1
|
Kang HYJ, Ko M, Ryu KS. Prediction model for survival of younger patients with breast cancer using the breast cancer public staging database. Sci Rep 2024; 14:25723. [PMID: 39468113 PMCID: PMC11519337 DOI: 10.1038/s41598-024-76331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer (BC) is a major contributor to female mortality worldwide, particularly in young women with aggressive tumors. Despite the need for accurate prognosis in this demographic, existing studies primarily focus on broader age groups, often using the SEER database, which has limitations in variable selection. This study aimed to develop an ML-based model to predict survival outcomes in young BC patients using the BC public staging database. A total of 3,401 patients with BC were included in the study. Patients were categorized as younger (n = 1574) and older (n = 1827). We applied several survival models-Random Survival Forest, Gradient Boosting Survival, Extra Survival Trees (EST), and penalized Cox models (Lasso and ElasticNet)-to compare mortality characteristics. The EST model outperformed others in predicting mortality for both age groups. Older patients exhibited a higher prevalence of comorbidities compared to younger patients. Tumor stage was the primary variable used to train the model for mortality prediction in both groups. COPD was a significant variable only in younger patients with BC. Other variables exhibited varying degrees of consistency in each group. These findings can help identify high-risk young female patients with BC who require aggressive treatment by predicting the risk of mortality.
Collapse
Affiliation(s)
- Ha Ye Jin Kang
- Department of Applied Artificial Intelligence, Hanyang University, Ansan-si, Gyeonggi- do, Republic of Korea
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Minsam Ko
- Department of Applied Artificial Intelligence, Hanyang University, Ansan-si, Gyeonggi- do, Republic of Korea
| | - Kwang Sun Ryu
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Jo H, Ahn S, Ohn JH, Shin CM, Ji E, Kim D, Jung SJ, Lee J. Insulin Resistance and Impaired Insulin Secretion Predict Incident Diabetes: A Statistical Matching Application to the Two Korean Nationwide, Population-Representative Cohorts. Endocrinol Metab (Seoul) 2024; 39:711-721. [PMID: 39212039 PMCID: PMC11525701 DOI: 10.3803/enm.2024.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGRUOUND To evaluate whether insulin resistance and impaired insulin secretion are useful predictors of incident diabetes in Koreans using nationwide population-representative data to enhance data privacy. METHODS This study analyzed the data of individuals without diabetes aged >40 years from the Korea National Health and Nutrition Examination Survey (KNHANES) 2007-2010 and 2015 and the National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS). Owing to privacy concerns, these databases cannot be linked using direct identifiers. Therefore, we generated 10 synthetic datasets, followed by statistical matching with the NHIS-HEALS. Homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β) were used as indicators of insulin resistance and insulin secretory function, respectively, and diabetes onset was captured in NHIS-HEALS. RESULTS A median of 4,580 (range, 4,463 to 4,761) adults were included in the analyses after statistical matching of 10 synthetic KNHANES and NHIS-HEALS datasets. During a mean follow-up duration of 5.8 years, a median of 4.7% (range, 4.3% to 5.0%) of the participants developed diabetes. Compared to the reference low-HOMA-IR/high-HOMA-β group, the high-HOMA-IR/low- HOMA-β group had the highest risk of diabetes, followed by high-HOMA-IR/high-HOMA-β group and low-HOMA-IR/low- HOMA-β group (median adjusted hazard ratio [ranges]: 3.36 [1.86 to 6.05], 1.81 [1.01 to 3.22], and 1.68 [0.93 to 3.04], respectively). CONCLUSION Insulin resistance and impaired insulin secretion are robust predictors of diabetes in the Korean population. A retrospective cohort constructed by combining cross-sectional synthetic and longitudinal claims-based cohort data through statistical matching may be a reliable resource for studying the natural history of diabetes.
