1
|
Duodenum edema due to reduced lymphatic drainage leads to increased inflammation in a porcine endotoxemic model. Intensive Care Med Exp 2022; 10:17. [PMID: 35501517 PMCID: PMC9061929 DOI: 10.1186/s40635-022-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interventions, such as mechanical ventilation with high positive end-expiratory pressure (PEEP), increase inflammation in abdominal organs. This effect could be due to reduced venous return and impaired splanchnic perfusion, or intestinal edema by reduced lymphatic drainage. However, it is not clear whether abdominal edema per se leads to increased intestinal inflammation when perfusion is normal. The aim of the presented study was to investigate if an impaired thoracic duct function can induce edema of the abdominal organs and if it is associated to increase inflammation when perfusion is maintained normal. In a porcine model, endotoxin was used to induce systemic inflammation. In the Edema group (n = 6) the abdominal portion of the thoracic duct was ligated, while in the Control group (7 animals) it was maintained intact. Half of the animals underwent a diffusion weighted-magnetic resonance imaging (DW-MRI) at the end of the 6-h observation period to determine the abdominal organ perfusion. Edema in abdominal organs was assessed using wet–dry weight and with MRI. Inflammation was assessed by measuring cytokine concentrations in abdominal organs and blood as well as histopathological analysis of the abdominal organs. Results Organ perfusion was similar in both groups, but the Edema group had more intestinal (duodenum) edema, ascites, higher intra-abdominal pressure (IAP) at the end of observation time, and higher cytokine concentration in the small intestine. Systemic cytokines (from blood samples) correlated with IAP. Conclusions In this experimental endotoxemic porcine model, the thoracic duct’s ligation enhanced edema formation in the duodenum, and it was associated with increased inflammation.
Collapse
|
2
|
Nyberg A, Gremo E, Blixt J, Sperber J, Larsson A, Lipcsey M, Pikwer A, Castegren M. Lung-protective ventilation increases cerebral metabolism and non-inflammatory brain injury in porcine experimental sepsis. BMC Neurosci 2021; 22:31. [PMID: 33926378 PMCID: PMC8082058 DOI: 10.1186/s12868-021-00629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Protective ventilation with lower tidal volumes reduces systemic and organ-specific inflammation. In sepsis-induced encephalopathy or acute brain injury the use of protective ventilation has not been widely investigated (experimentally or clinically). We hypothesized that protective ventilation would attenuate cerebral inflammation in a porcine endotoxemic sepsis model. The aim of the study was to study the effect of tidal volume on cerebral inflammatory response, cerebral metabolism and brain injury. Nine animals received protective mechanical ventilation with a tidal volume of 6 mL × kg−1 and nine animals were ventilated with a tidal volume of 10 mL × kg−1. During a 6-h experiment, the pigs received an endotoxin intravenous infusion of 0.25 µg × kg−1 × h−1. Systemic, superior sagittal sinus and jugular vein blood samples were analysed for inflammatory cytokines and S100B. Intracranial pressure, brain tissue oxygenation and brain microdialysis were sampled every hour. Results No differences in systemic or sagittal sinus levels of TNF-α or IL-6 were seen between the groups. The low tidal volume group had increased cerebral blood flow (p < 0.001) and cerebral oxygen delivery (p < 0.001), lower cerebral vascular resistance (p < 0.05), higher cerebral metabolic rate (p < 0.05) along with higher cerebral glucose consumption (p < 0.05) and lactate production (p < 0.05). Moreover, low tidal volume ventilation increased the levels of glutamate (p < 0.01), glycerol (p < 0.05) and showed a trend towards higher lactate to pyruvate ratio (p = 0.08) in cerebral microdialysate as well as higher levels of S-100B (p < 0.05) in jugular venous plasma compared with medium–high tidal volume ventilation. Conclusions Contrary to the hypothesis, protective ventilation did not affect inflammatory cytokines. The low tidal volume group had increased cerebral blood flow, cerebral oxygen delivery and cerebral metabolism together with increased levels of markers of brain injury compared with medium–high tidal volume ventilation. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00629-0.
