1
|
Lu J, Rui J, Xu XY, Shen JK. Exploring the Role of Neutrophil-Related Genes in Osteosarcoma via an Integrative Analysis of Single-Cell and Bulk Transcriptome. Biomedicines 2024; 12:1513. [PMID: 39062086 PMCID: PMC11274533 DOI: 10.3390/biomedicines12071513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The involvement of neutrophil-related genes (NRGs) in patients with osteosarcoma (OS) has not been adequately explored. In this study, we aimed to examine the association between NRGs and the prognosis as well as the tumor microenvironment of OS. METHODS The OS data were obtained from the TARGET-OS and GEO database. Initially, we extracted NRGs by intersecting 538 NRGs from single-cell RNA sequencing (scRNA-seq) data between aneuploid and diploid groups, as well as 161 up-regulated differentially expressed genes (DEGs) from the TARGET-OS datasets. Subsequently, we conducted Least Absolute Shrinkage and Selection Operator (Lasso) analyses to identify the hub genes for constructing the NRG-score and NRG-signature. To assess the prognostic value of the NRG signatures in OS, we performed Kaplan-Meier analysis and generated time-dependent receiver operating characteristic (ROC) curves. Gene enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to ascertain the presence of tumor immune microenvironments (TIMEs) and immunomodulators (IMs). Additionally, the KEGG neutrophil signaling pathway was evaluated using ssGSEA. Subsequently, PCR and IHC were conducted to validate the expression of hub genes and transcription factors (TFs) in K7M2-induced OS mice. RESULTS FCER1G and C3AR1 have been identified as prognostic biomarkers for overall survival. The findings indicate a significantly improved prognosis for OS patients. The effectiveness and precision of the NRG signature in prognosticating OS patients were validated through survival ROC curves and an external validation dataset. The results clearly demonstrate that patients with elevated NRG scores exhibit decreased levels of immunomodulators, stromal score, immune score, ESTIMATE score, and infiltrating immune cell populations. Furthermore, our findings substantiate the potential role of SPI1 as a transcription factor in the regulation of the two central genes involved in osteosarcoma development. Moreover, our analysis unveiled a significant correlation and activation of the KEGG neutrophil signaling pathway with FCER1G and C3AR1. Notably, PCR and IHC demonstrated a significantly higher expression of C3AR1, FCER1G, and SPI1 in Balb/c mice induced with K7M2. CONCLUSIONS Our research emphasizes the significant contribution of neutrophils within the TIME of osteosarcoma. The newly developed NRG signature could serve as a good instrument for evaluating the prognosis and therapeutic approach for OS.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China;
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Jiang Rui
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Xiao-Yu Xu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China; (J.R.); (X.-Y.X.)
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China;
| |
Collapse
|
2
|
Luo H, Pan C, Wang L, Zheng L, Cao S, Hu X, Hu T, Zhao N, Shang Q, Wang J. Low TYROBP expression predicts poor prognosis in multiple myeloma. Cancer Cell Int 2024; 24:117. [PMID: 38549127 PMCID: PMC10979612 DOI: 10.1186/s12935-024-03304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is the second most common refractory hematologic cancer. Searching for new targets and prognostic markers for MM is significant. METHODS GSE39754, GSE6477 and GSE24080 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in MM versus healthy people from GSE39754 and GSE6477 were screened using limma package, and MM-related module genes were chosen with the use of Weighted gene co-expression network analysis (WGCNA), and the two were intersected using ggVennDiagram for obtaining MM-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. Then, protein-protein interactions (PPI) analysis in String database was used to obtain hub genes, while prognosis was analyzed by survival package in GSE24080. Receiver operating characteristic (ROC) curve was adopted for evaluating diagnostic value of hub genes. Besides, univariable/multivariable Cox regression were employed to screen independent prognostic biomarkers. Gene set enrichment analysis (GSEA) was used to find possible mechanism. Finally, western-blotting and reverse transcription-polymerase chain reaction (RT-PCR) verify TYROBP expression within MM and healthy people. We performed cell adhesion and transwell assays for investigating TYROBP function in MM cell adhesion and migration. RESULTS Through differential analyses, 92 MM-related DEGs were obtained. 10 hub genes were identified by PPI and CytoHubba. Their diagnostic and prognostic significance was analyzed. Down-regulation of genes like TYROBP, ELANE, MNDA, and MPO related to dismal MM prognosis. Upon univariable/multivariable Cox regression, TYROBP independently predicted MM prognosis. GSEA pathway was enriched, indicating that TYROBP expression affected MM development via cell adhesion molecular pathway. Upon Western-blotting and RT-PCR assays, TYROBP expression among MM patients decreased relative to healthy donors. Cell adhesion and transwell migration assays revealed increased MM cell adhesion and decreased migration upon TYROBP up-regulation. CONCLUSION In summary, TYROBP is a potential prognostic marker for MM.
