1
|
Hayward D, McIntyre D, Steele D. Borderline personality disorder is an innate empathy anomaly: a scoping and narrative review. Int J Psychiatry Clin Pract 2024:1-15. [PMID: 39470631 DOI: 10.1080/13651501.2024.2420662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Studying empathy in borderline personality disorder (BPD) is essential because difficulties with interpersonal functioning are integral. OBJECTIVES This scoping and narrative review explores the aetiological theory that BPD is an innate anomaly of cognitive empathy, with a normal or heightened emotional empathy. ELIGIBILITY CRITERIA AND SOURCES OF EVIDENCE Ovid MEDLINE(R) ALL was searched using the terms empathy; theory of mind; mentalisation or mentalising; borderline empathy; emotion recognition and BPD. For inclusion in the scoping review, articles needed to empirically assess an empathic skill in people with BPD, or self-reported empathy in a BPD group compared to controls, or empathic skill as a 'borderline feature' in a nonclinical sample. CHARTING METHOD The results of empirical studies were categorised as per their methodological approach, with results in the BPD group reported as comparable, enhanced or reduced compared to controls. RESULTS 320 articles were returned, with 38 eligible. The majority affirmed that people with BPD have an anomalous empathetic ability, especially a deficient cognitive empathy. Furthermore, this is trait, evident early in development, correlates with syndrome severity, and is mediated by atypical neural networks. CONCLUSIONS This substantiates the theory that BPD is, at least in major part, an innate empathy anomaly.
Collapse
Affiliation(s)
- David Hayward
- NHS Lothian, St John's Hospital, Livingston, United Kingdom
- Department Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald McIntyre
- Department Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
- NHS Lothian, Royal Edinburgh Hospital, Edinburgh, United Kingdom
- NHS Research Scotland, Mental Health Network, Edinburgh, United Kingdom
| | - Douglas Steele
- Neuroimaging, University of Dundee, Dundee, United Kingdom
- NHS Tayside, Dundee, United Kingdom
- University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
2
|
Gescher DM, Schanze D, Vavra P, Wolff P, Zimmer-Bensch G, Zenker M, Frodl T, Schmahl C. Differential methylation of OPRK1 in borderline personality disorder is associated with childhood trauma. Mol Psychiatry 2024:10.1038/s41380-024-02628-z. [PMID: 38862675 DOI: 10.1038/s41380-024-02628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
According to a growing body of neurobiological evidence, the core symptoms of borderline personality disorder (BPD) may be linked to an opioidergic imbalance between the hedonic and stimulatory activity of mu opioid receptors (MOR) and the reward system inhibiting effects of kappa opioid receptors (KOR). Childhood trauma (CT), which is etiologically relevant to BPD, is also likely to lead to epigenetic and neurobiological adaptations by extensive activation of the stress and endogenous opioid systems. In this study, we investigated the methylation differences in the promoter of the KOR gene (OPRK1) in subjects with BPD (N = 47) and healthy controls (N = 48). Comparing the average methylation rates of regulatorily relevant subregions (specified regions CGI-1, CGI-2, EH1), we found no differences between BPD and HC. Analyzing individual CG nucleotides (N = 175), we found eight differentially methylated CG sites, all of which were less methylated in BPD, with five showing highly interrelated methylation rates. This differentially methylated region (DMR) was found on the falling slope (5') of the promoter methylation gap, whose effect is enhanced by the DMR hypomethylation in BPD. A dimensional assessment of the correlation between disease severity and DMR methylation rate revealed DMR hypomethylation to be negatively associated with BPD symptom severity (measured by BSL-23). Finally, analyzing the influence of CT on DMR methylation, we found DMR hypomethylation to correlate with physical and emotional neglect in childhood (quantified by CTQ). Thus, the newly identified DMR may be a biomarker of the risks caused by CT, which likely epigenetically contribute to the development of BPD.
Collapse
Affiliation(s)
- Dorothee Maria Gescher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Department for General Psychiatry, Center of Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Denny Schanze
- Institute of Human Genetics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Vavra
- Department of Biological Psychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Philip Wolff
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany
| | - Martin Zenker
- Institute of Human Genetics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
KAGIZMAN SC, HOCAOGLU C. Oxytocin in the Treatment of Psychiatric Disorders. Medeni Med J 2023; 38:218-231. [PMID: 37767153 PMCID: PMC10542980 DOI: 10.4274/mmj.galenos.2023.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Oxytocin is a peptide hormone that is most known for its role in reproduction. However, many effects other than reproduction have been defined. The lifetime prevalence of mental disorders is approximately 20%, and they have a significant ratio among the diseases that lead to disability. Treatment resistance may cause the mental disorder to become chronic and increase disability. With the examination of the oxytocinergic system, both the elucidation of the etiology of the diseases and their evaluation as a new treatment option have come to the fore. In various studies, it has been desired to create a more effective treatment model by measuring the level of oxytocin in psychiatric disorders, examining its receptor, and applying exogenous oxytocin in the treatment. In this review, an overview of oxytocin's efficacy in treatment is presented by considering the relationship between psychiatric disorders and the oxytocinergic system.
