1
|
Massaro L, De Sanctis S, Franchini V, Regalbuto E, Alfano G, Focaccetti C, Benvenuto M, Cifaldi L, Sgura A, Berardinelli F, Marinaccio J, Barbato F, Rossi E, Nardozi D, Masuelli L, Bei R, Lista F. Study of genotoxic and cytotoxic effects induced in human fibroblasts by exposure to pulsed and continuous 1.6 GHz radiofrequency. Front Public Health 2024; 12:1419525. [PMID: 39145180 PMCID: PMC11323689 DOI: 10.3389/fpubh.2024.1419525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.
Collapse
Affiliation(s)
- Luca Massaro
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania De Sanctis
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Valeria Franchini
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Elisa Regalbuto
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Gaetano Alfano
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | | | | | - Federica Barbato
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Erica Rossi
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Florigio Lista
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| |
Collapse
|
2
|
Dieper A, Scheidegger S, Füchslin RM, Veltsista PD, Stein U, Weyland M, Gerster D, Beck M, Bengtsson O, Zips D, Ghadjar P. Literature review: potential non-thermal molecular effects of external radiofrequency electromagnetic fields on cancer. Int J Hyperthermia 2024; 41:2379992. [PMID: 39019469 DOI: 10.1080/02656736.2024.2379992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Collapse
Affiliation(s)
- Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Scheidegger
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Rudolf M Füchslin
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Mathias Weyland
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olof Bengtsson
- Ferdinand-Braun-Institut (FBH), Leibnitz-Institut für Höchstfrequenztechnik, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Kadeh H, Saravani S, Moradi M, Alimanesh N. A Comparative Evaluation of the Genotoxic Effects of Mobile Phone Radiation Using Buccal Micronucleus Assay. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2023; 24:118-124. [PMID: 37051497 PMCID: PMC10084556 DOI: 10.30476/dentjods.2022.92515.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 04/14/2023]
Abstract
Statement of the Problem Mobile usage has increased worldwide over the past two decades. There are conflicting reports about the carcinogenic effects of cell phone radiation on the oral mucosa. Micronucleus (MN) is considered a reliable marker for genotoxic damage. Purpose This study aimed to identify the impact of mobile phone radiation on the MN frequency in oral mucosal cells. Materials and Method In this descriptive-analytical study, 50 mobile phone users between the age group of 20-38 years were included. Samples were obtained from the right and left cheek mucosa of each subject (a total 100 cell samples). Every participant filled out a questionnaire about his or her cell phone usage habits. Additionally, personal information such as age, gender, and body mass index (BMI) were assessed. The Feulgen and Papanicolaou staining methods were used for staining of the cell samples. A total of 1000 cells in each sample were evaluated for MNs. Results The mean number of MN in exposed and non-exposed mucosa by Feulgen method was 0.71±1.13 and 0.57±1.36, respectively. Also in Papanicolaou staining, the mean number of MN in the exposed mucosa and non-exposed mucosa was 6.94±6.61 and 6.54±6.88, respectively, but these differences were not significant (p> 0.05). The frequency of MN in non-specific DNA staining was significantly (5- to 6-fold) higher than DNA-specific staining. We observed no statically significant differences between MN frequency according to age, gender, BMI, and other cell phone usage habits (p> 0.05). Conclusion This study showed that cell phone use does not cause genotoxic effects in the buccal mucosa in the oral cavity. Moreover, using non-specific DNA staining methods can increase the frequency of MN by more than 5- to 6-fold.
Collapse
Affiliation(s)
- Hamideh Kadeh
- Oral and Dental Disease Research Center, Dept. of Oral & Maxillofacial Pathology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shirin Saravani
- Oral and Dental Disease Research Center, Dept. of Oral & Maxillofacial Pathology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Moradi
- Postgraduate Student, Dept. of Pediatric Dentistry, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Niloofar Alimanesh
- Dentist, School of Dentistry, Zahedan University of Medical Science, Zahedan, Iran
| |
Collapse
|
4
|
Gupta S, Sharma RS, Singh R. Non-ionizing radiation as possible carcinogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:916-940. [PMID: 32885667 DOI: 10.1080/09603123.2020.1806212] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The advent of wireless technologies has revolutionized the way we communicate. The steady upsurge in the use of mobile phone all over the world in the last two decades, while triggered economic growth, has caused substantial damage to the environment, both directly and indirectly. The electromagnetic radiation generated from mobile phones, radio-based stations, and phone towers, high-voltage power lines have been reported which leads to the variety of health scares such as the risk of cancer in human beings and adverse effects in animals, birds, etc. Though the usage of such radiation emitting from mobile phones has risen steeply, there is a lack of proper knowledge about the associated risks. The review provides the latest research evidence based both on in vitro studies, in vivo studies, and possible gaps in our knowledge. Moreover, the present review also summarizes available literature in this subject, reports and studies which will help to form guidelines for its exposure limits to the public.Abbreviations: Continuous Wave: CW; Code Division Multiple Access: CDMA; Global System for Mobile Communications: GSM; Peripheral Blood Mononuclear Cell: PBMC; Radiofrequency: RF; Radiofrequency radiation: RFR; Universal Mobile Telecommunications System: UMTS; Wideband Code Division Multiple Access: WCDMA; Specific Absorption Rate: SAR; National Toxicology Program: NTP; amplitude-modulated or amplitude-modulation: AM; Electromagnetic frequencies: EMF; confidence interval: CI; Gigahertz: GHz; odds ratio: OR; incidence ratio: IR; reactive oxygen species: ROS; specific absorption rate: SAR; International Agency of Research on Cancer: IARC; single-strand breaks: SSB; double-strand breaks: DSB (7,12-Dimethylbenz[a]anthracene): DMBA; Hour: h; international commission on non-ionizing radiation protection: ICNIRP; extremely low frequency: ELFl; microtesla: mT; Gigahertz: GHz; hertz: Hz; decibel: dB; kilometer: Km; Watt per square meter: W/m2; Hour: h; positron emission tomography: PET.