Collapse
Affiliation(s)
- Hyemin Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eunjeong Ji
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Donggil Kim
- Big Data Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Jae Jung
- Big Data Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joongyub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Lee Y, Lee E, Roh TH, Kim SH. Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent Glioblastoma: A Nationwide Population-Based Study. J Korean Med Sci 2024; 39:e244. [PMID: 39228184 PMCID: PMC11372412 DOI: 10.3346/jkms.2024.39.e244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND For treating recurrent glioblastoma, for which there is no established treatment, the antiangiogenic antibody, bevacizumab, is used alone or with irinotecan. This study was aimed at comparing the survival of patients with recurrent glioblastoma receiving bevacizumab monotherapy and those receiving bevacizumab plus irinotecan combination therapy (B+I) by using a nationwide population-based dataset. METHODS Patients matching the International Classification of Diseases code C71.x were screened from the Health Insurance Review and Assessment Service database. From January 2008 to November 2021, patients who underwent surgery or biopsy and subsequent standard concurrent chemoradiation with temozolomide were included. Among them, those who received bevacizumab monotherapy or B+I were selected. Demographic characteristics, inpatient stay, prescription frequency, survival outcomes, and steroid prescription duration were compared between these two groups. RESULTS Eight hundred and forty-six patients who underwent surgery or biopsy and received concurrent chemoradiotherapy with temozolomide were included. Of these, 450 and 396 received bevacizumab monotherapy and B+I, respectively. The corresponding median overall survival from the initial surgery was 22.60 months (95% confidence interval [CI], 20.50-24.21) and 20.44 months (95% CI, 18.55-22.60; P = 0.508, log-rank test). The B+I group had significantly more bevacizumab prescriptions (median 5 times; BEV group: median 3 times). Cox analysis, based on the postsurgery period, revealed that male sex (hazard ratio [HR], 1.28; P = 0.002), older age (HR, 1.01; P = 0.042), and undergoing biopsy instead of surgery (HR, 1.79; P < 0.0001) were significantly associated with decreased survival. Fewer radiotherapy cycles correlated with improved survival outcomes (HR, 0.63; P = 0.001). Cox analysis, conducted from the start of chemotherapy including bevacizumab, showed that male sex was the only variable significantly associated with decreased survival (HR, 1.18; P = 0.044). CONCLUSION We found no significant difference in overall survival between the bevacizumab monotherapy and B+I groups. Considering the additional potential toxicity associated with irinotecan, bevacizumab monotherapy could be a suitable treatment option for treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Yeonhu Lee
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea.
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
5
|
Park JE, Lee E, Singh D, Kim EK, Park B, Park JH. The effect of inhaler prescription on the development of lung cancer in COPD: a nationwide population-based study. Respir Res 2024; 25:229. [PMID: 38822332 PMCID: PMC11140980 DOI: 10.1186/s12931-024-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/04/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND COPD is associated with the development of lung cancer. A protective effect of inhaled corticosteroids (ICS) on lung cancer is still controversial. Hence, this study investigated the development of lung cancer according to inhaler prescription and comorbidties in COPD. METHODS A retrospective cohort study was conducted based on the Korean Health Insurance Review and Assessment Service database. The development of lung cancer was investigated from the index date to December 31, 2020. This cohort included COPD patients (≥ 40 years) with new prescription of inhalers. Patients with a previous history of any cancer during screening period or a switch of inhaler after the index date were excluded. RESULTS Of the 63,442 eligible patients, 39,588 patients (62.4%) were in the long-acting muscarinic antagonist (LAMA) and long-acting β2-agonist (LABA) group, 22,718 (35.8%) in the ICS/LABA group, and 1,136 (1.8%) in the LABA group. Multivariate analysis showed no significant difference in the development of lung cancer according to inhaler prescription. Multivariate analysis, adjusted for age, sex, and significant factors in the univariate analysis, demonstrated that diffuse interstitial lung disease (DILD) (HR = 2.68; 95%CI = 1.86-3.85), a higher Charlson Comorbidity Index score (HR = 1.05; 95%CI = 1.01-1.08), and two or more hospitalizations during screening period (HR = 1.19; 95%CI = 1.01-1.39), along with older age and male sex, were independently associated with the development of lung cancer. CONCLUSION Our data suggest that the development of lung cancer is not independently associated with inhaler prescription, but with coexisting DILD, a higher Charlson Comorbidity Index score, and frequent hospitalization.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, US
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Eun Kyung Kim
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bumhee Park
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
6
|
Liao S, Wang Y, Zhou J, Liu Y, He S, Zhang L, Liu M, Wen D, Sun P, Lu G, Wang Q, Ouyang Y, Song Y. Associations between chronic obstructive pulmonary disease and ten common cancers: novel insights from Mendelian randomization analyses. BMC Cancer 2024; 24:601. [PMID: 38760826 PMCID: PMC11100175 DOI: 10.1186/s12885-024-12381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a significant global health issue, suspected to elevate the risk for various cancers. This study sought to discern whether COPD serves as a risk marker or a causative factor for prevalent cancers. METHODS We employed univariable MR (UVMR) analyses to investigate the causal relationship between COPD and the top ten common cancers. Sensitivity analyses were performed to validate the main findings. Multivariable MR (MVMR) and two-step MR analyses were also conducted. False-discovery-rate (FDR) was used to correct multiple testing bias. RESULTS The UVMR analysis demonstrated notable associations between COPD and lung cancer (odds ratio [OR] = 1.42, 95%CI 1.15-1.77, FDR = 6.37 × 10-3). This relationship extends to lung cancer subtypes such as squamous cell carcinoma (LUSC), adenocarcinoma (LUAD), and small cell lung cancer (SCLC). A tentative link was also identified between COPD and bladder cancer (OR = 1.53, 95%CI 1.03-2.28, FDR = 0.125). No significant associations were found between COPD and other types of cancer. The MVMR analysis that adjusted for smoking, alcohol drinking, and body mass index did not identify any significant causal relationships between COPD and either lung or bladder cancer. However, the two-step MR analysis indicates that COPD mediated 19.2% (95% CI 12.7-26.1%), 36.1% (24.9-33.2%), 35.9% (25.7-34.9%), and 35.5% (26.2-34.8%) of the association between smoking and overall lung cancer, as well as LUAD, LUSC, and SCLC, respectively. CONCLUSIONS COPD appears to act more as a risk marker than a direct cause of prevalent cancers. Importantly, it partially mediates the connection between smoking and lung cancer, underscoring its role in lung cancer prevention strategies.
