1
|
Gil-Rodríguez A, Recarey-Rama S, Rodríguez-Viyuela A, Barros F, Carracedo A, Maroñas O. Balance of care activity after EMA recommendation for DPYD gene testing in Galicia. Front Pharmacol 2025; 16:1523536. [PMID: 40223928 PMCID: PMC11985815 DOI: 10.3389/fphar.2025.1523536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Since April 2020, pretherapeutic screening for accessing the deficiency of the DPD enzyme by genotyping the dihydropyrimidine dehydrogenase gene (DPYD) is required by the European Medicine Agency (EMA) prior to the administration of fluoropyrimidine-based chemotherapy. In May 2020, the Spanish Drug and Medical Devices Agency (AEMPS) published an informative note highlighting the importance of DPYD analysis prior fluoropyrimidines derivatives administration to prevent the development of severe adverse drug reactions (ADRs). The publication of these recommendations marked a turning point in the daily routine in many pharmacogenetics laboratories in Spain. This article aims to illustrate the current state of the DPYD testing in the reference genomic medicine center in Galicia, 4 years after the EMA's updated recommendations. Methods The Pharmacogenetics Unit in the reference genomic medicine center conducted genotyping of the four DPYD variants recommended by regulatory agencies that oncologists can adjust fluoropyrimidine treatment based on DPYD genotype results. Results Between 1 June 2020 to 1 May 2024, both included, a total of 2,798 DPYD requests were analyzed. DPYD genotyping results revealed a 3.15% prevalence of heterozygosity for at least one of the four DPYD variants, being rs56038477 the most prevalent variant (1.31%). Conclusion This study addresses the importance of the DPYD analysis implementation in clinical practice after the changes in EMA and AEMPs recommendations which has led to a significant increase in DPYD genotyping requests. This highlights the significance of preemptive genotyping for accurately adjusting fluoropyrimidines doses before initiating treatment.
Collapse
Affiliation(s)
- Almudena Gil-Rodríguez
- Pharmacogenomics and drug discovery (GenDeM), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sheila Recarey-Rama
- Pharmacogenomics and drug discovery (GenDeM), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Rodríguez-Viyuela
- Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genetics group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Barros
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Galician Public Foundation of Genomic Medicine (FPGMX), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genetics group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Galician Public Foundation of Genomic Medicine (FPGMX), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Olalla Maroñas
- Pharmacogenomics and drug discovery (GenDeM), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Galician Public Foundation of Genomic Medicine (FPGMX), Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
2
|
Abushanab D, Mohamed S, Abdel-Latif R, Moustafa DA, Marridi W, Elazzazy S, Badji R, Al-Muftah W, Ismail SI, Bujassoum S, Al-Thani A, Al-Badriyeh D, Al Hail M. Dihydropyrimidine Dehydrogenase Deficiency (DPYD) Genotyping-Guided Fluoropyrimidine-Based Adjuvant Chemotherapy for Breast Cancer. A Cost-Effectiveness Analysis. Clin Drug Investig 2025; 45:151-163. [PMID: 39885055 DOI: 10.1007/s40261-024-01413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND OBJECTIVE While standard doses of adjuvant fluoropyrimidine-based chemotherapies are generally safe for most patients, the risk of severe adverse drug reactions (ADRs) is increased for those with dihydropyrimidine dehydrogenase deficiency (DPYD), a genetic variation that affects drug metabolism. The objective of this study was to examine the cost effectiveness of offering DPYD pharmacogenetic-guided care, where genetic testing informs personalized dosing versus the current standard of care (SoC), which involves administering fluoropyrimidine-based therapies without prior genetic screening, for local or metastatic breast cancer patients in Qatar. METHODS We developed a two-stage decision analysis, with an analytic tree model over a 6-month period, followed by a life-table Markov model over a lifetime horizon. We compared the current SoC with the alternate strategy of DPYD genetic screening in patients living in Qatar with local or metastatic breast cancer who were eligible for adjuvant fluoropyrimidine therapy. Clinical outcomes and utilities were obtained from published studies, while healthcare costs were estimated from Hamad Medical Corporation, Qatar. The short-term outcome included the incremental cost-effectiveness ratio (ICER), defined as cost per success (survival without grade III/IV ADRs) at 6 months. The long-term outcome was the ICER, defined as cost per quality-adjusted life year (QALY) gained, with a 3% annual discount rate. The study adopted a public healthcare perspective in Qatar. Sensitivity analyses were conducted to explore the impact of key input parameters on the robustness of the model. RESULTS In the short-term model, at its base case, DPYD genomic screening was dominant over SoC with a mean cost-saving of QAR84,585 (95% confidence interval [CI], 45,270-151,657). This cost saving reflects the overall economic benefits associated with the implementation of DPYD genomic screening. In the long-term model, compared to the current SoC, DPYD genetic screening would result in an ICER of QAR21,107 (95% CI -59,382-145,664) per QALY gained. CONCLUSION Based on our model, implementing DPYD genetic screening to detect DPYD mutations in breast cancer patients before therapy initiation seems to be a cost-saving and cost-effective strategy in Qatar.
