1
|
Peng S, Yan W, Yan Y, Tang Q, Feng H, Huang X. AP2M1 as the potential biomarker for prediction of the response of atopic dermatitis to Dupilumab therapy: Multi-omics analysis and evidence. Int J Biol Macromol 2025; 297:139757. [PMID: 39818381 DOI: 10.1016/j.ijbiomac.2025.139757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 AD treated with Dupilumab from the GEO database. After identifying resistant genes via WGCNA and differential expression analysis, we used machine learning techniques to screen key genes and develop a predictive model. It was found that four key genes (AP2M1, BMP4, DNM1, and RHEB) were identified, showing excellent diagnostic performance for Dupilumab resistance (AUC = 0.832-0.861, P < 0.05) and validated in AD patients via RT-qPCR (P < 0.05). Among them, AP2M1 was significantly correlated with the clinical severity of AD (R = 0.5,P = 0.04) and identified as a potential risk factor (HR = 13.45, 95%CI(1.71-105.65), P = 0.02). The results of immunohistochemistry also revealed overexpression of AP2M1 in AD tissue (P = 0.002). Additionally, immune infiltration analysis suggested that AP2M1-mediated Dupilumab resistance may involve mast cells (R = -0.51, P = 0.02), which also supported by single-cell analysis. And we constructed a regulatory network of AP2M1. Finally, we explored the drug Fostamatinib, targeting AP2M1. In conclusion, AP2M1 may serve as a biomarker for those AD patients exhibiting suboptimal responses to Dupilumab.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Wenjie Yan
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yang Yan
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Qian Tang
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Hao Feng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China.
| | - Xi Huang
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China.
| |
Collapse
|
2
|
Li X, Zhao Y, Wei S, Dai Y, Yi C. Construction of a cuproptosis-tricarboxylic acid cycle-associated lncRNA model to predict the prognosis of non-small cell lung cancer. Transl Cancer Res 2024; 13:6807-6824. [PMID: 39816567 PMCID: PMC11729758 DOI: 10.21037/tcr-24-660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
Background In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC. Methods Molecular signature databases and cuproptosis-related publications were made use of identifying cuproptosis-TCA-related genes. They were identified based on Pearson correlation analysis. The prognostic features associated with these lncRNAs were evaluated using the absolute contraction and selection operator and a receiver operating characteristic curve analysis. Additionally, downstream functional enrichment and immunoinfiltration were analyzed to examine the immunotherapeutic responses of patients with NSCLC. Results Eleven cuproptosis-TCA-associated lncRNAs were identified. A high-risk group was compared with a low-risk group based on risk scores, and the high-risk group had a significantly lower overall survival (OS). We established a prognostic risk profile, and based on these characteristics and clinical staging, a nomogram was constructed. An analysis of functional enrichment revealed the involvement of pathways associated with cellular and humoral immunity and fatty acylation. Risk scores differed significantly based on immune cells and pathways (antigen-presenting cell co-stimulation). Moreover, TP53, TTN, and MUC16 mutation status were strongly associated with risk scores, with patients identified as having a higher risk of NSCLC being more responsive to immunotherapy. Conclusions Eleven cuproptosis-TCA-associated lncRNAs can be used to predict the prognosis of NSCLC patients, thereby providing a new theoretical basis for immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunlong Zhao
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengjie Wei
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Huang Y, Gui Z, Wu M, Zhang M, Jiang Y, Ding Q, Yang J, Ye Y, Zhang M. Tumor-infiltrating B cell-related lncRNA crosstalk reveals clinical outcomes and tumor immune microenvironment in ovarian cancer based on single-cell and bulk RNA-sequencing. Heliyon 2024; 10:e39496. [PMID: 39559246 PMCID: PMC11570495 DOI: 10.1016/j.heliyon.2024.e39496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background The tumor immune microenvironment (TIME) plays a pivotal role in determining ovarian cancer (OC) prognosis. Long non-coding RNAs (lncRNAs) are key regulators of immune response and tumor progression in OC. Among these, tumor-infiltrating B cells represent an emerging target in immune response pathways. However, the specific involvement of B cell-related lncRNAs (BCRLs) in OC