Collapse
Affiliation(s)
- Shixia Liao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Yanwen Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Jian Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Yuting Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Shuangfei He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Lanying Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Maomao Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Dongmei Wen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Pengpeng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China
| | - Guangbing Lu
- Department of Respiration, Meishan Hospital of Traditional Chinese Medicine in Sichuan Province, Meishan, 620010, China
| | - Qi Wang
- China-Canada Medical and Health Science Association, Toronto, L3R 1A3, Canada
| | - Yao Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| |
Collapse
|
7
|
Lulla AR, Akli S, Karakas C, Caruso JA, Warma LD, Fowlkes NW, Rao X, Wang J, Hunt KK, Watowich SS, Keyomarsi K. Neutrophil Elastase Remodels Mammary Tumors to Facilitate Lung Metastasis. Mol Cancer Ther 2024; 23:492-506. [PMID: 37796181 PMCID: PMC10987287 DOI: 10.1158/1535-7163.mct-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Metastatic disease remains the leading cause of death due to cancer, yet the mechanism(s) of metastasis and its timely detection remain to be elucidated. Neutrophil elastase (NE), a serine protease secreted by neutrophils, is a crucial mediator of chronic inflammation and tumor progression. In this study, we used the PyMT model (NE+/+ and NE-/-) of breast cancer to interrogate the tumor-intrinsic and -extrinsic mechanisms by which NE can promote metastasis. Our results showed that genetic ablation of NE significantly reduced lung metastasis and improved metastasis-free survival. RNA-sequencing analysis of primary tumors indicated differential regulation of tumor-intrinsic actin cytoskeleton signaling pathways by NE. These NE-regulated pathways are critical for cell-to-cell contact and motility and consistent with the delay in metastasis in NE-/- mice. To evaluate whether pharmacologic inhibition of NE inhibited pulmonary metastasis and phenotypically mimicked PyMT NE-/- mice, we utilized AZD9668, a clinically available and specific NE inhibitor. We found AZD9668 treated PyMT-NE+/+ mice showed significantly reduced lung metastases, improved recurrence-free, metastasis-free and overall survival, and their tumors showed similar molecular alterations as those observed in PyMT-NE-/- tumors. Finally, we identified a NE-specific signature that predicts recurrence and metastasis in patients with breast cancer. Collectively, our studies suggest that genetic ablation and pharmacologic inhibition of NE reduces metastasis and extends survival of mouse models of breast cancer, providing rationale to examine NE inhibitors as a treatment strategy for the clinical management of patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Said Akli
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph A. Caruso
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Lucas D. Warma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Zhou Y, Lin Z, Xie S, Gao Y, Zhou H, Chen F, Fu Y, Yang C, Ke C. Interplay of chronic obstructive pulmonary disease and colorectal cancer development: unravelling the mediating role of fatty acids through a comprehensive multi-omics analysis. J Transl Med 2023; 21:587. [PMID: 37658368 PMCID: PMC10474711 DOI: 10.1186/s12967-023-04278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) patients often exhibit gastrointestinal symptoms, A potential association between COPD and Colorectal Cancer (CRC) has been indicated, warranting further examination. METHODS In this study, we collected COPD and CRC data from the National Health and Nutrition Examination Survey, genome-wide association studies, and RNA sequence for a comprehensive analysis. We used weighted logistic regression to explore the association between COPD and CRC incidence risk. Mendelian randomization analysis was performed to assess the causal relationship between COPD and CRC, and cross-phenotype meta-analysis was conducted to pinpoint crucial loci. Multivariable mendelian randomization was used to uncover mediating factors connecting the two diseases. Our results were validated using both NHANES and GEO databases. RESULTS In our analysis of the NHANES dataset, we identified COPD as a significant contributing factor to CRC development. MR analysis revealed that COPD increased the risk of CRC onset and progression (OR: 1.16, 95% CI 1.01-1.36). Cross-phenotype meta-analysis identified four critical genes associated with both CRC and COPD. Multivariable Mendelian randomization suggested body fat percentage, omega-3, omega-6, and the omega-3 to omega-6 ratio as potential mediating factors for both diseases, a finding consistent with the NHANES dataset. Further, the interrelation between fatty acid-related modules in COPD and CRC was demonstrated via weighted gene co-expression network analysis and Kyoto Encyclopedia of Genes and Genomes enrichment results using RNA expression data. CONCLUSIONS This study provides novel insights into the interplay between COPD and CRC, highlighting the potential impact of COPD on the development of CRC. The identification of shared genes and mediating factors related to fatty acid metabolism deepens our understanding of the underlying mechanisms connecting these two diseases.