Collapse
Affiliation(s)
- Dina Abushanab
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shaban Mohamed
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Rania Abdel-Latif
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | | | - Wafa Marridi
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shereen Elazzazy
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
- Pharmacy Department, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Wadha Al-Muftah
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Said I Ismail
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Salha Bujassoum
- Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Asma Al-Thani
- Biomedical Research Center, QU Health, Qatar University, Doha, 2713, Qatar
| | - Daoud Al-Badriyeh
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar.
| | - Moza Al Hail
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
3
|
Vilquin P, Medard Y, Thomas F, Goldwirt L, Teixeira L, Mourah S, Jacqz-Aigrain E. DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy. Cancer Chemother Pharmacol 2025; 95:16. [PMID: 39745516 DOI: 10.1007/s00280-024-04738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/08/2024] [Indexed: 04/04/2025]
Abstract
The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified. Different approaches have been developed for screening DPD-deficiency, including DPYD genotyping and phenotyping. Plasma uracil ([U]) and dihydrouracil ([UH2]) concentrations are routinely used as surrogate markers for systemic DPD activity: [U] ≥ 16 ng/ml and < 150 ng/ml, and [U] ≥ 150 ng/mL indicate partial and complete DPD deficient phenotype, respectively, while values of 5 or 10 for [UH2]/([U] ratio are often cited. Four clinically relevant DPYD defective variants (DPYD*13, DPYD*2A, p.Asp949Val and haplotype B3), are targeted in genetic testing via PCR. In practice, pretreatment [U], alone or combined with these 4 recommended DPYD alleles guides individual dosage selection, though this approach has limitations. This is illustrated by two cases showing discrepancy between DPD deficient phenotype and normal standard genotype. In these two cases, DPYD exome sequencing with Next Generation Sequencing identified rare inactive variants, establishing concordance between phenotype and genotype. In patient 1, [U] levels of 21.1 and 25.5 ng/mL, indicated partial deficiency though the targeted genotype was normal and 5FU dose was adjusted based on the phenotype. In patient 2, [U] levels of 16.2 and 15.2 ng/mL were near the 16 ng/ml threshold. With a normal genotype, he as considered non-deficient as targeted genotype was normal and the standard dose was administered. These two cases underscore the need to pair DPD phenotyping with whole DPYD gene sequencing, due to the frequent discrepancies between these pharmacogenetic tools, the burden of rare variants and ethnic differences in variant frequencies.
Collapse
Affiliation(s)
- Paul Vilquin
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- INSERM UMRS 976, Paris, France
| | - Yves Medard
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Fabienne Thomas
- Oncopole Claudius Regaud, Institut Universitaire du Cancer and Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
- University of Toulouse, Inserm, Toulouse, France
| | - Lauriane Goldwirt
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Luis Teixeira
- Service de Sénologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Sénopôle Territoire Cancer Nord, Toulouse, France
- Université Paris Cité, Paris, France
| | - Samia Mourah
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- INSERM UMRS 976, Paris, France
- Université Paris Cité, Paris, France
| | - Evelyne Jacqz-Aigrain
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.
- Université Paris Cité, Paris, France.