Collapse
Affiliation(s)
- Axel Nyberg
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Gremo
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Jonas Blixt
- Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden.,The Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Pikwer
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden. .,Department of Medical Sciences, Uppsala University, Uppsala, Sweden. .,Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden. .,The Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden. .,Department of Anaesthesiology & Intensive Care, Centre for Clinical Research, Sörmland, Mälarsjukhuset, 631 88, Eskilstuna, Sweden.
| |
Collapse
|
3
|
Sperber J, Nyberg A, Krifors A, Skorup P, Lipcsey M, Castegren M. Pre-exposure to mechanical ventilation and endotoxemia increases Pseudomonas aeruginosa growth in lung tissue during experimental porcine pneumonia. PLoS One 2020; 15:e0240753. [PMID: 33108383 PMCID: PMC7591049 DOI: 10.1371/journal.pone.0240753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023] Open
Abstract
Background Immune system suppression during critical care contributes to the risk of acquired bacterial infections with Pseudomonas (P.) aeruginosa. Repeated exposure to endotoxin can attenuate systemic inflammatory cytokine responses. Mechanical ventilation affects the systemic inflammatory response to various stimuli. Aim To study the effect of pre-exposure to mechanical ventilation with and without endotoxin-induced systemic inflammation on P. aeruginosa growth and wet-to-dry weight measurements on lung tissue and plasma and bronchoalveolar lavage levels of tumor necrosis factor alpha, interleukins 6 and 10. Methods Two groups of pigs were exposed to mechanical ventilation for 24 hours before bacterial inoculation and six h of experimental pneumonia (total experimental time 30 h): A30h+Etx (n = 6, endotoxin 0.063 μg x kg-1 x h-1) and B30h (n = 6, saline). A third group, C6h (n = 8), started the experiment at the bacterial inoculation unexposed to endotoxin or mechanical ventilation (total experimental time 6 h). Bacterial inoculation was performed by tracheal instillation of 1x1011 colony-forming units of P. aeruginosa. Bacterial cultures and wet-to-dry weight ratio analyses were done on lung tissue samples postmortem. Separate group comparisons were done between A30h+Etx vs.B30h (Inflammation) and B30h vs. C6h (Ventilation Time) during the bacterial phase of 6 h. Results P. aeruginosa growth was highest in A30h+Etx, and lowest in C6h (Inflammation and Ventilation Time both p<0.05). Lung wet-to-dry weight ratios were highest in A30h+Etx and lowest in B30h (Inflammation p<0.01, Ventilation Time p<0.05). C6h had the highest TNF-α levels in plasma (Ventilation Time p<0.01). No differences in bronchoalveolar lavage variables between the groups were observed. Conclusions Mechanical ventilation and systemic inflammation before the onset of pneumonia increase the growth of P. aeruginosa in lung tissue. The attenuated growth of P. aeruginosa in the non-pre-exposed animals (C6h) was associated with a higher systemic TNF-α production elicited from the bacterial challenge.
Collapse
Affiliation(s)
- Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Axel Nyberg
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Krifors
- Centre for Clinical Research, Region of Västmanland, Uppsala University, Uppsala, Sweden
- Department of Physiology and Pharmacology, FyFa, Karolinska Institutet, Stockholm, Sweden
| | - Paul Skorup
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Department of Physiology and Pharmacology, FyFa, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Zhang Z, Yao W, Yuan D, Huang F, Liu Y, Luo G, Hei Z. Effects of Connexin 32-Mediated Lung Inflammation Resolution During Liver Ischemia Reperfusion. Dig Dis Sci 2020; 65:2914-2924. [PMID: 31900713 DOI: 10.1007/s10620-019-06020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia reperfusion (HIR) leads to a lung inflammatory response and subsequent pulmonary barrier dysfunction. The gap junction communication protein connexin 32 (Cx32), which is widely expressed in the lungs, participates in intercellular signaling. This study determined whether the communication protein Cx32 could affect pulmonary inflammation caused by HIR. METHODS Mice were randomly allocated into four groups (n = 8/group): (i) Cx32+/+ sham group; (ii) Cx32+/+ HIR model group; (iii) Cx32-/- sham group; and (iv) Cx32-/- HIR model group. Twenty-four hours after surgery, lung tissues were collected for bright field microscopy, western blot (Cx32, JAK2, p-JAK2, STAT3, p-STAT3), and immunofluorescence (ZO-1, 8-OHDG) analyses. The collected bronchoalveolar fluid was tested for levels of interleukin-6 (IL-6), matrix metalloproteinase 12 (MMP-12), and antitrypsin (α1-AT). Lung mmu-miR-26a/b expression was detected using a PCR assay. RESULTS Increased expression of Cx32 mRNA and protein was noted in the lungs after HIR. Cx32 deletion significantly aggravated pulmonary function from acute lung injury induced by HIR. In addition, Cx32 deletion decreased the protein level of ZO-1 (pulmonary function) and increased the level of the oxidative stress marker 8-OHDG in the lungs. Moreover, in