Collapse
Affiliation(s)
- Youtao Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Shuojia Xie
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Haobin Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Fengzhen Chen
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Yuewu Fu
- Department of General Surgery, School of Medicine, The First Affiliated Hospital, Ji'nan University, Guangzhou, China
| | - Cuiyan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Zhou C, Qin Y, Zhao W, Liang Z, Li M, Liu D, Bai L, Chen Y, Chen Y, Cheng Y, Chu T, Chu Q, Deng H, Dong Y, Fang W, Fu X, Gao B, Han Y, He Y, Hong Q, Hu J, Hu Y, Jiang L, Jin Y, Lan F, Li Q, Li S, Li W, Li Y, Liang W, Lin G, Lin X, Liu M, Liu X, Liu X, Liu Z, Lv T, Mu C, Ouyang M, Qin J, Ren S, Shi H, Shi M, Su C, Su J, Sun D, Sun Y, Tang H, Wang H, Wang K, Wang K, Wang M, Wang Q, Wang W, Wang X, Wang Y, Wang Z, Wang Z, Wu L, Wu D, Xie B, Xie M, Xie X, Xie Z, Xu S, Xu X, Yang X, Yin Y, Yu Z, Zhang J, Zhang J, Zhang J, Zhang X, Zhang Y, Zhong D, Zhou Q, Zhou X, Zhou Y, Zhu B, Zhu Z, Zou C, Zhong N, He J, Bai C, Hu C, Li W, Song Y, Zhou J, Han B, Varga J, Barreiro E, Park HY, Petrella F, Saito Y, Goto T, Igai H, Bravaccini S, Zanoni M, Solli P, Watanabe S, Fiorelli A, Nakada T, Ichiki Y, Berardi R, Tsoukalas N, Girard N, Rossi A, Passaro A, Hida T, Li S, Chen L, Chen R. International expert consensus on diagnosis and treatment of lung cancer complicated by chronic obstructive pulmonary disease. Transl Lung Cancer Res 2023; 12:1661-1701. [PMID: 37691866 PMCID: PMC10483081 DOI: 10.21037/tlcr-23-339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Background Lung cancer combined by chronic obstructive pulmonary disease (LC-COPD) is a common comorbidity and their interaction with each other poses significant clinical challenges. However, there is a lack of well-established consensus on the diagnosis and treatment of LC-COPD. Methods A panel of experts, comprising specialists in oncology, respiratory medicine, radiology, interventional medicine, and thoracic surgery, was convened. The panel was presented with a comprehensive review of the current evidence pertaining to LC-COPD. After thorough discussions, the panel reached a consensus on 17 recommendations with over 70% agreement in voting to enhance the management of LC-COPD and optimize the care of these patients. Results The 17 statements focused on pathogenic mechanisms (n=2), general strategies (n=4), and clinical application in COPD (n=2) and lung cancer (n=9) were developed and modified. These statements provide guidance on early screening and treatment selection of LC-COPD, the interplay of lung cancer and COPD on treatment, and considerations during treatment. This consensus also emphasizes patient-centered and personalized treatment in the management of LC-COPD. Conclusions The consensus highlights the need for concurrent treatment for both lung cancer and COPD in LC-COPD patients, while being mindful of the mutual influence of the two conditions on treatment and monitoring for adverse reactions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yinyin Qin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wei Zhao
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyu Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Bai
- Department of Respiratory Medicine, Xinqiao Hospital Army Medical University, Chongqing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Deng
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuchao Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuhua Fu
- Division of Respiratory Diseases, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Beili Gao
- Department of Respiratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiping Han
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yong He
- Department of Pulmonary and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qunying Hong
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Hu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai Dongfang Hospital, Shanghai, China
| | - Shuben Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wenhua Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xinqing Lin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ming Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhefeng Liu
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chuanyong Mu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Ouyang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianwen Qin
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Huanzhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minhua Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dejun Sun
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kai Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoping Wang
- Department of Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Yuehong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Wang
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lin Wu
- Thoracic Medicine Department II, Hunan Cancer Hospital, Changsha, China
| | - Di Wu
- Department of Respiratory Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Baosong Xie
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhanhong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Shufeng Xu
- Department of Respiratory and Critical Care Medicine, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaoman Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Zongyang Yu
- Department of Pulmonary and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianqing Zhang
- Second Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zhu
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenxi Zou
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengping Hu
- Department of Pulmonary Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Han
- Department of Pulmonology, Shanghai Chest Hospital, Shanghai, China
| | - Janos Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Barcelona, Spain
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Francesco Petrella
- Division of Thoracic Surgery, IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Igai
- Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Piergiorgio Solli
- Department of Cardio-Thoracic Surgery and Hearth & Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Universitàdella Campania Luigi Vanvitelli, Naples, Italy
| | - Takeo Nakada
- Division of Thoracic Surgery, Department of Surgery, the Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Ichiki
- Department of General Thoracic Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | | | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Paris Saclay, UVSQ, Versailles, France
| | - Antonio Rossi
- Oncology Center of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Toyoaki Hida
- Lung Cancer Center, Central Japan International Medical Center, Minokamo, Japan
| | - Shiyue Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Liang’an Chen
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, China
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
11
|
Boo HJ, Min HY, Hwang SJ, Lee HJ, Lee JW, Oh SR, Park CS, Park JS, Lee YM, Lee HY. The tobacco-specific carcinogen NNK induces pulmonary tumorigenesis via nAChR/Src/STAT3-mediated activation of the renin-angiotensin system and IGF-1R signaling. Exp Mol Med 2023; 55:1131-1144. [PMID: 37258578 PMCID: PMC10317988 DOI: 10.1038/s12276-023-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.