Collapse
Affiliation(s)
- Hong Luo
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China
| | - Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Li Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China
| | - Lin Zheng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China
| | - Shuyun Cao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China
| | - Xiuying Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhen Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Naiqin Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Shang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, 215006, China.
| |
Collapse
|
3
|
Zheng P, Tan Y, Liu Q, Wu C, Kang J, Liang S, Zhu L, Yan K, Zeng L, Chen B. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: A comprehensive pan-cancer study. Heliyon 2024; 10:e26993. [PMID: 38468942 PMCID: PMC10926084 DOI: 10.1016/j.heliyon.2024.e26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-β and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Qing Liu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwu Wu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Kang
- Department of rheumatology and immunology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Shi H, Duan J, Chen Z, Huang M, Han W, Kong R, Guan X, Qi Z, Zheng S, Lu M. A prognostic gene signature for gastric cancer and the immune infiltration-associated mechanism underlying the signature gene, PLG. Clin Transl Oncol 2023; 25:995-1010. [PMID: 36376702 DOI: 10.1007/s12094-022-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Globally, gastric cancer (GC) is a common and lethal solid malignant tumor. Identifying the molecular signature and its functions can provide mechanistic insights into GC development and new methods for targeted therapy. METHODS Differentially expressed genes (DEGs) and prognostic genes (from univariate Cox regression analysis) were overlapped to obtain prognostic DEGs. Subsequently, molecular modules and the functions of these prognostic DEGs were identified by Metascape and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/Gene Set Enrichment Analysis (GSEA) enrichment analyses, respectively. Protein-protein interaction (PPI) networks of up- and down-regulated prognostic DEGs in GC were analyzed using the MCC algorithm of the Cytohubba plug-in in Cytoscape. The prognostic gene signature was defined on hub genes of the PPI networks by least absolute shrinkage and selection operator (LASSO)-Cox regression analysis. Furthermore, the expressional level of PLG in our clinical GC samples was validated by quantitative PCR (qPCR), western blotting, and immunohistochemistry (IHC). Subsequently, the PLG expression-correlation analysis was performed to assess the role of PLG in GC progression. Immune infiltration analysis was performed by single-sample gene set enrichment analysis (ssGSEA) to assess the inhibitory effect of PLG on immune infiltration. RESULTS Firstly, Up- and down-regulated prognostic DEGs and hub genes in protein-protein interaction (PPI) networks in GC were identified. A prognostic five-gene signature (i.e., PLG, SPARC, FGB, SERPINE1, and KLHL41) was identified. Among the five genes, the relationship between plasminogen (PLG) and GC remains largely unclear. Moreover, the functions of PLG-correlated genes in GC, like 'fibrinolysis', 'hemostasis', 'ion channel complex', and 'transporter complex' were identified. In addition, PLG expression correlated negatively with the infiltration of almost all immune cell types. Interestingly, the expression of PLG was significantly and highly correlated with that of CD160, an immune checkpoint inhibitor. CONCLUSION Our findings defined a new five-gene signature for predicting GC prognosis, but more validation is required to assess the effects and mechanism of the five genes, especially PLG, for the development of new GC therapies.
Collapse
Affiliation(s)
- Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Zhangming Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengqi Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenxiu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Kong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xiuyin Guan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Zhen Qi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Shuang Zheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, No.218, Ji Xi Road, Hefei, 230032, Anhui, China.
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Lv XQ, Zhang KB, Guo X, Pei L, Li F. Higher TYROBP and lower SOX6 as predictive biomarkers for poor prognosis of clear cell renal cell carcinoma: A pilot study. Medicine (Baltimore) 2022; 101:e30658. [PMID: 36595751 PMCID: PMC9794311 DOI: 10.1097/md.0000000000030658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Clear cell renal carcinoma (ccRCC) is the most common subtype of renal cancer, accounting for approximately 75% of all histological types of renal cancer, and is the leading cause of death from renal cancer. However, the molecular mechanism of tyrosine kinase binding protein (TYROBP) and sex-determining region Y Box-6 (SOX6) in the ccRCC was not precise. METHODS Bioinformatics analysis was performed to explore the hub role of TYROBP and SOX6 on the ccRCC. A total of 6 patients with clear cell renal cell carcinoma (ccRCC) were recruited. HE staining was performed to observe the pathology result of ccRCC. Immunohistochemistry and Immunofluorescence assay was made to detect the protein expression of TYROBP. Total RNA was extracted using TRIzol to examine the mRNA expression of TYROBP via the Real time quantitative polymerase chain reaction. The strong correlation between the expression of TYROBP and the survival time of ccRCC patients was performed by the BP neural network and support vector machine. RESULTS Compared with the control group, the expression of SOX6 was downregulated in the samples with ccRCC. However, the expression of TYROBP was higher in the samples with ccRCC than in the control group. Compared with the patients with high SOX6 expression, the patients with low SOX6 expression have a poor survival prognosis (HR=0.39, P < .05). However, the patients with high TYROBP expression have a shorter survival time than the patients with low TYROBP expression (HR=1.66, P < .05). The genes related with TYROBP and SOX6 are mainly enriched in the regulation of cell activation, leukocyte activation, negative regulation of cell activation, myeloid leukocyte activation, positive regulation of response to external stimulus, immune response-regulating signaling pathway. The interaction between TYROBP, SOX6, and kidney neoplasms was drawn, and the inference score of TYROBP and SOX6 on the kidney neoplasms was high. CONCLUSION In conclusion, TYROBP is highly expressed in renal clear cell carcinoma, and when this molecule is highly expressed, the survival prognosis of renal carcinoma is poor. TYROBP and SOX6 may be potential targets for diagnosing and treating renal clear cell carcinoma.