the Cx32-/- HIR model group, the levels of IL-6 and MMP-12 in bronchoalveolar lavage fluid were significantly increased leading to activation of the JAK2/STAT3 pathway, and decreased α1-AT levels. Furthermore, we found mmu-miR-26a/b was significantly downregulated in the Cx32-/- HIR model group. CONCLUSION HIR leads to acute lung inflammatory injury. Cx32 deletion aggravates hepatic-derived lung inflammation, partly through blocking the transferring of mmu-miR-26a/b and leading to IL-6-related JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yue Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Nyberg A, Larsson A, Jylhävä J, Hurme M, Sperber J, Lipcsey M, Castegren M. Lung-protective ventilation suppresses systemic and hepatic vein levels of cell-free DNA in porcine experimental post-operative sepsis. BMC Pulm Med 2020; 20:206. [PMID: 32736620 PMCID: PMC7393331 DOI: 10.1186/s12890-020-01239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma levels of cell-free DNA (cf-DNA) are known to be elevated in sepsis and high levels are associated with a poor prognosis. Mechanical ventilation affects systemic inflammation in which lung-protective ventilation attenuates the inflammatory response. The aim was to study the effect of a lung protective ventilator regime on arterial and organ-specific venous blood as well as on trans-organ differences in cf-DNA levels in a porcine post-operative sepsis model. METHOD One group of anaesthetised, domestic-breed, 9-12 weeks old, pigs were ventilated with protective ventilation (VT 6 mL x kg- 1, PEEP 10 cmH2O) n = 20. Another group, ventilated with a medium high tidal volume and lower PEEP, served as a control group (VT 10 mL x kg- 1, PEEP 5 cm H2O) n = 10. Blood samples were taken from four sources: artery, hepatic vein, portal vein and, jugular bulb. A continuous endotoxin infusion at 0.25 μg x kg- 1 x h- 1 for 5 h was started following 2 h of laparotomy, which simulated a surgical procedure. Inflammatory cytokines and cf-DNA in plasma were analysed and trans-organ differences calculated. RESULTS The protective ventilation group had lower levels of cf-DNA in arterial (p = 0.02) and hepatic venous blood (p = 0.03) compared with the controls. Transhepatic differences in cf-DNA were lower in the protective group, compared with the controls (p = 0.03). No differences between the groups were noted as regards the transcerebral, transsplanchnic or the transpulmonary cf-DNA differences. CONCLUSIONS Protective ventilation suppresses arterial levels of cf-DNA. The liver seems to be a net contributor to the systemic cf-DNA levels, but this effect is attenuated by protective ventilation.
Collapse
Affiliation(s)
- Axel Nyberg
- Department of Anaesthesiology & Intensive Care, Centre for Clinical Research, Sörmland, Uppsala University, Mälarsjukhuset, SE-631 88 Eskilstuna, Uppsala, Sweden. .,Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Alexander Larsson
- Centre for Clinical Research, Region of Västmanland, Uppsala University, Uppsala, Sweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jesper Sperber
- Department of Anaesthesiology & Intensive Care, Centre for Clinical Research, Sörmland, Uppsala University, Mälarsjukhuset, SE-631 88 Eskilstuna, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital and CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Marchesi S, Hedenstierna G, Hata A, Feinstein R, Larsson A, Larsson AO, Lipcsey M. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: an experimental porcine model. BMC Pulm Med 2020; 20:106. [PMID: 32334550 PMCID: PMC7183610 DOI: 10.1186/s12890-020-1138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
Background Mechanical ventilation (MV), compared to spontaneous breathing (SB), has been found to increase abdominal edema and inflammation in experimental sepsis. Our hypothesis was that in primary acute respiratory distress syndrome (ARDS) MV would enhance inflammation and edema in the abdomen. Methods Thirteen piglets were randomized into two groups (SB and MV) after the induction of ARDS by lung lavage and 1 h of injurious ventilation. 1. SB: continuous positive airway pressure 15 cmH2O, fraction of inspired oxygen (FIO2) 0.5 and respiratory rate (RR) maintained at about 40 cycles min− 1 by titrating remifentanil infusion. 2. MV: volume control, tidal volume 6 ml kg− 1, positive end-expiratory pressure 15 cmH2O, RR 40 cycles min− 1, FIO2 0.5. Main outcomes: abdominal edema, assessed by tissues histopathology and wet-dry weight; abdominal inflammation, assessed by cytokine concentration in tissues, blood and ascites, and tissue histopathology. Results The groups did not show significant differences in hemodynamic or respiratory parameters. Moreover, edema and inflammation in the abdominal organs were similar. However, blood IL6 increased in the MV group in all vascular beds (p < 0.001). In addition, TNFα ratio in blood increased through the lungs in MV group (+ 26% ± 3) but decreased in the SB group (− 17% ± 3). Conclusions There were no differences between the MV and SB group for abdominal edema or inflammation. However, the systemic increase in IL6 and the TNFα increase through the lungs suggest that MV, in this model, was harmful to the lungs.