Collapse
Affiliation(s)
- Salim Cagatay KAGIZMAN
- Hitit University Erol Olcok Training and Research Hospital, Department of Psychiatry, Corum, Turkey
| | - Cicek HOCAOGLU
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Psychiatry, Rize, Turkey
| |
Collapse
|
4
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
5
|
Peng SX, Pei J, Rinaldi B, Chen J, Ge YH, Jia M, Wang J, Delahaye-Duriez A, Sun JH, Zang YY, Shi YY, Zhang N, Gao X, Milani D, Xu X, Sheng N, Gerard B, Zhang C, Bayat A, Liu N, Yang JJ, Shi YS. Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry 2022; 27:4092-4102. [PMID: 35697757 DOI: 10.1038/s41380-022-01659-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Inappropriate aggression in humans hurts the society, families and individuals. The genetic basis for aggressive behavior, however, remains largely elusive. In this study, we identified two rare missense variants in X-linked GRIA3 from male patients who showed syndromes featuring aggressive outbursts. Both G630R and E787G mutations in AMPA receptor GluA3 completely lost their ion channel functions. Furthermore, a guanine-repeat single nucleotide polymorphism (SNP, rs3216834) located in the first intron of human GRIA3 gene was found to regulate GluA3 expression with longer guanine repeats (rs3216834-10G/-11G) suppressing transcription compared to the shorter ones (-7G/-8G/-9G). Importantly, the distribution of rs3216834-10G/-11G was elevated in a male violent criminal sample from Chinese Han population. Using GluA3 knockout mice, we showed that the excitatory neurotransmission and neuronal activity in the medial prefrontal cortex (mPFC) was impaired. Expressing GluA3 back into the mPFC alleviated the aggressive behavior of GluA3 knockout mice, suggesting that the defects in mPFC explained, at least partially, the neural mechanisms underlying the aggressive behavior. Therefore, our study provides compelling evidence that dysfunction of AMPA receptor GluA3 promotes aggressive behavior.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Jia
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Minister of Education Key Laboratory of Modern Toxicology, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Andrée Delahaye-Duriez
- Consultations de génétique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy, 93140, France.,NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, 75019, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yong-Yun Shi
- Department of Orthopaedics, Luhe People's Hospital Affiliated to Yangzhou University, Nanjing, 211500, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Xijia Xu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, 67000, France
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Genetics and Personalized Medicine, Dianalund, 4293, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China. .,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China. .,Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
| |
Collapse
|
6
|
The Interaction Effect of Parental Rejection and Oxytocin Receptor Gene Polymorphism on Depression: A Cross-Cultural Study in Non-Clinical Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095566. [PMID: 35564961 PMCID: PMC9105151 DOI: 10.3390/ijerph19095566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Parental rejection has been consistently empirically implicated in a wide array of developmental, behavioural and psychological problems worldwide. However, the interaction effect between parental rejection in childhood and the oxytocin receptor genotype on psychological adjustment has yet to be investigated. The present study aimed to investigate gene–environment interaction effects between parental rejection (maternal and paternal) and oxytocin receptor (OXTR) gene polymorphisms (rs53576 and rs2254298) on depressive symptoms in adults in different cultural contexts. Adults from Italy and Japan (N = 133, age = 18–27 years, females = 68) were preliminarily genotyped and then completed the Parental Acceptance-Rejection Questionnaire for mothers and fathers and the Beck Depression Inventory. Hierarchical multiple regression analysis showed that paternal rejection was related to self-reported depression and that the effect of parental rejection was moderated by OXTR gene polymorphisms and nationality. Among Italians, OXTR rs2254298 A-carriers showed resilience to negative early parental care, whereas among Japanese, OXTR rs53576 non-A-carriers showed resistance to negative early paternal care. These findings align with expected relations between perceived acceptance–rejection and an individual’s psychological adjustment, as proposed by interpersonal acceptance–rejection theory, and indicate the need for future studies adopting a multicultural and multilevel approach to better understand how the effects of parental rejection extend into adulthood.