Collapse
Affiliation(s)
- Xian-Qiang Lv
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Kai-bo Zhang
- Department of plastic surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xu Guo
- Lab of Gambridge Analytica, Heping Road, Shijiazhuang, Hebei Province, China
| | - Long Pei
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feng Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- * Correspondence: Feng Li, Department of Urology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road Shijiazhuang, Hebei Province 050011, China (e-mail: )
| |
Collapse
|
7
|
Feng H, Wang T, Ye J, Yang Y, Huang X, Lai D, Lv Z, Huang Y, Zhang X. SPI1 is a prognostic biomarker of immune infiltration and immunotherapy efficacy in clear cell renal cell carcinoma. Discov Oncol 2022; 13:134. [PMID: 36477668 PMCID: PMC9729685 DOI: 10.1007/s12672-022-00592-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spi-1 proto-oncogene (SPI1), which encodes an ETS-domain transcription factor, can activate gene expression in myeloid and lymphoid lineages. The role of SPI1 in the tumor immune microenvironment in clear cell renal cell carcinoma (ccRCC) remains unknown. In this study, we investigated the possible role of SPI1 in ccRCC using an independent cohort and a comprehensive bioinformatics analysis. MATERIALS AND METHODS Quantitative real-time PCR, western blot and immunohistochemistry assays were used to compare the SPI1 expression levels between ccRCC tissues and normal tissues, analyze the relationships between SPI1 and CD68, CD8, CD4 expression levels, and explore the link between SPI1 and the efficacy of immunotherapy in our cohort. Tumor Immune Estimation Resource, UALCAN, cBioPortal, TISIDB database, and LinkedOmics database were used in our study. RESULTS SPI1 expression level was higher in ccRCC bulk tissues than in normal bulk tissues. SPI1 was an independent prognostic factor for poor overall survival and progression-free survival in patients with ccRCC. SPI1 expression was strongly related to the infiltration of immune cells and immune-related molecules. SPI1 was more highly expressed in tumor-infiltrating immune cells rather than in cancer cells. Non-responders to immunotherapy against ccRCC were more likely to express higher SPI1 levels than responders. Genes co-expressed with SPI1 primarily correlated with immune-related pathways. CONCLUSIONS SPI1 expression in tumor bulk tissues is associated with disease progression and poor prognosis, as well as high expression levels of immune markers and infiltration of immune cells. SPI1 can be used as a prognostic biomarker to monitor and evaluate immunotherapy efficacy.
Collapse
Affiliation(s)
- Huayi Feng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tao Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiali Ye
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing Huang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dong Lai
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng Lv
- Department of Urology, The Tianjin Third Central Hospital Affiliated of Nankai University, Tianjin, China
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xu Zhang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Yang J, Liu C, Guan J, Wang Y, Su J, Wang Y, Liu S. SPI1 mediates transcriptional activation of TPX2 and RNF2 to regulate the radiosensitivity of lung squamous cell carcinoma. Arch Biochem Biophys 2022; 730:109425. [PMID: 36198346 DOI: 10.1016/j.abb.2022.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
Radiotherapy acts by damaging DNA and hindering cancer cell proliferation. H2AX is phosphorylated to produce γH2AX that accumulates in a response to DNA double-strand breaks. Non-coding RNA can influence DNA damage response and enhance DNA repair, which show potential for cancer treatment. The study aimed to observe the influence of SPI1 on the radiosensitivity of lung squamous cell carcinoma (LUSC) and to investigate the mechanisms. SPI1, TPX2, and RNF2 were overexpressed in LUSC tissues and radioresistant cells comspared with adjacent tissues and parental cells, respectively. The binding between SPI1 and TPX2 or RNF2 promoter was investigated using ChIP-qPCR and dual-luciferase assays. SPI1 bound to TPX2 and RNF2 promoters and activated their transcription. SPI1 downregulation increased the radiosensitivity of LUSC cells, which was comprised by TPX2 or RNF2 overexpression. Meanwhile, SPI1 downregulation elevated the protein expression of γH2AX at the late stage of DNA damage response and suppressed DNA damage repair in LUSC cells, which were compromised by TPX2 or RNF2. These results indicate that SPI1 silencing potentiates radiosensitivity in LUSC cells by downregulating the transcription of TPX2 and RNF2, which provides a potential target for the radiotherapy in LUSC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jingwei Su
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuxiang Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Sui Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China.
| |
Collapse
|