Collapse
Affiliation(s)
- Silvia Marchesi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| | - Göran Hedenstierna
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Aki Hata
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | | | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Anders Olof Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185, Uppsala, Sweden
| |
Collapse
|
7
|
Marchesi S, Ortiz Nieto F, Ahlgren KM, Roneus A, Feinstein R, Lipcsey M, Larsson A, Ahlström H, Hedenstierna G. Abdominal organ perfusion and inflammation in experimental sepsis: a magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol 2019; 316:G187-G196. [PMID: 30335473 DOI: 10.1152/ajpgi.00151.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) uses water as contrast and enables the study of perfusion in many organs simultaneously in situ. We used DW-MRI in a hypodynamic sepsis model, comparing abdominal organ perfusion with global hemodynamic measurements and inflammation. Sixteen anesthetized piglets were randomized into 3 groups: 2 intervention (sepsis) groups: HighMAP (mean arterial pressure, MAP > 65 mmHg) and LowMAP (MAP between 50 and 60 mmHg), and a Healthy Control group (HC). Sepsis was obtained with endotoxin and the desired MAP maintained with norepinephrine. After 6 h, DW-MRI was performed. Acute inflammation was assessed with IL-6 and TNFα in abdominal organs, ascites, and blood and by histology of intestine (duodenum). Perfusion of abdominal organs was reduced in the LowMAP group compared with the HighMAP group and HC. Liver perfusion was still reduced by 25% in the HighMAP group compared with HC. Intestinal perfusion did not differ significantly between the intervention groups. Cytokine concentrations were generally higher in the LowMAP group but did not correlate with global hemodynamics. However, cytokines correlated with regional perfusion and, for liver and intestine, also with intra-abdominal pressure. Histopathology of intestine worsened with decreasing perfusion. In conclusion, although a low MAP (≤60 mmHg) indicated impeded abdominal perfusion in experimental sepsis, it did not predict inflammation, nor did other global measures of circulation. Decreased abdominal perfusion partially predicted inflammation but intestine, occupying most of the abdomen, and liver were also affected by intra-abdominal pressure. NEW & NOTEWORTHY The study increases the knowledge of abdominal perfusion during sepsis. We used diffusion weighted imaging to assess perfusion simultaneously and noninvasively in different abdominal organs. The technique has not been used in a sepsis model before. Cytokine concentrations were measured in different abdominal organs and vascular beds and related to regional perfusion. Decreased abdominal perfusion, but not global measures of circulation, predicted inflammation. Intestine, occupying most of the abdomen, and liver were also affected by intra-abdominal pressure.
Collapse
Affiliation(s)
- Silvia Marchesi
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | | | - Kerstin M Ahlgren
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Agneta Roneus
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | | | - Miklos Lipcsey
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Anders Larsson
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Håkan Ahlström
- Section of Radiology, Department of Surgical Science, Uppsala University , Sweden
| | - Göran Hedenstierna
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| |
Collapse
|
8
|
Sperber J, Nyberg A, Lipcsey M, Melhus Å, Larsson A, Sjölin J, Castegren M. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model. Intensive Care Med Exp 2017; 5:40. [PMID: 28861863 PMCID: PMC5578946 DOI: 10.1186/s40635-017-0152-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. METHODS A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H2O and a tidal volume of 6 ml x kg-1. The control group (n = 10) had an end expiratory pressure of 5 cm H2O and a tidal volume of 10 ml x kg-1. 1011 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. RESULTS The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). CONCLUSIONS In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.
Collapse
Affiliation(s)
- Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden. .,Centre for Clinical Research Sörmland, Department of Anesthesiology & Intensive Care Mälarsjukhuset, SE-631 88, Eskilstuna, Sweden.
| | - Axel Nyberg
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research Sörmland, Department of Anesthesiology & Intensive Care Mälarsjukhuset, SE-631 88, Eskilstuna, Sweden
| | - Miklos Lipcsey
- Hedenstierna laboratory, Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Åsa Melhus
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Biochemical structure and function, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Hedenstierna laboratory, Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Perioperative Medicine and Intensive Care, Karolinska University Hospital and CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|