Collapse
|
7
|
Onaka T, Takayanagi Y. The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol 2021; 33:e13049. [PMID: 34713517 PMCID: PMC9286573 DOI: 10.1111/jne.13049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Early-life experience influences social and emotional behaviour in adulthood. Affiliative tactile stimuli in early life facilitate the development of social and emotional behaviour, whereas early-life adverse stimuli have been shown to increase the risk of various diseases in later life. On the other hand, oxytocin has been shown to have organizational actions during early-life stages. However, the detailed mechanisms of the effects of early-life experience and oxytocin remain unclear. Here, we review the effects of affiliative tactile stimuli during the neonatal period and neonatal oxytocin treatment on the activity of the oxytocin-oxytocin receptor system and social or emotional behaviour in adulthood. Both affiliative tactile stimuli and early-life adverse stimuli in the neonatal period acutely activate the oxytocin-oxytocin receptor system in the brain but modulate social behaviour and anxiety-related behaviour apparently in an opposite direction in adulthood. Accumulating evidence suggests that affiliative tactile stimuli and exogenous application of oxytocin in early-life stages induce higher activity of the oxytocin-oxytocin receptor system in adulthood, although the effects are dependent on experimental procedures, sex, dosages and brain regions examined. On the other hand, early-life stressful stimuli appear to induce reduced activity of the oxytocin-oxytocin receptor system, possibly leading to adverse actions in adulthood. It is possible that activation of a specific oxytocin system can induce beneficial actions against early-life maltreatments and thus could be used for the treatment of developmental psychiatric disorders.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| |
Collapse
|
8
|
Peng SX, Wang YY, Zhang M, Zang YY, Wu D, Pei J, Li Y, Dai J, Guo X, Luo X, Zhang N, Yang JJ, Zhang C, Gao X, Liu N, Shi YS. SNP rs10420324 in the AMPA receptor auxiliary subunit TARP γ-8 regulates the susceptibility to antisocial personality disorder. Sci Rep 2021; 11:11997. [PMID: 34099816 PMCID: PMC8184779 DOI: 10.1038/s41598-021-91415-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
In the brain, AMPA receptors mediate fast excitatory neurotransmission, the dysfunction of which leads to neuropsychiatric disorders. Synaptic function of AMPA receptors is tightly controlled by a protein group called transmembrane AMPAR regulatory proteins (TARPs). TARP γ-8 (also known as CACNG8) preferentially expresses in the hippocampus, cortex and subcortical regions that are critical for emotion generation indicating its association with psychiatric disorders. Here, we identified rs10420324 (T/G), a SNP located in the human CACNG8 gene, regulated reporter gene expression in vitro and TARP γ-8 expression in the human brain. A guanine at the locus (rs10420324G) suppressed transcription likely through modulation of a local G-quadruplex DNA structure. Consistent with these observations, the frequency of rs10420324G was higher in patients with anti-social personality disorder (ASPD) than in controls, indicating that rs10420324G in CACNG8 is more voluntary for ASPD. We then characterized the behavior of TARP γ-8 knockout and heterozygous mice and found that consistent with ASPD patients who often exhibit impulsivity, aggression, risk taking, irresponsibility and callousness, a decreased γ-8 expression in mice displayed similar behaviors. Furthermore, we found that a decrease in TARP γ-8 expression impaired synaptic AMPAR functions in layer 2-3 pyramidal neurons of the prefrontal cortex, a brain region that inhibition leads to aggression, thus explaining, at least partially, the neuronal basis for the behavioral abnormality. Taken together, our study indicates that TARP γ-8 expression level is associated with ASPD, and that the TARP γ-8 knockout mouse is a valuable animal model for studying this psychiatric disease.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yue-Ying Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Zhang
- School of Psychology, Nanjing Normal University, Nanjing, 210029, China
| | - Yan-Yu Zang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Dan Wu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yansong Li
- Reward, Competition and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiapei Dai
- Chinese Brain Bank Center, Wuhan, 430074, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ning Zhang
- School of Psychology, Nanjing Normal University, Nanjing, 210029, China
- Department of Medical Psychology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xiang Gao
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice, Medical School, Nanjing University, Nanjing, 210032, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210032, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
9
|
Jawad MY, Ahmad B, Hashmi AM. Role of Oxytocin in the Pathogenesis and Modulation of Borderline Personality Disorder: A Review. Cureus 2021; 13:e13190. [PMID: 33717733 PMCID: PMC7942026 DOI: 10.7759/cureus.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Borderline personality disorder (BPD) is a serious psychiatric condition characterized by dysfunctional relations, abnormal social behavior, and high morbidity. Many studies have implicated abnormal oxytocinergic system as a causative factor of behavioral dysregulation in BPD patients. The objective of this review is to provide a comprehensive analysis of the association of oxytocin with the pathogenesis of BPD and its possible role as a therapeutic agent. Our review indicates that a combination of genetic and environmental factors causes BPD patients to have lower baseline levels of oxytocin, leading to increased activation of the amygdala. This results in defective cognition of social stimuli, leading to abnormal behaviors like affective instability, unresolved attachment, and emotional dysregulation. Clinical trials conducted on BPD patients using intranasal oxytocin have shown both prosocial and trust-lowering effects. The effects of oxytocin depend upon various patient characteristics like the history of childhood trauma and the nature of attachment. Even though evidence of oxytocin's role in modulating behavior in BPD patients already exists, further studies are required to more clearly elaborate on this role to fully explore oxytocin's potential as a therapeutic agent.
Collapse
Affiliation(s)
- Muhammad Youshay Jawad
- Academic Department of Psychiatry and Behavioral Sciences, King Edward Medical University/Mayo Hospital, Lahore, PAK
| | - Bakhtawar Ahmad
- Academic Department of Psychiatry and Behavioral Sciences, King Edward Medical University/Mayo Hospital, Lahore, PAK
| | - Ali Madeeh Hashmi
- Academic Department of Psychiatry and Behavioral Sciences, King Edward Medical University/Mayo Hospital, Lahore, PAK
| |
Collapse
|