remains unclarified. Methods Leveraging single-cell and bulk RNA-sequencing data, correlation analysis identified BCRLs in ovarian serous cystadenocarcinoma (OV) from the TCGA database. Subsequently, BCRLIs were filtered through COX survival analysis and the LASSO algorithm, leading to the development of a B cell-related lncRNA scoring system (BCRLss). The predictive accuracy of BCRLss for prognosis in TCGA-OV was assessed and externally validated in an independent cohort. Functional enrichment analyses were conducted to elucidate biological pathways associated with risk subgroups. Additionally, the relationship between BCRLss and TIME was investigated through multiple algorithms and consensus clustering, uncovering potential immune response targets. Drug sensitivity analyses further identified potential therapeutic options tailored to risk subgroups. The highest risk score lncRNA was selected for in vitro validation. Results The BCRLss was constructed using six BCRLIs. Survival analysis revealed an improved prognosis in the low-risk group, with results corroborated by external validation in the ICGC-OV cohort. ROC analysis and nomogram construction confirmed the strong prognostic accuracy of BCRLss. Enrichment analysis highlighted associations between risk subgroups and tumor immune pathways, with the low-risk group demonstrating a more robust immune response and elevated expression of immune checkpoint-related genes. Drug sensitivity tests revealed notable differences across risk subgroups. In vitro experiments confirmed elevated LINC01150 expression in OC cells, and LINC01150 knockdown significantly inhibited the proliferation, invasion, and migration of SKOV3 cells. Conclusions In conclusion, BCRLss provides a reliable prognostic tool for predicting clinical outcomes and the immune landscape of patients with OC, offering valuable guidance for immunotherapy target selection and personalized treatment strategies.
Collapse
Affiliation(s)
- Yi Huang
- Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Muyun Wu
- Internal Medicine Department of Oncology, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, 241000, China
| | - Mengmeng Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Qiaoqiao Ding
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
| | - Jinping Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
4
|
Conde-Lopez C, Marripati D, Elkabets M, Hess J, Kurth I. Unravelling the Complexity of HNSCC Using Single-Cell Transcriptomics. Cancers (Basel) 2024; 16:3265. [PMID: 39409886 PMCID: PMC11475296 DOI: 10.3390/cancers16193265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and the most common form of head and neck cancer, posing significant challenges for disease management. The objective of this review is to assess the utility of single-cell RNA sequencing (scRNAseq) in addressing these challenges by enabling a detailed characterization of the tumor microenvironment (TME) at the cellular level. METHODS This review compiles and analyzes current strategies that utilize scRNAseq and other single-cell technologies in HNSCC research. RESULTS For HNSCC etiology, scRNAseq allows for the construction of cellular atlases, characterization of different cell types, and investigation of genes and processes involved in cancer initiation, development, and progression within the TME. In terms of HNSCC diagnosis and prognosis, the resolution offered by scRNAseq enables the identification of cell type-specific signatures, enhancing prognostic models and disease stratifiers for patient outcome assessments. Regarding HNSCC treatment, scRNAseq provides insights into cellular responses to various treatments, including radiotherapy, chemotherapy, and immunotherapy, contributing to a better understanding of treatment efficacy and patient outcomes. CONCLUSIONS This review highlights the contributions of scRNAseq to HNSCC research, addressing its cellular and biological complexity, and emphasizes its potential for advancing research and clinical practice in other cancer types.
Collapse
Affiliation(s)
- Cristina Conde-Lopez
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| | - Divyasree Marripati
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jochen Hess
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| |
Collapse
|
5
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
6
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Obeagu EI. Diagnostic and prognostic significance of mast cell markers in HIV/AIDS: Current insights and future directions. Medicine (Baltimore) 2024; 103:e38117. [PMID: 38758896 PMCID: PMC11098248 DOI: 10.1097/md.0000000000038117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.
