with an initial diagnosis of liver cancer have the opportunity to undergo radical surgery. Therefore, systematic and comprehensive treatment would play an important role in liver cancer treatment at its middle or/and advanced stage, and the related therapeutic schedule still needs further improvement and optimization. We applied a gene-targeted drug of Icaritin soft capsule in the treatment of a liver cancer patient at its advanced stage. And the level of AFP was found to decrease to 6.4ng/mL from 10.86ng/mL; meanwhile, MRI showed that the primary tumor significantly reduced in size, with shrinking of the hepatogastric space, hepatic aortic side, and renal artery side lymph nodes. After treatment with TACE and Icaritin, the patient had no discomfort and no longer experienced abdominal pain and bloating and gained three kilograms of weight. The therapeutic effect of Icaritin-targeted drugs was completely demonstrated during the later treatment follow-up. That is to say, the multiple anti-tumor characteristics of Icaritin with good safety were fully displayed in this case, and it can be used in combination with other drugs to treat hepatocellular carcinoma in the clinical setting. The results show that Icaritin can put some effects on the combined treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Xiaoxia Tang
- Operating Room, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yizhuo Zhang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xinyu Dong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guixing Jiang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Defei Hong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaolong Liu
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
20
|
Liu FY, Ding DN, Wang YR, Liu SX, Peng C, Shen F, Zhu XY, Li C, Tang LP, Han FJ. Icariin as a potential anticancer agent: a review of its biological effects on various cancers. Front Pharmacol 2023; 14:1216363. [PMID: 37456751 PMCID: PMC10347417 DOI: 10.3389/fphar.2023.1216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Numerous chemical compounds used in cancer treatment have been isolated from natural herbs to address the ever-increasing cancer incidence worldwide. Therein is icariin, which has been extensively studied for its therapeutic potential due to its anti-inflammatory, antioxidant, antidepressant, and aphrodisiac properties. However, there is a lack of comprehensive and detailed review of studies on icariin in cancer treatment. Given this, this study reviews and examines the relevant literature on the chemopreventive and therapeutic potentials of icariin in cancer treatment and describes its mechanism of action. The review shows that icariin has the property of inhibiting cancer progression and reversing drug resistance. Therefore, icariin may be a valuable potential agent for the prevention and treatment of various cancers due to its natural origin, safety, and low cost compared to conventional anticancer drugs, while further research on this natural agent is needed.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun-Rui Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Xuan Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Peng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Shen
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ya Zhu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li-Ping Tang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
22
|
Chen S, Duan H, Sun G. Reshaping immunometabolism in the tumour microenvironment to improve cancer immunotherapy. Biomed Pharmacother 2023; 164:114963. [PMID: 37269814 DOI: 10.1016/j.biopha.2023.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The evolving understanding of cellular metabolism has revealed a the promise of strategies aiming to modulate anticancer immunity by targeting metabolism. The combination of metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy and radiotherapy may offer new approaches to cancer treatment. However, it remains unclear how these strategies can be better utilized despite the complex tumour microenvironment (TME). Oncogene-driven metabolic changes in tumour cells can affect the TME, limiting the immune response and creating many barriers to cancer immunotherapy. These changes also reveal opportunities to reshape the TME to restore immunity by targeting metabolic pathways. Further exploration is required to determine how to make better use of these mechanistic targets. Here, we review the mechanisms by which tumour cells reshape the TME and cause immune cells to transition into an abnormal state by secreting multiple factors, with the ultimate goal of proposing targets and optimizing the use of metabolic inhibitors. Deepening our understanding of changes in metabolism and immune function in the TME will help advance this promising field and enhance immunotherapy.
Collapse
Affiliation(s)
- Shuchen Chen
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute,Cancer Hospital of Dalian University of Technology, Shenyang 110042, Liaoning Province, China
| | - He Duan
- Department of the Third General Surgery, The Fourth Affiliated Hospital of the China Medical University, Shenyang 110032, Liaoning Province, China
| | - Gongping Sun
- Department of the Third General Surgery, The Fourth Affiliated Hospital of the China Medical University, Shenyang 110032, Liaoning Province, China.