Collapse
Affiliation(s)
- Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Li Y, Fang Y, Chang HC, Gorczyca M, Liu P, Tseng GC. Adaptively Integrative Association between Multivariate Phenotypes and Transcriptomic Data for Complex Diseases. Genes (Basel) 2023; 14:genes14040798. [PMID: 37107556 PMCID: PMC10138055 DOI: 10.3390/genes14040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Phenotype–gene association studies can uncover disease mechanisms for translational research. Association with multiple phenotypes or clinical variables in complex diseases has the advantage of increasing statistical power and offering a holistic view. Existing multi-variate association methods mostly focus on SNP-based genetic associations. In this paper, we extend and evaluate two adaptive Fisher’s methods, namely AFp and AFz, from the p-value combination perspective for phenotype–mRNA association analysis. The proposed method effectively aggregates heterogeneous phenotype–gene effects, allows association with different data types of phenotypes, and performs the selection of the associated phenotypes. Variability indices of the phenotype–gene effect selection are calculated by bootstrap analysis, and the resulting co-membership matrix identifies gene modules clustered by phenotype–gene effect. Extensive simulations demonstrate the superior performance of AFp compared to existing methods in terms of type I error control, statistical power and biological interpretation. Finally, the method is separately applied to three sets of transcriptomic and clinical datasets from lung disease, breast cancer, and brain aging and generates intriguing biological findings.
Collapse
Affiliation(s)
- Yujia Li
- Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hung-Ching Chang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Gorczyca
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
13
|
Zhao G, Li X, Lei S, Zhao H, Zhang H, Li J. Prevalence of lung cancer in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Front Oncol 2022; 12:947981. [PMID: 36185264 PMCID: PMC9523743 DOI: 10.3389/fonc.2022.947981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background There is growing evidence that chronic obstructive pulmonary disease (COPD) can increase the risk of lung cancer, which poses a serious threat to treatment and management. Therefore, we performed a meta-analysis of lung cancer prevalence in patients with COPD with the aim of providing better prevention and management strategies. Methods We systematically searched PubMed, EMBASE, Web of Science, and Cochrane Library databases from their inception to 20 March 2022 to collect studies on the prevalence of lung cancer in patients with COPD. We evaluated the methodological quality of the included studies using the tool for assessing the risk of bias in prevalence studies. Meta-analysis was used to determine the prevalence and risk factors for lung cancer in COPD. Subgroup and sensitivity analyses were conducted to explore the data heterogeneity. Funnel plots combined with Egger’s test were used to detect the publication biases. Results Thirty-one studies, covering 829,490 individuals, were included to investigate the prevalence of lung cancer in patients with COPD. Pooled analysis demonstrated that the prevalence of lung cancer in patients with COPD was 5.08% (95% confidence interval [CI]: 4.17–6.00%). Subgroup analysis showed that the prevalence was 5.09% (95% CI: 3.48–6.70%) in male and 2.52% (95% CI: 1.57–4.05%) in female. The prevalence of lung cancer in patients with COPD who were current and former smokers was as high as 8.98% (95% CI: 4.61–13.35%) and 3.42% (95% CI: 1.51–5.32%); the incidence rates in patients with moderate and severe COPD were 6.67% (95% CI: 3.20–10.14%) and 5.57% (95% CI: 1.89–16.39%), respectively, which were higher than the 3.89% (95% CI: 2.14–7.06%) estimated in patients with mild COPD. Among the types of lung cancer, adenocarcinoma and squamous cell carcinoma were the most common, with incidence rates of 1.59% (95% CI: 0.23–2.94%) and 1.35% (95% CI: 0.57–3.23%), respectively. There were also differences in regional distribution, with the highest prevalence in the Western Pacific region at 7.78% (95% CI: 5.06–10.5%), followed by the Americas at 3.25% (95% CI: 0.88–5.61%) and Europe at 3.21% (95% CI: 2.36–4.06%). Conclusions This meta-analysis shows that patients with COPD have a higher risk of developing lung cancer than those without COPD. More attention should be given to this result in order to reduce the risk of lung cancer in these patients with appropriate management and prevention. Systematic review registration International prospective register of systematic reviews, identifier CRD42022331872.