Collapse
|
8
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Cheng GX, Liu M, Chen ZW, Ye QP. Long non-coding RNA LINC00996 promotes gastric cancer progression by inhibiting CDKN2A. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:302-312. [DOI: 10.11569/wcjd.v32.i4.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
10
|
Guo J, Zhou M, Li J, Yang Y, Hu Y, Tang T, Quan Y. The Prognosis and Immunotherapy Prediction Model of Ovarian Serous Cystadenocarcinoma Patient was Constructed Based on Cuproptosis-Related LncRNA. TOHOKU J EXP MED 2024; 262:63-74. [PMID: 37438122 DOI: 10.1620/tjem.2023.j056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cuproptosis can serve as potential prognostic predictors in patients with cancer. However, the role of this relationship in ovarian serous cystadenocarcinoma (OV) remains unclear. 376 OV tumor samples were obtained from the Cancer Genome Atlas (TCGA) database, and long non-coding RNAs (lncRNAs) related to cuproptosis were obtained through correlation analysis. The risk assessment model was further constructed by univariate Cox regression analysis and LASSO Cox regression. Bioinformatics was used to analyze the regulatory effect of relevant risk assessment models on tumor mutational burden (TMB) and immune microenvironment. We obtained 5 lncRNAs (AC025287.2, AC092718.4, AC112721.2, LINC00996, and LINC01639) and incorporated them into the Cox proportional hazards model. Kaplan-Meier (KM) curve analysis of the prognosis found that the high-risk group was associated with a poorer prognosis. The receiver operating characteristic (ROC) curve showed stronger predictive power compared to other clinicopathological features. Immune infiltration analysis showed that high-risk scores were inversely correlated with CD8+ T cells, CD4+ T cells, macrophages, NK cells, and B cells. Functional enrichment analysis found that they may act via the extracellular matrix (ECM)-interacting proteins and other pathways. We successfully constructed a reliable cuproptosis-related lncRNA model for the prognosis of OV.
Collapse
Affiliation(s)
- Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science (SACMS)
- Sichuan Provincial Key Laboratory of Quality of Chinese Medicinal Materials and Research on Innovative Chinese Medicine
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yang Hu
- West China School of Medicine, Sichuan University
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| |
Collapse
|
11
|
Liu S, Wang R, Fang J. Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:22. [PMID: 38294629 PMCID: PMC10830966 DOI: 10.1007/s12672-024-00870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Xiong M, Hu JJ, Yao ML, Song TT, Zhao L, Mou BQ, Qian YX, Zheng MJ, Dong YJ, Wang HY, Zou J, Yang H. Single-cell sequencing of head and neck carcinoma: Transcriptional landscape and prognostic model based on malignant epithelial cell features. FASEB J 2024; 38:e23354. [PMID: 38085162 DOI: 10.1096/fj.202301287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the development of novel therapeutic strategies for HNSCC requires a profound understanding of tumor cells and the tumor microenvironment (TME). Additionally, HNSCC has a poor prognosis, necessitating the use of genetic markers for predicting clinical outcomes in HNSCC. In this study, we performed single-cell sequencing analysis on tumor tissues from seven HNSCC patients, along with one adjacent normal tissue. Firstly, the analysis of epithelial cell clusters revealed two clusters of malignant epithelial cells, characterized by unique gene expression patterns and dysregulated signaling pathways compared to normal epithelial cells. Secondly, the examination of the TME unveiled extensive crosstalk between fibroblasts and malignant epithelial cells, potentially mediated through ligand-receptor interactions such as COL1A1-SDC1, COL1A1-CD44, and COL1A2-SDC1. Furthermore, transcriptional heterogeneity was observed in immune cells present in the TME, including macrophages and dendritic cells. Finally, leveraging the gene expression profiles of malignant epithelial cells, we developed a prognostic model comprising six genes, which we validated using two independent datasets. These findings shed light on the heterogeneity within HNSCC tumors and the intricate interplay between malignant cells and the TME. Importantly, the developed prognostic model demonstrates high efficacy in predicting the survival outcomes of HNSCC patients.