- Pharmacologie biologique - Pharmacogénétique Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, 1 avenue Charles Vellefaux - Paris, Saint-Louis, 75010, France.
| |
Collapse
|
4
|
Hernández-Guío A, Ángel Calleja-Hernández M, Corno-Caparrós A, Zayas-Soriano M, Bernabéu-Martínez MÁ, Gutiérrez-Nicolás F. Clinical impact of DPYD genotyping and dose adjustment in candidates for fluoropyrimidine treatment. Heliyon 2024; 10:e40808. [PMID: 39719989 PMCID: PMC11666974 DOI: 10.1016/j.heliyon.2024.e40808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ana Hernández-Guío
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | | | - Andrés Corno-Caparrós
- Miguel Hernández University, Elche, Avinguda de la Universitat d'Elx, s/n, 03202, Elche, Alicante, Spain
| | - Marta Zayas-Soriano
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Mª Ángeles Bernabéu-Martínez
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Fernando Gutiérrez-Nicolás
- Instituto de Investigación Sanitaria de Canarias, Carretera Gral. La Cuesta-Taco, n.s/n Pabellón de Gobierno del HUC Planta -1ª, 38320, San Cristobal de La Laguna, Santa Cruz de, Tenerife, Spain
| |
Collapse
|
5
|
Zhang C, Dong HK, Gao JM, Zeng QQ, Qiu JT, Wang JJ. Advances in the diagnosis and treatment of MET-variant digestive tract tumors. World J Gastrointest Oncol 2024; 16:4338-4353. [PMID: 39554732 PMCID: PMC11551650 DOI: 10.4251/wjgo.v16.i11.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The receptor tyrosine kinase encoded by the MET gene plays an important role in various cellular processes such as growth, survival, migration and angiogenesis, and its abnormal activation is closely related to the occurrence and development of various tumors. This article reviews the recent advances in diagnosis and treatment of MET-variant digestive tract tumors. In terms of diagnosis, the application of next-generation sequencing technology and liquid biopsy technology makes the detection of MET variants more accurate and efficient, providing a reliable basis for individualized treatment. In terms of treatment, MET inhibitors such as crizotinib and cabotinib have shown good efficacy in clinical trials. In addition, the combination of immunotherapy and MET inhibitors also demonstrated potential synergies, further improving the therapeutic effect. However, the complexity and heterogeneity of drug resistance mechanisms are still one of the difficulties in current research. In the future, it is necessary to further deepen the understanding of the mechanism of MET variation and explore new combination treatment strategies to improve the overall survival rate and quality of life of patients. The diagnosis and treatment of MET-variant digestive tract tumors are moving towards precision and individualization, and have broad application prospects.
Collapse
Affiliation(s)
- Chen Zhang
- The First Department of Radiation Oncology, Lu’an Hospital of Traditional Chinese Medicine of Anhui Province, Lu’an 237000, Anhui Province, China
| | - Hu-Ke Dong
- The Fourth Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Jian-Ming Gao
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230000, Anhui Province, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing University Affiliated Gulou Hospital, Nanjing 210008, Jiangsu Province, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Jia-Jia Wang
- Ultrasound of Medicine Department, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
6
|
White C, Wardill H, Paul C, Price T, Karapetis C, Nalder M, Burge ME, Thomas A, Oldmeadow C, Barker D, Edney LC, Coller J, Bowen J, Ostroff C, Cheek B, Carlson M, Rankmore T, Nagrial A, Clarke S, Chantrill L, Ackland S, Scott RJ. DPYD genotype-guided dose personalisation for fluoropyrimidine-based chemotherapy prescribing in solid organ cancer patients in Australia: GeneScreen 5-FU study protocol. BMC Cancer 2024; 24:1369. [PMID: 39516829 PMCID: PMC11549825 DOI: 10.1186/s12885-024-13122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Fluoropyrimidine (FP) chemotherapies are commonly prescribed for upper and lower gastrointestinal, breast and head and neck malignancies. Over 16,000 people with cancer require FP chemotherapies per annum in Australia. Between 10 and 40% patients experience grade 3-4 (≥ G3) toxicities that require hospital-based management ± intensive care admission. Approximately 1% of patients die secondary to FP toxicities. Prospective screening for DPYD gene variants (encoding the key enzyme for FP catabolism) can identify patients at risk of ≥ G3 toxicity and allow for dose adjustment prior to first FP exposure. Evidence supports this as a cost-effective method of improving patient safety and reducing healthcare burden internationally; however, no Australian data confirms its feasibility on a large scale. METHOD This investigator-led, single-arm study will determine large scale feasibility of prospective DPYD genotyping, confirming patient safety and cost-effectiveness within the Australian health care system. 