Collapse
Affiliation(s)
- Guixiang Zhao
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuanlin Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Siyuan Lei
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hulei Zhao
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hailong Zhang
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jiansheng Li,
| |
Collapse
|
14
|
He JQ, Chen Q, Wu SJ, Wang DQ, Zhang SY, Zhang SZ, Chen RL, Wang JF, Wang Z, Yu CH. Potential Implications of the Lung Microbiota in Patients with Chronic Obstruction Pulmonary Disease and Non-Small Cell Lung Cancer. Front Cell Infect Microbiol 2022; 12:937864. [PMID: 35967848 PMCID: PMC9363884 DOI: 10.3389/fcimb.2022.937864] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
Recently, chronic obstructive pulmonary disease (COPD) has been considered as a common risk factor of non-small cell lung cancer (NSCLC). However, very few studies have been conducted on the effects of COPD on the lung microbiota in patients with NSCLC. To identify the lung microbiota in patients with COPD and NSCLC (CN), the microbiome of the induced sputa of 90 patients was analyzed using 16S rDNA sequencing. The results showed no significant differences in the bacterial diversities of induced sputa among patients with COPD, NSCLC, and CN and no intrinsic differences among patients with different pathological types of lung cancer. After surgical operation, the diversities of the induced sputa in patients with CN significantly decreased. More remarkably, both the microbial community phenotypes and the components of the induced sputa in patients with CN obviously differed from those in patients with COPD or NSCLC. The relative abundances of Streptococcus, Veillonella, Moraxella, and Actinomyces significantly decreased, but those of Neisseria and Acinetobacter significantly increased in patients with CN compared with those in patients with COPD or NSCLC alone, resulting in increased Gram-negative microbiota and, therefore, in potential pathogenicity and stress tolerance, as well as in enhancement of microbial glycolipid metabolism, amino acid metabolism, and oxidative stress. Although COPD did not affect the number of pulmonary flora species in patients with NSCLC, these significant alterations in the microbial populations, phenotypes, and functions of induced sputa due to COPD would contribute to inflammation-derived cancer progression in patients with CN.
Collapse
Affiliation(s)
- Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Chen
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Jun Wu
- Department of Clinical Laboratories, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - De-Qin Wang
- Department of Clinical Laboratories, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen-Yingjie Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Song-Zhao Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Feng Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Zhen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen-Huan Yu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Chen-Huan Yu,
| |
Collapse
|
15
|
Eriksson Ström J, Kebede Merid S, Pourazar J, Blomberg A, Lindberg A, Ringh MV, Hagemann-Jensen M, Ekström TJ, Behndig AF, Melén E. COPD is Associated with Epigenome-wide Differential Methylation in BAL Lung Cells. Am J Respir Cell Mol Biol 2022; 66:638-647. [PMID: 35286818 PMCID: PMC9163645 DOI: 10.1165/rcmb.2021-0403oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on bronchoalveolar lavage (BAL) cells. Bronchoscopies were performed in 18 COPD subjects and 15 controls (ex- and current smokers). DNA methylation was measured with Illumina MethylationEPIC BeadChip covering >850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology; 2) accelerated aging using Horvath's epigenetic clock; 3) correlation with gene expression; and 4) co-localization with genetic variation. We found 1,155 Bonferroni significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between COPD and chronological age, but not with accelerated epigenetic aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were co-localized with COPD-associated SNPs. To the best of our knowledge, this is the first EWAS of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly impact expression. Almost half of DMPs were co-located with SNPs identified in previous GWAS of COPD, suggesting joint genetic and epigenetic pathways related to disease.
