Wimalasena ST, Ramirez-Silva CI, Gonzalez Casanova I, Stein AD, Sun YV, Rivera JA, Demmelmair H, Koletzko B, Ramakrishnan U. Effects of prenatal docosahexaenoic acid supplementation on offspring cardiometabolic health at 11 years differs by maternal single nucleotide polymorphism rs174602: follow-up of a randomized controlled trial in Mexico.
Am J Clin Nutr 2023;
118:1123-1132. [PMID:
37839707 PMCID:
PMC10797513 DOI:
10.1016/j.ajcnut.2023.10.005]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND
There is limited evidence regarding long-term effects of prenatal docosahexaenoic acid (DHA) supplementation on offspring cardiometabolic health (CMH). Inconsistent results may be attributable to variants of fatty acid desaturase (FADS) genes.
OBJECTIVE
We aimed to evaluate the effect of prenatal DHA supplementation on offspring CMH and investigate effect modification by maternal FADS2 single nucleotide polymorphism (SNP) rs174602.
METHODS
We used follow-up data from a double-blind, randomized controlled trial in Mexico in which pregnant females received 400 mg/d of algal DHA or placebo from midgestation until delivery. The study sample included 314 offspring with data at age 11 y and maternal FADS genetic data (DHA: n = 160; Placebo: n = 154). We derived a Metabolic Syndrome (MetS) score from body mass index, HDL, triglycerides, fasting glucose concentrations, and systolic blood pressure. Generalized linear models were used to evaluate the effect of the intervention on offspring MetS score and test interactions between treatment group and genotype, adjusting for maternal, offspring, and household factors.
RESULTS
Offspring MetS score did not differ significantly by treatment group. We observed evidence of effect modification by maternal SNP rs174602 (P = 0.001); offspring of maternal TT genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean ± standard error of the mean (SEM)): -0.21 ± 0.11, n = 21; Placebo: 0.05 ± 0.11, n = 23; Δ= -0.26 (95% CI: -0.55, 0.04), P = 0.09); among CC maternal genotype carriers, offspring of mothers who received DHA had higher MetS score (0.18 ± 0.06, n = 62) relative to the placebo group (-0.05 ± 0.06, n = 65, Δ=0.24 (0.06, 0.41), P < 0.01).
CONCLUSION
The effect of prenatal DHA supplementation on offspring MetS score differed by maternal FADS SNP rs174602. These findings further support incorporating genetic analysis of FADS polymorphisms in DHA supplementation trials.
CLINICAL TRIAL DETAILS
This trial was registered at clinicaltrials.gov as NCT00646360.
Collapse