1
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
2
|
Bojko J, Kollareddy M, Szemes M, Bellamy J, Poon E, Moukachar A, Legge D, Vincent EE, Jones N, Malik S, Greenhough A, Paterson A, Park JH, Gallacher K, Chesler L, Malik K. Spliceosomal vulnerability of MYCN-amplified neuroblastoma is contingent on PRMT5-mediated regulation of epitranscriptomic and metabolomic pathways. Cancer Lett 2024; 604:217263. [PMID: 39313128 DOI: 10.1016/j.canlet.2024.217263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.
Collapse
Affiliation(s)
- Jodie Bojko
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Ahmad Moukachar
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E Vincent
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alexander Greenhough
- College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Alex Paterson
- Insilico Consulting ltd, Wapping Wharf, Bristol, England, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kelli Gallacher
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|
4
|
Degorre C, Lohard S, Bobrek CN, Rawal KN, Kuhn S, Tofilon PJ. Targeting PRMT5 enhances the radiosensitivity of tumor cells grown in vitro and in vivo. Sci Rep 2024; 14:17316. [PMID: 39068290 PMCID: PMC11283541 DOI: 10.1038/s41598-024-68405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
PRMT5 is a widely expressed arginine methyltransferase that regulates processes involved in tumor cell proliferation and survival. In the study described here, we investigated whether PRMT5 provides a target for tumor radiosensitization. Knockdown of PRMT5 using siRNA enhanced the radiosensitivity of a panel of cell lines corresponding to tumor types typically treated with radiotherapy. To extend these studies to an experimental therapeutic setting, the PRMT5 inhibitor LLY-283 was used. Exposure of the tumor cell lines to LLY-283 decreased PRMT5 activity and enhanced their radiosensitivity. This increase in radiosensitivity was accompanied by an inhibition of DNA double-strand break repair as determined by γH2AX foci and neutral comet analyses. For a normal fibroblast cell line, although LLY-283 reduced PRMT5 activity, it had no effect on their radiosensitivity. Transcriptome analysis of U251 cells showed that LLY-283 treatment reduced the expression of genes and altered the mRNA splicing pattern of genes involved in the DNA damage response. Subcutaneous xenografts were then used to evaluate the in vivo response to LLY-283 and radiation. Treatment of mice with LLY-283 decreased tumor PRMT5 activity and significantly enhanced the radiation-induced growth delay. These results suggest that PRMT5 is a tumor selective target for radiosensitization.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Steven Lohard
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Christina N Bobrek
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Komal N Rawal
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Skyler Kuhn
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Zhang Y, Xu M, Yuan J, Hu Z, Jiang J, Huang J, Wang B, Shen J, Long M, Fan Y, Montone KT, Tanyi JL, Tavana O, Chan HM, Hu X, Zhang L. Repression of PRMT activities sensitize homologous recombination-proficient ovarian and breast cancer cells to PARP inhibitor treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595159. [PMID: 38826355 PMCID: PMC11142138 DOI: 10.1101/2024.05.21.595159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
An "induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation" strategy is being evaluated in the clinic to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. To expand its clinical applications and identify more efficient combinations, we performed a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Both type I PRMT inhibitor and PRMT5 inhibitor exhibit high combination and clinical priority scores in our screen. PRMT inhibition significantly enhances PARPi treatment-induced DNA damage in HR-proficient ovarian and breast cancer cells. Mechanistically, PRMTs maintain the expression of genes associated with DNA damage repair and BRCAness and regulate intrinsic innate immune pathways in cancer cells. Analyzing large-scale genomic and functional profiles from TCGA and DepMap further confirms that PRMT1, PRMT4, and PRMT5 are potential therapeutic targets in oncology. Finally, PRMT1 and PRMT5 inhibition act synergistically to enhance PARPi sensitivity. Our studies provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian or breast cancer.