5000 patients aged 18 years and older with solid organ cancers requiring FP chemotherapy will be consented and genotyped prior to commencing treatment, and early toxicity (within 60 days) post-FP exposure will be determined. Toxicity data for DPYD variant carriers who have dose adjustments will be compared to the wild-type cohort and historical cohorts of carriers who did not undergo genotyping prior to FP exposure, and prospective variant carriers who do not undergo dose-adjustment. Prevalence of the four standard DPYD gene variants will be confirmed in an Australian population. Additionally, health economic analysis, implementation research via semi-structured interviews of patients and clinicians, and feasibility of UGT1A1 genotyping will be conducted. DISCUSSION This study will determine the prevalence of DPYD gene variant status in Australia and its impact on FP-induced toxicity among Australians with cancer. Feasibility and cost-effectiveness for Australian health care system will be estimated to support national roll-out of prospective DPYD genotyping prior to FP administration. Additionally, feasibility will be confirmed with the intention of including UGT1A1 in future pharmacogenomic panels to aid chemotherapy prescribing. TRIAL REGISTRATION This trial was registered with the Australian and New Zealand Cancer Trials Registry on 13th Dec 2023, ACTRN12623001301651.
Collapse
Affiliation(s)
- Cassandra White
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christine Paul
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Timothy Price
- The Queen Elizabeth Hospital and University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christos Karapetis
- Flinders University and Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Mark Nalder
- Royal Brisbane and Women's Hospital, Brisbane, QLD, 4006, Australia
- University of Queensland, Brisbane, QLD, 4006, Australia
| | - Matthew E Burge
- Royal Brisbane and Women's Hospital, Brisbane, QLD, 4006, Australia
| | - Ann Thomas
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Chris Oldmeadow
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Daniel Barker
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Laura C Edney
- Flinders University, College of Medicine and Public Health; Flinders Health and Medical Research Institute, Adelaide, SA, 5042, Australia
| | - Janet Coller
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheri Ostroff
- University of South Australia, Centre for Workplace Excellence, Adelaide, SA, 5001, Australia
| | - Bruce Cheek
- Australasian Gastrointestinal Trials Group (Consumer Panel), Camperdown, NSW, 2050, Australia
- Cancer Quality of Life Expert Service Team (Member Steering Committee), University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Cancer Voices New South Wales (Consumer Representative), Milsons Point, NSW, 1565 , Australia
| | - Mel Carlson
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Trumaine Rankmore
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Adnan Nagrial
- Western Sydney Local Health District, Westmead, NSW, 2148, Australia
- University of Sydney, Westmead Clinical School, Westmead, NSW, 2148, Australia
| | - Stephen Clarke
- Northern Sydney Local Health District, St. Leonards, NSW, 2065, Australia
- University of Sydney, Northern Clinical School, St. Leonards, NSW, 2065, Australia
| | - Lorraine Chantrill
- Illawarra Shoalhaven Local Health District, Wollongong, NSW, 2500, Australia
- University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Stephen Ackland
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Rodney J Scott
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Biomedical Science and Pharmacy, Callaghan, NSW, 2308, Australia
- Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
7
|
Jameson A, Tomlinson J, Medlinskiene K, Howard D, Saeed I, Sohal J, Dalton C, Sagoo GS, Cardno A, Bristow GC, Fylan B, McLean SL. Normalising the Implementation of Pharmacogenomic (PGx) Testing in Adult Mental Health Settings: A Theory-Based Systematic Review. J Pers Med 2024; 14:1032. [PMID: 39452539 PMCID: PMC11508855 DOI: 10.3390/jpm14101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Pharmacogenomic (PGx) testing can help personalise psychiatric prescribing and improve on the currently adopted trial-and-error prescribing approach. However, widespread implementation is yet to occur. Understanding factors influencing implementation is pertinent to the psychiatric PGx field. Normalisation Process Theory (NPT) seeks to understand the work involved during intervention implementation and is used by this review (PROSPERO: CRD42023399926) to