Collapse
Affiliation(s)
- Ming Xiong
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Juan-Juan Hu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Meng-Lin Yao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ting-Ting Song
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Bi-Qin Mou
- Precision Medicine Key Laboratory of Sichuan Province, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Xue Qian
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mei-Jun Zheng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi-Jun Dong
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hai-Yang Wang
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jian Zou
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hui Yang
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
13
|
Miraki Feriz A, Bahraini F, Khosrojerdi A, Azarkar S, Sajjadi SM, HosseiniGol E, Honardoost MA, Saghafi S, Silvestris N, Leone P, Safarpour H, Racanelli V. Deciphering the immune landscape of head and neck squamous cell carcinoma: A single-cell transcriptomic analysis of regulatory T cell responses to PD-1 blockade therapy. PLoS One 2023; 18:e0295863. [PMID: 38096229 PMCID: PMC10721039 DOI: 10.1371/journal.pone.0295863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Immunotherapy is changing the Head and Neck Squamous Cell Carcinoma (HNSCC) landscape and improving outcomes for patients with recurrent or metastatic HNSCC. A deeper understanding of the tumor microenvironment (TME) is required in light of the limitations of patients' responses to immunotherapy. Here, we aimed to examine how Nivolumab affects infiltrating Tregs in the HNSCC TME. We used single-cell RNA sequencing data from eight tissues isolated from four HNSCC donors before and after Nivolumab treatment. Interestingly, the study found that Treg counts and suppressive activity increased following Nivolumab therapy. We also discovered that changes in the CD44-SSP1 axis, NKG2C/D-HLA-E axis, and KRAS signaling may have contributed to the increase in Treg numbers. Furthermore, our study suggests that decreasing the activity of the KRAS and Notch signaling pathways, and increasing FOXP3, CTLA-4, LAG-3, and GZMA expression, may be mechanisms that enhance the killing and suppressive capacity of Tregs. Additionally, the result of pseudo-temporal analysis of the HNSCC TME indicated that after Nivolumab therapy, the expression of certain inhibitory immune checkpoints including TIGIT, ENTPD1, and CD276 and LY9, were decreased in Tregs, while LAG-3 showed an increased expression level. The study also found that Tregs had a dense communication network with cluster two, and that certain ligand-receptor pairs, including SPP1/CD44, HLA-E/KLRC2, HLA-E/KLRK1, ANXA1/FPR3, and CXCL9/FCGR2A, had notable changes after the therapy. These changes in gene expression and cell interactions may have implications for the role of Tregs in the TME and in response to Nivolumab therapy.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Fatemeh Bahraini
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Edris HosseiniGol
- Department of Computer Engineering, University of Birjand, Birjand, Iran
| | - Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Samira Saghafi
- Cellular and Molecular Research Center (CMRC), BUMS, Birjand, Iran
- Department of Internal Medicine, School of Medicine, BUMS, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
14
|
Lundgren C, Tutzauer J, Church SE, Stål O, Ekholm M, Forsare C, Nordenskjöld B, Fernö M, Bendahl PO, Rydén L. Tamoxifen-predictive value of gene expression signatures in premenopausal breast cancer: data from the randomized SBII:2 trial. Breast Cancer Res 2023; 25:110. [PMID: 37773134 PMCID: PMC10540453 DOI: 10.1186/s13058-023-01719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. METHODS RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. RESULTS In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]FOXA1(high) = 1.04, 95% CI = 0.61-1.76, HRFOXA1(low) = 0.30, 95% CI = 0.14-0.67, qinteraction = 0.0013), and a resembling trend was observed for AR (HRAR(high) = 1.15, 95% CI = 0.60-2.20, HRAR(low) = 0.42, 95% CI = 0.24-0.75, qinteraction = 0.87). Similar patterns were observed for OS. Tamoxifen was in the same subgroup most beneficial for RFi in patients with low ESR1 expression (HRRFi ESR1(high) = 0.76, 95% CI = 0.43-1.35, HRRFi, ESR1(low) = 0.56, 95% CI = 0.29-1.06, qinteraction = 0.37). Irrespective of molecular subtype, higher levels of ESR1, Mast cells, and PGR on a continuous scale were correlated with improved 10 years RFi (HRESR1 = 0.80, 95% CI = 0.69-0.92, q = 0.005; HRMast cells = 0.74, 95% CI = 0.65-0.85, q < 0.0001; and HRPGR = 0.78, 95% CI = 0.68-0.89, q = 0.002). For BC proliferation and Hypoxia, higher scores associated with worse outcomes (HRBCproliferation = 1.54, 95% CI = 1.33-1.79, q < 0.0001; HRHypoxia = 1.38, 95% CI = 1.20-1.58, q < 0.0001). The results were similar for OS. CONCLUSIONS Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .
Collapse
Affiliation(s)
- Christine Lundgren
- Department of Oncology, Region Jönköping County, Jönköping, Sweden.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden.
| | - Julia Tutzauer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | | | - Olle Stål
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Ekholm
- Department of Oncology, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carina Forsare
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
15
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
16
|
Li J, Ran H, Zeng X, Yang D, Zeng X, Zhang P. Identification of HOXB9 based on comprehensive bioinformatics analysis for predicting prognosis of head and neck squamous cell carcinoma. Medicine (Baltimore) 2023; 102:e35035. [PMID: 37657018 PMCID: PMC10476753 DOI: 10.1097/md.0000000000035035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023] Open
Abstract
To evaluate the correlation between HOXB9 expression, and the prognosis and immune infiltration in head and neck squamous cell carcinoma (HNSCC). Pan-cancer HOXB9 expression was analyzed through TIMER2.0. The HOXB9 expression data of HNSCC and normal tissues were compared using the gene expression profiling interactive analysis (GEPIA) and the cancer genome atlas (TCGA) databases. The University of Alabama at Birmingham (UALCAN) database was used to analyze the relative expression of HOXB9 in HNSCC subgroups based on clinicopathological features, including cancer stage, tumor grade and lymph node stage. Survival analysis was performed using GEPIA, TCGA-Portal, Kaplan-Meier Plotter, and UALCAN databases. The genes co-expressed with HOXB9 were identified using TCGA data, and functionally annotated by GO and KEGG analyses. Protein-protein interaction network was constructed using the STRING database and Cytoscape 3.7.1. Single-sample gene set enrichment analysis was performed to assess the correlation between HOXB9 and immune infiltration based on TCGA data. TIMER 2.0 database was used to explore the correlation between HOXB9 expression and immune infiltration multiple cancers. HOXB9 mRNA is elevated in multiple cancers, and was upregulated in HNSCC tissues compared to non-paired (P < .05 in GEPIA; P < .0001 in TCGA) as well as paired (P < .0001 in TCGA) normal tissues. In addition, HOXB9 expression was positively correlated with tumor malignancy in the GEPIA and UALCAN databases (P < .05), and negatively with patient prognosis in both databases (P < .05). High HOXB9 expression was associated with increased infiltration of aDCs, NK CD56bright cells, NK cells, and Th2 cells (P < .05), while low HOXB9 expression was associated with an increase in the proportion of DCs, iDCs, mast cells, neutrophils, and Th17 cells (P < .05). HOXB9 likely functions as an oncogene in HNSCC by disrupting the immune landscape, and is a promising prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Hong Ran
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Dunhui Yang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Zeng T, Jiang S, Wang Y, Sun G, Cao J, Hu D, Wang G, Liang X, Ding J, Du J. Identification and validation of a cellular senescence-related lncRNA signature for prognostic prediction in patients with multiple myeloma. Cell Cycle 2023; 22:1434-1449. [PMID: 37227248 PMCID: PMC10281485 DOI: 10.1080/15384101.2023.2213926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which primarily occurs in the elderly. Cellular senescence is considered to be closely associated with the occurrence and progression of malignant tumors including MM, and lncRNA can mediate the process of cellular senescence by regulating key signaling pathways such as p53/p21 and p16/RB. However, the role of cellular senescence related lncRNAs (CSRLs) in MM development has never been reported. Herein, we identified 11 CSRLs (AC004918.5, AC103858.1, AC245100.4, ACBD3-AS1, AL441992.2, ATP2A1-AS1, CCDC18-AS1, LINC00996, TMEM161B-AS1, RP11-706O15.1, and SMURF2P1) to build the CSRLs risk model, which was confirmed to be highly associated with overall survival (OS) of MM patients. We further demonstrated the strong prognostic value of the risk model in MM patients receiving different regimens, especially for those with three-drug combination of bortezomib, lenalidomide, and dexamethasone (VRd) as first-line therapy. Not only that, our risk model also excels in predicting the OS of MM patients at 1, 2, and 3 years. In order to verify the function of these CSRLs in MM, we selected the lncRNA ATP2A1-AS1 which presented the largest expression difference between high-risk groups and low-risk groups for subsequent analysis and validation. Finally, we found that down-regulation of ATP2A1-AS1 can promote cellular senescence in MM cell lines. In conclusion, the CSRLs risk model established in present study provides a novel and more accurate method for predicting MM patients' prognosis and identifies a new target for MM therapeutic intervention.