Collapse
Affiliation(s)
- Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Mu Xu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jiao Yuan
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Zhongyi Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Junjie Jiang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jie Huang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bingwei Wang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jianfeng Shen
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, 43210, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Center for Gynecologic Cancer Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Omid Tavana
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Ho Man Chan
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Xiaowen Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Center for Gynecologic Cancer Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
7
|
Moitra P, Skrodzki D, Molinaro M, Gunaseelan N, Sar D, Aditya T, Dahal D, Ray P, Pan D. Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer. ACS NANO 2024; 18:9199-9220. [PMID: 38466962 DOI: 10.1021/acsnano.4c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The majority of triple negative breast cancers (TNBCs) are basal-like breast cancers (BLBCs), which tend to be more aggressive, proliferate rapidly, and have poor clinical outcomes. A key prognostic biomarker and regulator of BLBC is the Forkhead box C1 (FOXC1) transcription factor. However, because of its functional placement inside the cell nucleus and its structural similarity with other related proteins, targeting FOXC1 for therapeutic benefit, particularly for BLBC, continues to be difficult. We envision targeted nonviral delivery of CRISPR/Cas9 plasmid toward the efficacious knockdown of FOXC1. Keeping in mind the challenges associated with the use of CRISPR/Cas9 in vivo, including off-targeting modifications, and effective release of the cargo, a nanoparticle with context responsive properties can be designed for efficient targeted delivery of CRISPR/Cas9 plasmid. Consequently, we have designed, synthesized, and characterized a zwitterionic amino phospholipid-derived transfecting nanoparticle for delivery of CRISPR/Cas9. The construct becomes positively charged only at low pH, which encourages membrane instability and makes it easier for nanoparticles to exit endosomes. This has enabled effective in vitro and in vivo downregulation of protein expression and genome editing. Following this, we have used EpCAM aptamer to make the system targeted toward BLBC cell lines and to reduce its off-target toxicity. The in vivo efficacy, biodistribution, preliminary pharmacokinetics, and biosafety of the optimized targeted CRISPR nanoplatform is then validated in a rodent xenograft model. Overall, we have attempted to knockout the proto-oncogenic FOXC1 expression in BLBC cases by efficient delivery of CRISPR effectors via a context-responsive nanoparticle delivery system derived from a designer lipid derivative. We believe that the nonviral approach for in vitro and in vivo delivery of CRISPR/Cas9 targeted toward FOXC1, studied herein, will greatly emphasize the therapeutic regimen for BLBC.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David Skrodzki
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipendra Dahal
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
| | - Priyanka Ray
- Department of Chemical & Biochemical Engineering, University of Maryland-Baltimore County, Baltimore County, Maryland 21250, United States
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical & Biochemical Engineering, University of Maryland-Baltimore County, Baltimore County, Maryland 21250, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Górnicki T, Lambrinow J, Golkar-Narenji A, Data K, Domagała D, Niebora J, Farzaneh M, Mozdziak P, Zabel M, Antosik P, Bukowska D, Ratajczak K, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:531. [PMID: 38535679 PMCID: PMC10974775 DOI: 10.3390/nano14060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025]
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 6193673111, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
9
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
10
|
Tao L, Zhou Y, Pan X, Luo Y, Qiu J, Zhou X, Chen Z, Li Y, Xu L, Zhou Y, Zuo Z, Liu C, Wang L, Liu X, Tian X, Su N, Yang Z, Zhang Y, Gou K, Sang N, Liu H, Zou J, Xiao Y, Zhong X, Xu J, Yang X, Xiao K, Liu Y, Yang S, Peng Y, Han J, Cen X, Zhao Y. Repression of LSD1 potentiates homologous recombination-proficient ovarian cancer to PARP inhibitors through down-regulation of BRCA1/2 and RAD51. Nat Commun 2023; 14:7430. [PMID: 37973845 PMCID: PMC10654398 DOI: 10.1038/s41467-023-42850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.
Collapse
Affiliation(s)
- Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiangyu Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiqian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Yan Li
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, China
| | - Lian Xu
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zeping Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaocong Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Na Su
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
- Department of Pharmacy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhengnan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yu Zhang
- School of Medicine, Tibet University, 850000, Lhasa, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Na Sang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huan Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyu Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Kai Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yanyang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yong Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
11
|
Dakroub R, Huard S, Hajj-Younes Y, Suresh S, Badran B, Fayyad-Kazan H, Dubois T. Therapeutic Advantage of Targeting PRMT5 in Combination with Chemotherapies or EGFR/HER2 Inhibitors in Triple-Negative Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:785-799. [PMID: 37954171 PMCID: PMC10637385 DOI: 10.2147/bctt.s430513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Purpose Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subgroup characterized by a high risk of resistance to chemotherapies and high relapse potential. TNBC shows inter-and intra-tumoral heterogeneity; more than half expresses high EGFR levels and about 30% are classified as HER2-low breast cancers. High PRMT5 mRNA levels are associated with poor prognosis in TNBC and inhibiting PRMT5 impairs the viability of subsets of TNBC cell lines and delays tumor growth in TNBC mice models. TNBC patients may therefore benefit from a treatment targeting PRMT5. The aim of this study was to assess the therapeutic benefit of combining a PRMT5 inhibitor with different chemotherapies used in the clinics to treat TNBC patients, or with FDA-approved inhibitors targeting the HER family members. Methods The drug combinations were performed using proliferation and colony formation assays on TNBC cell lines that were sensitive or resistant to EPZ015938, a PRMT5 inhibitor that has been evaluated in clinical trials. The chemotherapies analyzed were cisplatin, doxorubicin, camptothecin, and paclitaxel. The targeted therapies tested were erlotinib (EGFR inhibitor), neratinib (EGFR/HER2/HER4 inhibitor) and tucatinib (HER2 inhibitor). Results We found that PRMT5 inhibition synergized mostly with cisplatin, and to a lesser extent with doxorubicin or camptothecin, but not with paclitaxel, to impair TNBC cell proliferation. PRMT5 inhibition also synergized with erlotinib and neratinib in TNBC cell lines, especially in those overexpressing EGFR. Additionally, a synergistic interaction was observed with neratinib and tucatinib in a HER2-low TNBC cell line as well as in a HER2-positive breast cancer cell line. We noticed that synergy can be obtained in TNBC cell lines that were resistant to PRMT5 inhibition alone. Conclusion Altogether, our data highlight the therapeutic potential of targeting PRMT5 using combinatorial strategies for the treatment of subsets of TNBC patients.
Collapse
Affiliation(s)
- Rayan Dakroub
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Solène Huard
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Yara Hajj-Younes
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Samyuktha Suresh
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| |
Collapse
|
12
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|