explore factors influencing PGx implementation in psychiatry. Four databases were systematically searched for relevant records and assessed for eligibility following PRISMA guidance. The QuADS tool was applied during quality assessment of included records. Using an abductive approach to codebook thematic analysis, barrier and facilitator themes were developed using NPT as a theoretical framework. Twenty-nine records were included in the data synthesis. Key barrier themes included a PGx knowledge gap, a lack of consensus in policy and guidance, and uncertainty towards the use of PGx. Facilitator themes included an interest in PGx use as a new and improved approach to prescribing, a desire for a multidisciplinary approach to PGx implementation, and the importance of fostering a climate for PGx implementation. Using NPT, this novel review systematically summarises the literature in the psychiatric PGx implementation field. The findings highlight a need to develop national policies on using PGx, and an education and training workforce plan for mental health professionals. By understanding factors influencing implementation, the findings help to address the psychiatric PGx implementation gap. This helps move clinical practice closer towards a personalised psychotropic prescribing approach and associated improvements in patient outcomes. Future policy and research should focus on the appraisal of PGx implementation in psychiatry and the role of pharmacists in PGx service design, implementation, and delivery.
Collapse
Affiliation(s)
- Adam Jameson
- Bradford District Care NHS Foundation Trust, Bradford BD18 3LD, UK
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
| | - Justine Tomlinson
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kristina Medlinskiene
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Pharmacy Department, Hull University Teaching Hospitals NHS Trust, Hull HU3 2JZ, UK
| | - Dane Howard
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Leeds Teaching Hospitals NHS Foundation Trust, Leeds LS9 7TF, UK
| | - Imran Saeed
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Leeds Teaching Hospitals NHS Foundation Trust, Leeds LS9 7TF, UK
| | - Jaspreet Sohal
- Bradford District Care NHS Foundation Trust, Bradford BD18 3LD, UK
| | - Caroline Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Gurdeep S. Sagoo
- Population Health Sciences Institute, Newcastle University, Newcastle NE2 4HH, UK
| | - Alastair Cardno
- Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LH, UK
| | - Greg C. Bristow
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Beth Fylan
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
- NIHR Yorkshire & Humber Patient Safety Research Collaboration, Bradford BD9 6RJ, UK
| | - Samantha L. McLean
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
- Wolfson Centre for Applied Health Research, Bradford BD9 6RJ, UK
| |
Collapse
|
8
|
de Haar-Holleman A, Cortoos PJ, Vlaeminck J, Van Landuyt P, Steurbaut S, Vaeyens F, Haufroid V. Case report: A case of severe capecitabine toxicity due to confirmed in trans compound heterozygosity of a common and rare DPYD variant. Front Pharmacol 2024; 15:1459565. [PMID: 39376610 PMCID: PMC11456491 DOI: 10.3389/fphar.2024.1459565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Variations in the activity of the enzyme dihydropyrimidine dehydrogenase (DPD) are associated with toxicity to fluoropyrimidine-containing chemotherapy. Testing of DPD deficiency either by targeted genotyping of the corresponding DPYD gene or by quantification of plasma concentration of uracil and dihydrouracil (phenotyping approach) are the two main methods capable of predicting reduced enzymatic activity in order to reduce adverse reactions after fluoropyrimidine treatment. In this paper, we describe a patient with locally advanced colon carcinoma with severe toxicity following capecitabine therapy. Whereas targeted genotyping for the 4 most common DPYD variants analysis revealed heterozygous presence of the c.2846A>T variant, which is a relatively common variant associated with a partial deficiency, additional phenotyping was compatible with a complete DPD deficiency. Subsequent sequencing of the whole DPYD gene revealed the additional presence of the rare c.2872A>G variant, which is associated with a total loss of DPD activity. A clinical case of in trans compound heterozygosity of a common and a rare DPYD variant (c.2846A>T and c.2872A>G) has, to the best of our knowledge, not been previously described. Our case report shows the importance of performing either preemptive phenotyping or preemptive complete genetic analysis of the DPYD gene for patients planned for systemic fluoropyrimidines to identify rare and low frequency variants responsible for potentially life-threatening toxic reactions.