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden;
| | - Simon Kebede Merid
- Karolinska Institutet, 27106, Institute of Environmental Medicine, Stockholm, Sweden
| | - Jamshid Pourazar
- Umeå Universitet Medicinska fakulteten, 59588, Dept. of Public Health and Clinical Medicine, Umeå, Sweden
| | - Anders Blomberg
- Umea University, 8075, Dept. of Public Health and Clinical Medicine, Umea, Sweden
| | - Anne Lindberg
- Umeå Universitet, 8075, Department of Public Health and Clinical Medicine, Section of Medicine, Umea, Sweden
| | - Mikael V Ringh
- Karolinska Institutet, 27106, Department of Clinical Neuroscience and Center for Molecular Medicine, Stockholm, Sweden
| | | | - Tomas J Ekström
- Karolinska Institutet, 27106, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Erik Melén
- Karolinska Institutet Department of Clinical Science and Education Sodersjukhuset, 411435, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Impaired Lung Function and Lung Cancer Incidence: A Nationwide Population-Based Cohort Study. J Clin Med 2022; 11:jcm11041077. [PMID: 35207361 PMCID: PMC8880094 DOI: 10.3390/jcm11041077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: It is unclear whether the presence of minimal lung function impairment is an independent risk factor for the development of lung cancer in general populations. Methods: We conducted a population-based cohort study using nationally representative data from the Korean National Health and Nutrition Examination Survey and the Korean National Health Insurance Service. Results: Of 20,553 participants, 169 were diagnosed with lung cancer during follow-up (median, 6.5 years). Participants with obstructive lung function impairment had increased risk of lung cancer (aHR: 2.51; 95% CI: 1.729–3.629) compared with those with normal lung function. The lower was the quartile or decile of forced expiratory volume in one second (FEV1) or the FEV1/forced vital capacity (FVC) ratio, the significantly higher was the incidence rate of lung cancer (p for trend < 0.0001). With FEV1 values in the lowest quartile (Q4), the incidence of lung cancer was significantly increased regardless of FVC (FEV1 Q4 and FVC values in the higher three quartiles Q1–3: aHR 1.754; 95% CI 1.084–2.847, FEV1 Q4 and FVC Q4: aHR 1.889; 95% CI 1.331–2.681). Conclusion: Our findings suggest that minimal lung function impairment, as expressed by lower FEV1 or FEV1/FVC value, may be associated with increased risk of lung cancer
Collapse
|
17
|
Chronic Obstructive Pulmonary Disease and Its Acute Exacerbation before Colon Adenocarcinoma Treatment Are Associated with Higher Mortality: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers (Basel) 2021; 13:cancers13184728. [PMID: 34572955 PMCID: PMC8467829 DOI: 10.3390/cancers13184728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary This is the first study to reveal that hospitalization frequency for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) before colon adenocarcinoma treatment is a severity-dependent and independent prognostic factor for overall survival in patients with stage I–III colon cancer receiving surgical resection and standard treatments. In patients with colon adenocarcinoma undergoing curative resection, those with chronic obstructive pulmonary disease (COPD) had poorer survival outcomes than had those without COPD. Hospitalization for AECOPD at least once within 1 year before colon adenocarcinoma diagnosis is an independent risk factor for poor overall survival in these patients, and a higher number of hospitalizations for AECOPD within 1 year before diagnosis was associated with poorer survival. Our study may be applied to accentuate the importance of COPD management, particularly the identification of frequent exacerbators and the prevention of AECOPD, before standard colon adenocarcinoma treatments are initiated. Abstract Purpose: To investigate whether chronic obstructive pulmonary disease (COPD) and COPD severity (acute exacerbation of COPD (AECOPD)) affect the survival outcomes of patients with colon adenocarcinoma receiving standard treatments. Methods: From the Taiwan Cancer Registry Database, we recruited patients with clinical stage I–III colon adenocarcinoma who had received surgery. The Cox proportional hazards model was used to analyze all-cause mortality. We categorized the patients into COPD and non-COPD (Group 1 and 2) groups through propensity score matching. Results: In total, 1512 patients were eligible for further comparative analysis between non-COPD (1008 patients) and COPD (504 patients) cohorts. In the multivariate Cox regression analysis, the adjusted hazard ratio (aHR; 95% confidence interval (CI)) for all-cause mortality for Group 1 compared with Group 2 was 1.17 (1.03, 1.29). In patients with colon adenocarcinoma undergoing curative resection, the aHRs (95% CIs) for all-cause mortality in patients with hospitalization frequencies of ≥1 and ≥2 times for AECOPD within 1 year before adenocarcinoma diagnosis were 1.08 (1.03, 1.51) and 1.55 (1.15, 2.09), respectively, compared with those without AECOPD. Conclusion: In patients with colon adenocarcinoma undergoing curative resection, COPD was associated with worse survival outcomes. Being hospitalized at least once for AECOPD within 1 year before colon adenocarcinoma diagnosis was an independent risk factor for poor overall survival in these patients, and a higher number of hospitalizations for AECOPD within 1 year before diagnosis was associated with poorer survival. Our study highlights the importance of COPD management, particularly the identification of frequent exacerbators and the prevention of AECOPD before standard colon adenocarcinoma treatments are applied.