| |
Collapse
|
23
|
Liu X, Yang F, Jia D, Dong X, Zhang Y, Wu Z. Case report: A case study on the treatment using icaritin soft capsules in combination with lenvatinib achieving impressive PR and stage reduction in unresectable locally progressive pancreatic cancer and a literature review. Front Genet 2023; 14:1167470. [PMID: 37152980 PMCID: PMC10156971 DOI: 10.3389/fgene.2023.1167470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Pancreatic cancer is one of the most deadly malignancies in the world. It is characterized by rapid progression and a very poor prognosis. The five-year survival rate of pancreatic cancer in China is only 7.2%, which is the lowest among all cancers and the use of combined paclitaxel albumin, capecitabine, and digital has been the clinical standard treatment for advanced pancreatic cancer since 1997. Also, the application of multidrug combinations is often limited by the toxicity of chemotherapy. Therefore, there is an urgent need for a more appropriate and less toxic treatment modality for pancreatic cancer. Case presentation: The patient was a 79-year-old woman, admitted to the hospital with a diagnosis of unresectable locally advanced pancreatic cancer (T3N0M0, stage IIA), with its imaging showing overgrowth of SMV involvement and unresectable reconstruction of the posterior vein after evaluation. As the patient refused chemotherapy, lenvatinib (8 mg/time, qd) and icaritin soft capsules (three tablets/time, bid) were recommended according to our past experience and a few clinical research cases. The tumor lesion was greatly reduced by 57.5% after the treatment, and the extent of vascular involvement also decreased. The aforementioned medication resulted in a significant downstaging of the patient's tumor. Conclusion: Better results were achieved in the treatment with icaritin soft capsules and lenvatinib in this case. Because of its less toxic effect on the liver and kidney and bone marrow suppression, it was suitable to combine icaritin soft capsules with targeted drugs for treating intermediate and advanced malignancies, which brings hope to patients who cannot or refuse to take chemotherapy.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feimin Yang
- Department of Nursing, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dunmao Jia
- Department of General Surgery, Affiliated Run Run Shaw Hospital, Jiangshan Branch, Harbin Medical University, Quzhou, China
| | - Xinyu Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhuo Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Xiang L, Li Y, Gu X, Li S, Li J, Li J, Yi Y. Nucleolin recognizing silica nanoparticles inhibit cell proliferation by activating the Bax/Bcl-2/caspase-3 signalling pathway to induce apoptosis in liver cancer. Front Pharmacol 2023; 14:1117052. [PMID: 36843953 PMCID: PMC9947157 DOI: 10.3389/fphar.2023.1117052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Multifunctional nanocarrier platforms have shown great potential for the diagnosis and treatment of liver cancer. Here, a novel nucleolin-responsive nanoparticle platform was constructed for the concurrent detection of nucleolin and treatment of liver cancer. The incorporation of AS1411 aptamer, icaritin (ICT) and FITC into mesoporous silica nanoparticles, labelled as Atp-MSN (ICT@FITC) NPs, was the key to offer functionalities. The specific combination of the target nucleolin and AS1411 aptamer caused AS1411 to separate from mesoporous silica nanoparticles surface, allowing FITC and ICT to be released. Subsequently, nucleolin could be detected by monitoring the fluorescence intensity. In addition, Atp-MSN (ICT@FITC) NPs can not only inhibit cell proliferation but also improve the level of ROS while activating the Bax/Bcl-2/caspase-3 signalling pathway to induce apoptosis in vitro and in vivo. Moreover, our results demonstrated that Atp-MSN (ICT@FITC) NPs had low toxicity and could induce CD3+ T-cell infiltration. As a result, Atp-MSN (ICT@FITC) NPs may provide a reliable and secure platform for the simultaneous identification and treatment of liver cancer.
Collapse
Affiliation(s)
- Liangliang Xiang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Gu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujie Li
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Junwei Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Jinlong Li, ; Yongxiang Yi,
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Jinlong Li, ; Yongxiang Yi,
| |
Collapse
|
25
|
Liu Y, Yang H, Xiong J, Zhao J, Guo M, Chen J, Zhao X, Chen C, He Z, Zhou Y, Xu L. Icariin as an emerging candidate drug for anticancer treatment: Current status and perspective. Biomed Pharmacother 2023; 157:113991. [PMID: 36370524 DOI: 10.1016/j.biopha.2022.113991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Icariin (ICA) is a kind of natural flavonoid compound monomer, which is derived from the extract of dried stems and leaves of Epimedium. Modern pharmacological studies have found that ICA has broad bioactive function in affecting the biological processes of a variety of cancers, including breast cancer, colorectal cancer, hepatocellular carcinoma, esophageal cancer and other cancers, which indicates that ICA has promising application value in the treatment of cancer patients in the future. Nevertheless, the targets and molecular mechanisms of ICA in cancer treatment have not been elucidated in detail. Therefore, in this review, we systematically summarizes the current research progress of ICA in a series of cancers. In particular, an emphasis is placed on the mechanism of ICA and its future development direction, aiming at providing relevant theoretical basis for the development and application of ICA in the future cancer treatment strategies.