Collapse
Affiliation(s)
- Shiwangi Gupta
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Radhey Shyam Sharma
- Department of RBMH & CH, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:ijms23042322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
|
6
|
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci 2020; 21:E7069. [PMID: 32992895 PMCID: PMC7584027 DOI: 10.3390/ijms21197069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.
Collapse
Affiliation(s)
- Elisa Regalbuto
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Stefania De Sanctis
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Valeria Franchini
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Florigio Lista
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Eugenio Trodella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| |
Collapse
|
7
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
8
|
Sajedifar J, Nassiri P, Monazzam MR, Shamsipour M, Ramezani R. The effect of battery charge levels of Mobile phone on the amount of Electromagnetic waves emission. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:151-159. [PMID: 31321043 PMCID: PMC6581992 DOI: 10.1007/s40201-019-00336-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/06/2019] [Indexed: 05/04/2023]
Abstract
PURPOSE Over the past decades, mobile phone usage have increased dramatically. Extensive development and use of mobile telecommunication services has increased exposure to radio frequency electromagnetic waves (RF-EMW) in the daily lives of humans, and concerns about the harmful effects of mobile phones have also increased on human health. Therefore, this study aimed to investigate the effect of battery charge levels of the mobile phone on electromagnetic waves emission. METHODS The mobile phone used in the current study was HTC One E9+ (0.181 W/kg SAR) with a non-removable battery model Li-Po 2800 mAh. The power density was measured with the mobile phone set to operate at the 2G mode by a SMP2 Portable Electromagnetic Field Monitoring System. Power density was measured in Calling mode (50 sec), Called mode (40 sec) and Talking mode (360 sec) at the battery charge levels of 1, 5, 10, 15, 20, 30, 50, 60, 70, 80 and 100%. RESULTS In Calling mode, the maximum electromagnetic waves were determined when the mobile phone had 1% battery charge and also while it was being charged. Contrary to Calling mode, there is no statistically significant difference between the power density emitted in Called mode and Talking mode at the various battery charge levels. Power density was found to be highest in the Called mode (29.11 μw/cm2), and to be higher in the Talking mode (23.005 μw/cm2) than in the Calling mode (10.27 μw/cm2). CONCLUSIONS The data of the present study can be used to monitor the daily exposure of mobile phone users as well as to estimate exposure levels in the laboratory and non-laboratory studies. As long as a mobile phone that is in the standby mode remains within the geographic domain of the operator's service zone, the power density emitted from that phone will be virtually zero, and any background wave can be attributed to other sources.
Collapse
Affiliation(s)
- Javad Sajedifar
- Department of Occupational Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Nassiri
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O.BOX:14155-6446 Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, P.O.BOX:14155-6446 Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Ramezani
- Wavecontrol S.L., Tadbir Sanjesh Tavana Company, Tehran, Iran
| |
Collapse
|
9
|
Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. ENVIRONMENTAL RESEARCH 2018; 163:71-79. [PMID: 29427953 DOI: 10.1016/j.envres.2018.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/14/2018] [Accepted: 01/23/2018] [Indexed: 05/06/2023]
Abstract
New technologies in electronics and communications are continually emerging. An increasing use of these electronic devices such as mobile phone, computer, wireless fidelity connectors or cellular towers is raising questions concerning whether they have an adverse effect on the body. Exposure to electromagnetic fields (EMF) is frequently suggested to have adverse health effects on humans and other organisms. This idea has been reported in many studies. In contrast, the therapeutic effects of EMF on different organs have also been reported. Research findings are inconsistent. This has given rise to very profound discrepancies. The duration and frequency of mobile phone calls and the association observed with various health effects has raised serious concerns due to the frequency with which these devices are used and the way they are held close to the head. The present review assesses the results of in vitro, in vivo, experimental, and epidemiological studies. The purpose of the study is to assess data concerning the carcinogenic and genotoxic effects of non-ionizing EMF. The major genotoxic and carcinogenic effects of EMF, divided into subsections as low frequency effects and radiofrequency effects, were reviewed. The inconsistent results between similar studies and the same research groups have made it very difficult to make any comprehensive interpretation. However, evaluation of current studies suggests that EMF may represent a serious source of concern and may be hazardous to living organisms.