Collapse
|
18
|
Risk of gastric cancer in chronic obstructive pulmonary disease. Eur J Cancer Prev 2021; 31:326-332. [PMID: 34456259 DOI: 10.1097/cej.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Owing to the potential role of the gut-lung axis in carcinogenesis, we assessed the incidence of gastric cancer in patients with chronic obstructive pulmonary disease (COPD). METHODS Using Quebec's administrative databases, we assembled a cohort of 118 913 patients aged 40 years and older with COPD from 1995 to 2015. We calculated age-standardized incidence rate ratio (IRR) and 95% confidence interval (CI) for gastric cancer, comparing patients with COPD to the Quebec general population. We evaluated temporal changes in incidence by calculating annual percentage change (APC) and stratified the analysis by anatomical site. RESULTS Between 1995 and 2015, 279 patients with COPD developed gastric cancer (54.0 cases per 100 000 person-years). The overall age-standardized incidence rate in patients with COPD was comparable to the general population (IRR, 1.05; 95% CI, 0.79-1.39). However, the IRR increased over time (APC, 4.40%; P = 0.0101), due to the growing rate of gastric cancer in patients with COPD (APC, 1.90%; P = 0.2666) and the declining rate in the Quebec population (APC, -2.40%; P < 0.0001). CONCLUSIONS The overall risk of gastric cancer in patients with COPD did not differ from the general population; however, the risk among patients has increased over the years. These findings provide insights as to whether long-term follow-up for gastric cancer risk in COPD is warranted.
Collapse
|
19
|
Zhang J, Chiu KC, Lin WC, Wu SY. Survival Impact of Chronic Obstructive Pulmonary Disease or Acute Exacerbation on Patients with Rectal Adenocarcinoma Undergoing Curative Resection: A Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers (Basel) 2021; 13:4221. [PMID: 34439374 PMCID: PMC8391389 DOI: 10.3390/cancers13164221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The survival effect of current smoking-related chronic obstructive pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) is unclear for patients with rectal adenocarcinoma undergoing curative resection. METHODS We recruited patients with clinical stage I-IIIC rectal adenocarcinoma from the Taiwan Cancer Registry Database who had received surgery. The Cox proportional hazards model was used to analyze all-cause mortality. We categorized the patients into two groups by using propensity score matching based on COPD status to compare overall survival outcomes: Group 1 (current smokers with COPD) and Group 2 (nonsmokers without COPD). RESULTS In the multivariate Cox regression analyses, the adjusted hazard ratio (aHR; 95% confidence interval (CI)) of all-cause mortality for Group 1 compared with Group 2 was 1.25 (1.04-1.51). The aHRs (95% cis) of all-cause mortality for frequency of ≥1 hospitalizations for COPDAE or ≥2 hospitalizations within 1 year before diagnosis were 1.17 (1.05-1.51) and 1.48 (1.03-2.41) compared with no COPDAE in patients with rectal adenocarcinoma undergoing curative resection. CONCLUSION In patients with rectal adenocarcinoma undergoing curative resection, being a current smoker with COPD (Group 1) was associated with worse survival outcomes than being a nonsmoker without COPD (Group 2). Being hospitalized at least once for COPDAE within 1 year before the diagnosis of rectal adenocarcinoma is an independent risk factor for poor overall survival in these patients, and a higher number of hospitalizations for COPDAE within 1 year before diagnosis was associated with poorer survival.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Kuo-Chin Chiu
- Division of Chest, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan; (K.-C.C.); (W.-C.L.)
| | - Wei-Chun Lin
- Division of Chest, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan; (K.-C.C.); (W.-C.L.)
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Graduate Institute of Business Administration, Fu Jen Catholic University, Taipei 242062, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
20
|
Chronic Obstructive Pulmonary Disease Increases the Risk of Mortality among Patients with Colorectal Cancer: A Nationwide Population-Based Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168742. [PMID: 34444491 PMCID: PMC8394801 DOI: 10.3390/ijerph18168742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Background: Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in Taiwan. Chronic obstructive pulmonary disease (COPD) is associated with CRC mortality in several population-based studies. However, this effect of COPD on CRC shows no difference in some studies and remains unclear in Taiwan’s population. Methods: We conducted a retrospective cohort study using Taiwan’s nationwide database. Patients newly diagnosed with CRC were identified from 2007 to 2012 via the Taiwan Cancer Registry dataset and linked to the National Health Insurance research database to obtain their medical records. Propensity score matching (PSM) was applied at a ratio of 1:2 in COPD and non-COPD patients with CRC. The 5-year overall survival (OS) was analyzed using the Cox regression method. Results: This study included 43,249 patients with CRC, reduced to 13,707 patients after PSM. OS was lower in the COPD group than in the non-COPD group. The adjusted hazard ratio (aHR) for COPD was 1.26 (95% confidence interval (CI), 1.19–1.33). Moreover, patients with CRC plus preexisting COPD showed a higher mortality risk in all stage CRC subgroup analysis. Conclusions: In this 5-year retrospective cohort study, patients with CRC and preexisting COPD had a higher mortality risk than those without preexisting COPD, suggesting these patients need more attention during treatment and follow-up.
Collapse
|