Collapse
Affiliation(s)
- Amy de Haar-Holleman
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pieter-Jan Cortoos
- Pharmacy Department, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Faculty of Medicine & Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jelle Vlaeminck
- Centre for Medical Genetics, Research Group Genetics, Reproduction and Development, Clinical Sciences, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Paulien Van Landuyt
- Pharmacy Department, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
| | - Stephane Steurbaut
- Pharmacy Department, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Faculty of Medicine & Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Freya Vaeyens
- Centre for Medical Genetics, Research Group Genetics, Reproduction and Development, Clinical Sciences, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
9
|
Ikonnikova A, Fedorinov D, Gryadunov D, Heydarov R, Lyadova M, Moskalenko A, Mikhailovich V, Emelyanova M, Lyadov V. MIR27A Gene Polymorphism Modifies the Effect of Common DPYD Gene Variants on Severe Toxicity in Patients with Gastrointestinal Tumors Treated with Fluoropyrimidine-Based Anticancer Therapy. Int J Mol Sci 2024; 25:8503. [PMID: 39126072 PMCID: PMC11313059 DOI: 10.3390/ijms25158503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
To reduce severe fluoropyrimidine-related toxicity, pharmacogenetic guidelines recommend a dose reduction for carriers of four high-risk variants in the DPYD gene (*2A, *13, c.2846A>T, HapB3). The polymorphism in the MIR27A gene has been shown to enhance the predictive value of these variants. Our study aimed to explore whether rs895819 in the MIR27A gene modifies the effect of five common DPYD variants: c.1129-5923C>G (rs75017182, HapB3), c.2194G>A (rs1801160, *6), c.1601G>A (rs1801158, *4), c.496A>G (rs2297595), and c.85T>C (rs1801265, *9A). The study included 370 Caucasian patients with gastrointestinal tumors who received fluoropyrimidine-containing chemotherapy. Genotyping was performed using high-resolution melting analysis. The DPYD*6 allele was associated with overall severe toxicity and neutropenia with an increased risk particularly pronounced in patients carrying the MIR27A variant. All carriers of DPYD*6 exhibited an association with asthenia regardless of their MIR27A status. The increased risk of neutropenia in patients with c.496G was only evident in those co-carrying the MIR27A variant. DPYD*4 was also significantly linked to neutropenia risk in co-carriers of the MIR27A variant. Thus, we have demonstrated the predictive value of the *6, *4, and c.496G alleles of the DPYD gene, considering the modifying effect of the MIR27A polymorphism.