Collapse
Affiliation(s)
- Adem Kocaman
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey.
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
10
|
de Oliveira F, Carmona A, Ladeira C. Is mobile phone radiation genotoxic? An analysis of micronucleus frequency in exfoliated buccal cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 822:41-46. [DOI: 10.1016/j.mrgentox.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|
11
|
Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines. Toxicol In Vitro 2017; 40:264-271. [DOI: 10.1016/j.tiv.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
|
12
|
Su L, Wei X, Xu Z, Chen G. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics 2016; 38:175-185. [DOI: 10.1002/bem.22032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
13
|
Leng L. The relationship between mobile phone use and risk of brain tumor: a systematic review and meta-analysis of trails in the last decade. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0059-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
de Vocht F. Inferring the 1985-2014 impact of mobile phone use on selected brain cancer subtypes using Bayesian structural time series and synthetic controls. ENVIRONMENT INTERNATIONAL 2016; 97:100-107. [PMID: 27835750 DOI: 10.1016/j.envint.2016.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mobile phone use has been increasing rapidly in the past decades and, in parallel, so has the annual incidence of certain types of brain cancers. However, it remains unclear whether this correlation is coincidental or whether use of mobile phones may cause the development, promotion or progression of specific cancers. The 1985-2014 incidence of selected brain cancer subtypes in England were analyzed and compared to counterfactual 'synthetic control' timeseries. METHODS Annual 1985-2014 incidence of malignant glioma, glioblastoma multiforme, and malignant neoplasms of the temporal and parietal lobes in England were modelled based on population-level covariates using Bayesian structural time series models assuming 5,10 and 15year minimal latency periods. Post-latency counterfactual 'synthetic England' timeseries were nowcast based on covariate trends. The impact of mobile phone use was inferred from differences between measured and modelled time series. RESULTS There is no evidence of an increase in malignant glioma, glioblastoma multiforme, or malignant neoplasms of the parietal lobe not predicted in the 'synthetic England' time series. Malignant neoplasms of the temporal lobe however, have increased faster than expected. A latency period of 10years reflected the earliest latency period when this was measurable and related to mobile phone penetration rates, and indicated an additional increase of 35% (95% Credible Interval 9%:59%) during 2005-2014; corresponding to an additional 188 (95%CI 48-324) cases annually. CONCLUSIONS A causal factor, of which mobile phone use (and possibly other wireless equipment) is in agreement with the hypothesized temporal association, is related to an increased risk of developing malignant neoplasms in the temporal lobe.
Collapse
Affiliation(s)
- Frank de Vocht
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK.
| |
Collapse
|
15
|
Gläser K, Rohland M, Kleine-Ostmann T, Schrader T, Stopper H, Hintzsche H. Effect of Radiofrequency Radiation on Human Hematopoietic Stem Cells. Radiat Res 2016; 186:455-465. [PMID: 27710704 DOI: 10.1667/rr14405.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to electromagnetic fields in the radiofrequency range is ubiquitous, mainly due to the worldwide use of mobile communication devices. With improving technologies and affordability, the number of cell phone subscriptions continues to increase. Therefore, the potential effect on biological systems at low-intensity radiation levels is of great interest. While a number of studies have been performed to investigate this issue, there has been no consensus reached based on the results. The goal of this study was to elucidate the extent to which cells of the hematopoietic system, particularly human hematopoietic stem cells (HSC), were affected by mobile phone radiation. We irradiated HSC and HL-60 cells at frequencies used in the major technologies, GSM (900 MHz), UMTS (1,950 MHz) and LTE (2,535 MHz) for a short period (4 h) and a long period (20 h/66 h), and with five different intensities ranging from 0 to 4 W/kg specific absorption rate (SAR). Studied end points included apoptosis, oxidative stress, cell cycle, DNA damage and DNA repair. In all but one of these end points, we detected no clear effect of mobile phone radiation; the only alteration was found when quantifying DNA damage. Exposure of HSC to the GSM modulation for 4 h caused a small but statistically significant decrease in DNA damage compared to sham exposure. To our knowledge, this is the first published study in which putative effects (e.g., genotoxicity or influence on apoptosis rate) of radiofrequency radiation were investigated in HSC. Radiofrequency electromagnetic fields did not affect cells of the hematopoietic system, in particular HSC, under the given experimental conditions.
Collapse
Affiliation(s)
- Katharina Gläser
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Martina Rohland
- b Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | | | | - Helga Stopper
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Henning Hintzsche
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| |
Collapse
|