Collapse
Affiliation(s)
- Tanlun Zeng
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Sihan Jiang
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yichuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Zhou P, Lu SL, Chang L, Liao B, Cheng M, Xu X, Sui X, Liu F, Zhang M, Wang Y, Yang R, Li R, Pan H, Zhang C. The pan-cancer landscape of abnormal DNA methylation and intratumor microorganisms. Neoplasia 2023; 37:100882. [PMID: 36791577 PMCID: PMC9958063 DOI: 10.1016/j.neo.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Microorganisms play very important roles in carcinogenesis, tumor progression, and resistance upon treatment. Due to the challenge of accurately acquiring samples and quantifying low-biomass tissue microorganisms, most studies have focused on the effect of gut microorganisms on cancer treatments, especially the efficacy of immunotherapy. Although recent publications reveal the potential interactions between intratumor microorganisms and the immune microenvironment, whether and to what extent the intratumor microorganism could affect progression and treatment outcome remain controversial. This study is aiming to evaluate the associations among intratumor microorganisms, DNA methylation cancer driver genes, immune response, and clinical outcomes from a pan-cancer perspective, using 6,876 TCGA samples across 21 cancer types. We revealed that tumor microorganism dysbiosis is closely associated with the abnormal tumor methylome and/or tumor microenvironment, which might serve to enhance the proliferation ability and fitness for the therapy of tumors. These findings shed the light on a better understanding of the interactions between tumor cells and carcinogens during and after tumor formation, as well as microorganism-associated methylation alterations that could further serve as biomarkers for clinical outcome assessment.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | | | - Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ming Cheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaolin Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xin Sui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Mingshu Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yinxue Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Heng Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
Xiao M, Zhang X, Zhang D, Deng S, Zheng A, Du F, Shen J, Yue L, Yi T, Xiao Z, Zhao Y. Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:1050951. [PMID: 36451812 PMCID: PMC9701714 DOI: 10.3389/fimmu.2022.1050951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been characterized to be responsible for multidrug resistance, metastasis, recurrence, and immunosuppressive in head and neck squamous cell carcinoma (HNSCC). However, the diversity of CSCs remains to be investigated. In this study, we aimed to determine the heterogeneity of CSCs and its effect on the formation of tumor microenvironment (TME). METHODS We depicted the landscape of HNSCC transcriptome profile by single-cell RNA-sequencing analysis of 20 HNSCC tissues from public databases, to reveal the Cell components, trajectory changes, signaling network, malignancy status and functional enrichment of CSCs within tumors. RESULTS Immune checkpoint molecules CD276, LILRB2, CD47 were significantly upregulated in CSCs, enabling host antitumor response to be weakened or damaged. Notably, naive CSCs were divided to 2 different types of cells with different functions, exhibiting functional diversity. In addition, CSCs underwent self-renewal and tumor metastasis activity through WNT and ncWNT signaling. Among them, Regulon regulators (IRF1_394g, IRF7_160g, NFKB1_12g, NFKB2_33g and STAT1_356g) were activated in subgroups 2 and 3, suggesting their pivotal roles in the inflammatory response process in tumors. Among all CSCs, naive CSCs appear to be the most malignant resulting in a worse prognosis. CONCLUSIONS Our study reveals the major signal transduction and biological function of CSCs during HNSCC progression, highlighting the heterogeneity of CSCs and their underlying mechanisms in the formation of an immunosuppressive TME. Therefore, our study about heterogeneity of CSCs in HNSCC can bring new insights for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyi Zhang