Collapse
Affiliation(s)
- Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
| | - Denis Fedorinov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology and Palliative Medicine Named after Academician A.I. Savitsky, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
| | - Rustam Heydarov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Marina Lyadova
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology, Novokuznetsk State Institute for Postgraduate Medical Education, 654005 Novokuznetsk, Russia
| | - Alexey Moskalenko
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
| | - Vladimir Mikhailovich
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Vladimir Lyadov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology and Palliative Medicine Named after Academician A.I. Savitsky, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
- Department of Oncology, Novokuznetsk State Institute for Postgraduate Medical Education, 654005 Novokuznetsk, Russia
| |
Collapse
|
10
|
De Mattia E, Milan N, Assaraf YG, Toffoli G, Cecchin E. Clinical Implementation of Rare and Novel DPYD Variants for Personalizing Fluoropyrimidine Treatment: Challenges and Opportunities. Int J Biol Sci 2024; 20:3742-3759. [PMID: 39113696 PMCID: PMC11302886 DOI: 10.7150/ijbs.97686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Fluoropyrimidines (FLs) [5-Fluorouracil, Capecitabine] are used in the treatment of several solid tumors. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme for FL detoxification, and its deficiency could lead to severe, life-threatening or fatal toxicity after FL administration. Testing with a pharmacogenetic panel of four deleterious variants in the dihydropyrimidine dehydrogenase gene (DPYD) (DPYD*2A, DPYD*13, c.2846A > T, c.1129-5923C > G) prior to FL treatment, is recommended by scientific consortia (e.g., CPIC, DPWG) and drug regulatory agencies (e.g., EMA). However, this panel identifies < 20% of patients at risk of severe FL-related toxicity. Cumulative recent evidence highlights the potential clinical value of rare (minor allele frequency < 1%) and novel DPYD genetic variants for identifying an additional fraction of DPD-deficient patients at increased risk of severe FL-related toxicity. In this review, we aimed to comprehensively describe the available evidence regarding the potential clinical predictive role of novel and rare DPYD variants as toxicity markers in FL-treated patients, and to discuss the challenges and opportunities in tailoring FL treatment based upon clinical application of such markers. Although we must overcome existing barriers to the clinical implementation, the available data support that comprehensive assessment of the DPYD sequence, including rare and novel genetic variants, may significantly enhance the pre-emptive identification of at-risk patients, compared to the current targeted approach.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano (PN), Italy
| | - Noemi Milan
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano (PN), Italy
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano (PN), Italy
| |
Collapse
|
11
|
Nguyen DG, Morris SA, Hamilton A, Kwange SO, Steuerwald N, Symanowski J, Moore DC, Hanson S, Mroz K, Lopes KE, Larck C, Musselwhite L, Kadakia KC, Koya B, Chai S, Osei-Boateng K, Kalapurakal S, Swift K, Hwang J, Patel JN. Real-World Impact of an In-House Dihydropyrimidine Dehydrogenase ( DPYD) Genotype Test on Fluoropyrimidine Dosing, Toxicities, and Hospitalizations at a Multisite Cancer Center. JCO Precis Oncol 2024; 8:e2300623. [PMID: 38935897 PMCID: PMC11371106 DOI: 10.1200/po.23.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Fluoropyrimidine-related toxicity and mortality risk increases significantly in patients carrying certain DPYD genetic variants with standard dosing. We implemented DPYD genotyping at a multisite cancer center and evaluated its impact on dosing, toxicity, and hospitalization. METHODS In this prospective observational study, patients receiving (reactive) or planning to receive (pretreatment) fluoropyrimidine-based chemotherapy were genotyped for five DPYD variants as standard practice per provider discretion. The primary end point was the proportion of variant carriers receiving fluoropyrimidine modifications. Secondary end points included mean relative dose intensity, fluoropyrimidine-related grade 3+ toxicities, and hospitalizations. Fisher's exact test compared toxicity and hospitalization rates between pretreatment carriers, reactive carriers, and wild-type patients. Univariable and multivariable logistic regression identified factors associated with toxicity and hospitalization risk. Kaplan-Meier methods estimated time to event of first grade 3+ toxicity and hospitalization. RESULTS Of the 757 patients who received DPYD genotyping (median age 63, 54% male, 74% White, 19% Black, 88% GI malignancy), 45 (5.9%) were heterozygous carriers. Fluoropyrimidine was modified in 93% of carriers who started treatment. In 442 patients with 3-month follow-up, 64%, 31%, and 30% of reactive carriers, pretreatment carriers, and wild-type patients had grade 3+ toxicity, respectively (P = .085); 64%, 25%, and 13% were hospitalized (P < .001). Reactive carriers had 10-fold higher odds of hospitalization compared with wild-type patients (P = .001), whereas no significant difference was noted between pretreatment carriers and wild-type patients. Time-to-event of toxicity and hospitalization were significantly different between genotype groups (P < .001), with reactive carriers having the earliest onset and highest incidence. CONCLUSION DPYD genotyping prompted fluoropyrimidine modifications in most carriers. Pretreatment testing reduced toxicities and hospitalizations compared with reactive testing, thus normalizing the risk to that of wild-type patients, and should be considered standard practice.