Collapse
Affiliation(s)
- Yufang Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xiong
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
26
|
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022; 9:69. [PMID: 36503490 PMCID: PMC9743634 DOI: 10.1186/s40779-022-00433-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional treatments for advanced hepatocellular carcinoma (HCC), such as surgical resection, transplantation, radiofrequency ablation, and chemotherapy are unsatisfactory, and therefore the exploration of powerful therapeutic strategies is urgently needed. Immunotherapy has emerged as a promising strategy for advanced HCC treatment due to its minimal side effects and long-lasting therapeutic memory effects. Recent studies have demonstrated that icaritin could serve as an immunomodulator for effective immunotherapy of advanced HCC. Encouragingly, in 2022, icaritin soft capsules were approved by the National Medical Products Administration (NMPA) of China for the immunotherapy of advanced HCC. However, the therapeutic efficacy of icaritin in clinical practice is impaired by its poor bioavailability and unfavorable in vivo delivery efficiency. Recently, functionalized drug delivery systems including stimuli-responsive nanocarriers, cell membrane-coated nanocarriers, and living cell-nanocarrier systems have been designed to overcome the shortcomings of drugs, including the low bioavailability and limited delivery efficiency as well as side effects. Taken together, the development of icaritin-based nanomedicines is expected to further improve the immunotherapy of advanced HCC. Herein, we compared the different preparation methods for icaritin, interpreted the HCC immune microenvironment and the mechanisms underlying icaritin for treatment of advanced HCC, and discussed both the design of icaritin-based nanomedicines with high icaritin loading and the latest progress in icaritin-based nanomedicines for advanced HCC immunotherapy. Finally, the prospects to promote further clinical translation of icaritin-based nanomedicines for the immunotherapy of advanced HCC were proposed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yue Gao
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
27
|
Yang C, Jin YY, Mei J, Hu D, Jiao X, Che HL, Tang CL, Zhang Y, Wu GS. Identification of icaritin derivative IC2 as an SCD-1 inhibitor with anti-breast cancer properties through induction of cell apoptosis. Cancer Cell Int 2022; 22:202. [PMID: 35642041 PMCID: PMC9153146 DOI: 10.1186/s12935-022-02621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Breast cancer is the most common malignancy affecting women, yet effective targets and related candidate compounds for breast cancer treatment are still lacking. The lipogenic enzyme, stearoyl-CoA desaturase-1 (SCD1), has been considered a potential target for breast cancer treatment. Icaritin (ICT), a prenylflavonoid derivative from the Traditional Chinese Medicine Epimedii Herba, has been reported to exert anticancer effects in various types of cancer. The purpose of the present study was to explore the effect of the new ICT derivative, IC2, targeting SCD1 on breast cancer cells and to explore the specific mechanism. Methods Immunohistochemistry and semiquantitative evaluation were performed to detect the expression level of SCD1 in normal and tumor samples. Computer-aided drug design (CADD) technology was used to target SCD1 by molecular docking simulation, and several new ICT derivatives were prepared by conventional chemical synthesis. Cell viability was evaluated by an MTT assay and dead cell staining. SCD1 expression in cancer cells was determined by Western blot and qRT-PCR analyses. The enzymatic activity of SCD1 was evaluated by detecting the conversion rate of [d31] palmitic acid (PA) using Gas chromatography-mass spectrometry (GC–MS). DAPI staining, flow cytometry and Western blot were used to detect cell apoptosis. Mitochondrial membrane potential and reactive oxygen species (ROS) assays were used to determine cell mitochondrial function. Lentiviral transduction was utilized to generate SCD1-overexpressing cell lines. Results We found that SCD1 was overexpressed and correlated with poor prognosis in breast cancer patients. Among a series of ICT derivatives, in vitro data showed that IC2 potentially inhibited the viability of breast cancer cells, and the mechanistic study revealed that IC2 treatment resulted in ROS activation and cellular apoptosis. We demonstrated that IC2 inhibited SCD1 activity and expression in breast cancer cells in a dose-dependent manner. Moreover, SCD1 overexpression alleviated IC2-induced cytotoxicity and apoptosis in breast cancer cells. Conclusions The new ICT derivative, IC2, was developed to induce breast cancer cell apoptosis by inhibiting SCD1, which provides a basis for the development of IC2 as a potential clinical compound for breast cancer treatment.
Collapse
Affiliation(s)
- Chen Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Yi-Yuan Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China.,Taizhou Center for Disease Control and Prevention, Taizhou, 318000, China
| | - Jie Mei
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China.,Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Die Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou, 213164, China
| | - Xiaoyu Jiao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214000, China
| | - Hui-Lian Che
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Chun-Lei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Guo-Sheng Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
28
|
Design and synthesis of ludartin derivatives as potential anticancer agents against hepatocellular carcinoma. Med Chem Res 2022; 31:1224-1239. [PMID: 35634434 PMCID: PMC9129064 DOI: 10.1007/s00044-022-02890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023]
Abstract
Our previous study demonstrated that guaiane-type sesquiterpenoid ludartin showed potent antihepatoma activity against two human hepatocellular carcinoma cell lines, HepG2 and Huh7, with IC50 values of 32.7 and 34.3 μM, respectively. In this study, 34 ludartin derivatives were designed, synthesized and evaluated for their cytotoxic activities against HepG2 and Huh7 cell lines using an MTT assay in vitro. As a result, 17 compounds increased the activity against HepG2 cells, and 20 compounds enhanced the activity against Huh7 cells; 14 derivatives 2, 4-7, 9, 11, 17, 24, 28-30 and 32-33 were superior to ludartin on both HepG2 and Huh7 cells. In particular, dimeric derivative 33 as the most active compound showed 20-fold and 17-fold enhancement of cytotoxicity against HepG2 and Huh7 cells compared to that of ludartin. These results suggested that compound 33 could serve as a promising lead compound against liver cancer. Graphical abstract ![]()
Collapse
|
29
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|