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Zhang Y, Tian Y. Comprehensive analysis of lncRNA-mediated ceRNA regulatory networks and key genes associated with papillary thyroid cancer coexistent with Hashimoto's thyroiditis. BMC Endocr Disord 2022; 22:252. [PMID: 36266640 PMCID: PMC9583512 DOI: 10.1186/s12902-022-01173-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The incidence of papillary thyroid cancer (PTC) concomitant with Hashimoto's thyroiditis (HT) is gradually increasing over the past decades. This study aims to identify differentially expressed lncRNAs between tumor tissues of PTC with or without HT and further to confer a better understanding of lncRNA-based competing endogenous RNA (ceRNA) network in PTC with HT. METHODS GSE138198 containing tissue mRNA data and GSE192560 containing lncRNA data were utilized to perform differentially expression analysis. The ceRNA network was constructed based on miRNA-mRNA interactions merging with lncRNA-microRNA interactions. Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed. The mRNA levels of core genes in the PPI analysis in tumor tissues collected from 112 PTC patients including 35 cases coexistent with HT were determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 57 genes and 40 lncRNAs, with value of |log2 fold change (FC)|≥ 1 and the adjusted P-value < 0.05, were deemed as differentially expressed genes and lncRNAs between PTC with and without HT. The pathways most significantly enriched by differentially expressed genes between PTC with and without HT were viral protein interaction with cytokine and cytokine receptor and cytokine-cytokine receptor interaction. CXCL10, CXCL9, CCL5, FCGR3A, and CCR2 owned degree values not less than 10 were deemed as core genes differentially expressed between PTC with and without HT. A total of 76 pairs of lncRNA-miRNA-mRNA ceRNA were obtained. Results of qRT-PCR partially demonstrated the bioinformatics results that the mRNA levels of CXCL10, CXCL9, CCL5, and CCR2 were remarkably elevated in tumor tissues collected from PTC patients coexistent with HT than those without HT (P < 0.001). CONCLUSION Our study offers a better understanding of the lncRNA-related ceRNA network involved in PTC with HT, providing novel key genes associated with PTC coexistent with HT.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, No. 169, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yueli Tian
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, No. 169, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Cosoroabă RM, Gaje NP, Ceauşu AR, Dumitru CŞ, Todor L, Popovici RA, Porumb A, Domocoş D, Miron MI, Miron MI. The mast cell reaction in premalignant and malignant lesions of the head and neck. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:407-411. [PMID: 36374145 PMCID: PMC9804062 DOI: 10.47162/rjme.63.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent and aggressive neoplasms of this anatomical region. Many studies evaluated the neoplastic cells, but few works focused on the tumor microenvironment. In the present study, we investigated the distribution and mast cell density (MCD) in malignant and premalignant lesions of the oral cavity, tongue, pharynx, and larynx. There were analyzed 52 specimens of HNSCC, and 15 biopsies taken from patients with dysplasia. Results were compared with those found in a control group of 10 biopsies of oral mucosa from patients with inflammatory diseases. Slides stained with Hematoxylin-Eosin were used for the histopathological diagnosis and grade, and mast cells (MCs) were identified by immunohistochemistry, using anti-MC tryptase. MCs were counted using a method similar to that proposed for microvessel density. We found a significant increase in the number of MCs from the normal oral mucosa until overt carcinoma. Unlike normal tissues, in HNSCC, many MCs were found between tumor cells. We found no relationship between MCs and blood vessels in the tumor area. A significant statistical correlation was found between dysplastic and malignant tumors, but not between tumors with a different grade. Also, it was not found relationship between MCD and the anatomical location of the tumor. Based on these results, we believe that MCD evaluated by anti-MC tryptase is an independent factor of prognosis and reflects an unfavorable outcome.
Collapse
Affiliation(s)
- Raluca Mioara Cosoroabă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Romania; ; Discipline of Management, Legislation and Communication in Dental Medicine, 1st Department of Dentistry, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | - Nela Puşa Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia Raluca Ceauşu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Cristina Ştefania Dumitru
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Liana Todor
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Ramona Amina Popovici
- Discipline of Management, Legislation and Communication in Dental Medicine, 1st Department of Dentistry, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Daniela Domocoş
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Mariana Ioana Miron
- Department 2, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|