Collapse
Affiliation(s)
- D. Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah A. Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Simeon O. Kwange
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - James Symanowski
- Department of Biostatistics and Data Sciences, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Donald C. Moore
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah Hanson
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kaitlyn Mroz
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Karine E. Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Chris Larck
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Laura Musselwhite
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kunal C. Kadakia
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Brinda Koya
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Seungjean Chai
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kwabena Osei-Boateng
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sini Kalapurakal
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kristen Swift
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jimmy Hwang
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jai N. Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
12
|
Chenchula S, Atal S, Uppugunduri CRS. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: a reality for future health care. THE PHARMACOGENOMICS JOURNAL 2024; 24:9. [PMID: 38490995 PMCID: PMC10942860 DOI: 10.1038/s41397-024-00326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Adverse drug reactions (ADRs) are a significant public health concern and a leading cause of hospitalization; they are estimated to be the fourth leading cause of death and increasing healthcare costs worldwide. Carrying a genetic variant could alter the efficacy and increase the risk of ADRs associated with a drug in a target population for commonly prescribed drugs. The use of pre-emptive pharmacogenetic/omic (PGx) testing can improve drug therapeutic efficacy, safety, and compliance by guiding the selection of drugs and/or dosages. In the present narrative review, we examined the current evidence of pre-emptive PGx testing-based treatment for the prevention of ADRs incidence and hospitalization or emergency department visits due to serious ADRs, thus improving patient safety. We then shared our perspective on the importance of preemptive PGx testing in clinical practice for the safe use of medicines and decreasing healthcare costs.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Strosberg J, Hofman MS, Al-Toubah T, Hope TA. Rethinking Dosimetry: The Perils of Extrapolated External-Beam Radiotherapy Constraints to Radionuclide Therapy. J Nucl Med 2024; 65:362-364. [PMID: 38212065 DOI: 10.2967/jnumed.123.267167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Affiliation(s)
- Jonathan Strosberg
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida;
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Taymeyah Al-Toubah
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
14
|
Pinheiro M, Peixoto A, Rocha P, Santos C, Escudeiro C, Veiga I, Porto M, Guerra J, Barbosa A, Pinto C, Arinto P, Resende A, Teixeira MR. Implementation of upfront DPYD genotyping with a low-cost and high-throughput assay to guide fluoropyrimidine treatment in cancer patients. Pharmacogenet Genomics 2023; 33:165-171. [PMID: 37611150 DOI: 10.1097/fpc.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Genetic variants in the dihydropyrimidine dehydrogenase (DPYD ) gene are associated with reduced dihydropyrimidine dehydrogenase enzyme activity and can cause severe fluoropyrimidine-related toxicity. We assessed the frequency of the four most common and well-established DPYD variants associated with fluoropyrimidine toxicity and implemented a relatively low-cost and high-throughput genotyping assay for their detection. METHODS This study includes 457 patients that were genotyped for the DPYD c.1129-5923C>G, c.1679T>G, c.1905 + 1G>A and c.2846A>T variants, either by Sanger sequencing or kompetitive allele specific PCR (KASP) technology. Of these, 172 patients presented toxicity during treatment with fluoropyrimidines (post-treatment group), and 285 were tested before treatment (pretreatment group). RESULTS Heterozygous DPYD variants were identified in 7.4% of the entire series of 457 patients, being the c.2846A>T the most frequent variant. In the post-treatment group, 15.7% of the patients presented DPYD variants, whereas only 2.5% of the patients in the pretreatment group presented a variant. The KASP assays designed in this study presented 100% genotype concordance with the results obtained by Sanger sequencing. CONCLUSIONS The combined assessment of the four DPYD variants in our population increases the identification of patients at high risk for developing fluoropyrimidine toxicity, supporting the upfront routine implementation of DPYD variant genotyping. Furthermore, the KASP genotyping assay described in this study presents a rapid turnaround time and relatively low cost, making upfront DPYD screening feasible in clinical practice.
Collapse
Affiliation(s)
- Manuela Pinheiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Peixoto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Rocha
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Isabel Veiga
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Joana Guerra
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Barbosa
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Arinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Adriana Resende
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Manuel R Teixeira
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|