1
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Kar S, Maji N, Sen K, Roy S, Maity A, Ghosh Dastidar S, Nath S, Basu G, Basu M. Reprogramming of glucose metabolism via PFKFB4 is critical in FGF16-driven invasion of breast cancer cells. Biosci Rep 2023; 43:BSR20230677. [PMID: 37222403 PMCID: PMC10407156 DOI: 10.1042/bsr20230677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Fibroblast growth factors (FGFs) are expressed in both developing and adult tissues and play important roles in embryogenesis, tissue homeostasis, angiogenesis, and neoplastic transformation. Here, we report the elevated expression of FGF16 in human breast tumor and investigate its potential involvement in breast cancer progression. The onset of epithelial-mesenchymal transition (EMT), a prerequisite for cancer metastasis, was observed in human mammary epithelial cell-line MCF10A by FGF16. Further study unveiled that FGF16 alters mRNA expression of a set of extracellular matrix genes to promote cellular invasion. Cancer cells undergoing EMT often show metabolic alteration to sustain their continuous proliferation and energy-intensive migration. Similarly, FGF16 induced a significant metabolic shift toward aerobic glycolysis. At the molecular level, FGF16 enhanced GLUT3 expression to facilitate glucose transport into cells, which through aerobic glycolysis generates lactate. The bi-functional protein, 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4) was found to be a mediator in FGF16-driven glycolysis and subsequent invasion. Furthermore, PFKFB4 was found to play a critical role in promoting lactate-induced cell invasion since silencing PFKFB4 decreased lactate level and rendered the cells less invasive. These findings support potential clinical intervention of any of the members of FGF16-GLUT3-PFKFB4 axis to control the invasion of breast cancer cells.
Collapse
Affiliation(s)
- Swarnali Kar
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjana Maji
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Kamalika Sen
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Stuti Roy
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Atanu Maity
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Somsubhra Nath
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Moitri Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
3
|
Yu T, Zhang Q, Yu SK, Nie FQ, Zhang ML, Wang Q, Lu KH. THOC3 interacts with YBX1 to promote lung squamous cell carcinoma progression through PFKFB4 mRNA modification. Cell Death Dis 2023; 14:475. [PMID: 37500615 PMCID: PMC10374565 DOI: 10.1038/s41419-023-06008-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The THO complex (THOC) is ubiquitously involved in RNA modification and various THOC proteins have been reported to regulate tumor development. However, the role of THOC3 in lung cancer remains unknown. In this study, we identified that THOC3 was highly expressed in lung squamous cell carcinoma (LUSC) and negatively associated with prognosis. THOC3 knockdown inhibited LUSC cell growth, migration, and glycolysis. THOC3 expression was regulated by TRiC proteins, such as CCT8 and CCT6A, which supported protein folding. Furthermore, THOC3 could form a complex with YBX1 to promote PFKFB4 transcription. THOC3 was responsible for exporting PFKFB4 mRNA to the cytoplasm, while YBX1 ensured the stability of PFKFB4 mRNA by recognizing m5C sites in its 3'UTR. Downregulation of PFKFB4 suppressed the biological activities of LUSC. Collectively, these findings suggest that THOC3, folded by CCT proteins can collaborate with YBX1 to maintain PFKFB4 expression and facilitate LUSC development. Therefore, THOC3 could be considered as a novel promising therapeutic target for LUSC.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qi Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
- Department of Oncology, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shao-Kun Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Feng-Qi Nie
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei-Ling Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qian Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
4
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
5
|
Zhou J, Lin Y, Kang X, Liu Z, Zou J, Xu F. Hypoxia-mediated promotion of glucose metabolism in non-small cell lung cancer correlates with activation of the EZH2/FBXL7/PFKFB4 axis. Cell Death Dis 2023; 14:326. [PMID: 37179372 PMCID: PMC10182982 DOI: 10.1038/s41419-023-05795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
F-box/LRR-repeat protein 7 (FBXL7) was predicted as a differentially expressed E3 ubiquitin ligase in non-small cell lung cancer (NSCLC), which has been suggested to influence cancer growth and metastasis. In this study, we aimed to decipher the function of FBXL7 in NSCLC and delineate the upstream and downstream mechanisms. FBXL7 expression was verified in NSCLC cell lines and GEPIA-based tissue samples, after which the upstream transcription factor of FBXL7 was bioinformatically identified. The substrate PFKFB4 of the FBXL7 was screened out by tandem affinity purification coupled with mass-spectrometry (TAP/MS). FBXL7 was downregulated in NSCLC cell lines and tissue samples. FBXL7 ubiquitinated and degraded PFKFB4, thus suppressing glucose metabolism and malignant phenotypes of NSCLC cells. Hypoxia-induced HIF-1α upregulation elevated EZH2 and inhibited FBXL7 transcription and reduced its expression, thus promoting PFKFB4 protein stability. By this mechanism, glucose metabolism and the malignant phenotype were enhanced. In addition, knockdown of EZH2 impeded tumor growth through the FBXL7/PFKFB4 axis. In conclusion, our work reveals that the EZH2/FBXL7/PFKFB4 axis plays a regulatory role in glucose metabolism and tumor growth of NSCLC, which is expected to be potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiuhua Kang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhicheng Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juntao Zou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Wang S, Bei Y, Tian Q, He J, Wang R, Wang Q, Sun L, Ke J, Xie C, Shen P. PFKFB4 facilitates palbociclib resistance in oestrogen receptor-positive breast cancer by enhancing stemness. Cell Prolif 2023; 56:e13337. [PMID: 36127291 DOI: 10.1111/cpr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND ER+ breast cancer (ER+ BC) is the most common subtype of BC. Recently, CDK4/6 inhibitors combined with aromatase inhibitors have been approved by FDA as the first-line therapy for patients with ER+ BC, and showed promising therapeutic efficacy in clinical treatment. However, resistance to CDK4/6 inhibitors is frequently observed. A better understanding of the drug resistance mechanism is beneficial to improving therapeutic strategies by identifying optimal combinational treatments. METHODS Western blotting, qPCR, flow cytometry and a series of cell experiments were performed to evaluate the phenotype of MCF-7/R cells. RNA sequencing, non-targeted metabolomics, shRNA knockdown and tumour cell-bearing mouse models were used to clarify the drug resistance mechanism. RESULTS Here, we found that ER+ BC cells have shown an adaptive resistance to palbociclib-induced cell cycle arrest by activating an alternative signal pathway, independent of the CDK4/6-RB signal transduction. Continuing treatment of palbociclib evoked cellular senescence of ER+ BC cells. Subsequently, the senescence-like phenotype promoted stemness of ER+ BC cells, accompanied by increased chemoresistance and tumour-initiating potential. Based on transcriptome analysis, we found that PFKFB4 played an important role in stemness transformation and drug resistance. A close correlation was determined between PFKFB4 expression by ER+ BC cells and cell senescence and stemness. Mechanistically, metabolomic profiling revealed that PFKFB4 reprogramed glucose metabolism and promoted cell stemness by enhancing glycolysis. Strikingly, diminishing PFKFB4 levels improved drug sensitivity and overcame chemoresistance during palbociclib treatment in ER+ BC. CONCLUSIONS These findings not only demonstrated the novel mechanism underlying which ER+ BC cells resisted to palbociclib, but also provided a possible therapeutic strategy in the intervention of ER+ BC to overcome drug resistance.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Tian
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiuping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luchen Sun
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangqiong Ke
- Department of Geriatric Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingping Shen
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Lu C, Qiao P, Fu R, Wang Y, Lu J, Ling X, Liu L, Sun Y, Ren C, Yu Z. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis. Cell Death Dis 2022; 13:790. [PMID: 36109523 PMCID: PMC9477845 DOI: 10.1038/s41419-022-05241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EM) is one of the vanquished wonted causes of chronic pelvic sting in women and is closely associated with infertility. The long-term, complex, systemic, and post-treatment recurrence of EM wreaks havoc on women's quality of life. Extensive metabolic reprogramming (aerobic glycolysis, glucose overweening intake, and high lactate production) and cancer-like changes have been found in EM, which bears striking similarities to tumorigenesis. The key glycolysis regulator PFKFB4 is overexpressed in EM. However, the mechanism of PFKFB4 in EM remains unknown. We found that PFKFB4 was upregulated and was closely related to the progression of EM. We identified focus PIM2 as a new pioneering adjoin protein of PFKFB4. Vigorous biochemical methods were used to confirm that PIM2 phosphorylated site Thr140 of PFKFB4. PIM2 also could enhance PFKFB4 protein expression through the ubiquitin-proteasome pathway. Moreover, PIM2 expression was really corresponding prevalent with PFKFB4 in endometriosis in vivo. Importantly, phosphorylation of PFKFB4 on Thr140 by PIM2 promoted EM glycolysis and cell growth. Our study demonstrates that PIM2 mediates PFKFB4 Thr140 phosphorylation thus regulating glycolysis and EM progression. We illustrated a new mechanism that PIM2 simulated a central upstream partnership in the regulation of PFKFB4, and reveal a novel means of PIM2-PFKFB4 setting EM growth. Our research provided new theoretical support for further clarifying the reprogramming of EM glucose metabolism, and provided new clues for exploring non-contraceptive treatments for EM.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Ruihai Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yadi Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| |
Collapse
|
8
|
Jalal S, Zhang T, Deng J, Wang J, Xu T, Zhang T, Zhai C, Yuan R, Teng H, Huang L. β-elemene Isopropanolamine Derivative LXX-8250 Induces Apoptosis Through Impairing Autophagic Flux via PFKFB4 Repression in Melanoma Cells. Front Pharmacol 2022; 13:900973. [PMID: 36034839 PMCID: PMC9399853 DOI: 10.3389/fphar.2022.900973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Melanoma is a highly aggressive skin cancer and accounts for most of the skin cancer-related deaths. The efficacy of current therapies for melanoma remains to be improved. The isopropanolamine derivative of β-elemene LXX-8250 was reported to present better water solubility and stronger toxicity to tumor cells than β-elemene. Herein, LXX-8250 treatment showed 4-5-fold more toxicity to melanoma cells than the well-known anti-melanoma drug, Dacarbazine. LXX-8250 treatment induced apoptosis remarkably, which was caused by the impairment of autophagic flux. To clarify the molecular mechanism, microarray analyses were conducted, and PFKFB4 expression was found to be suppressed by LXX-8250 treatment. The cells overexpressed with PFKFB4 exhibited resistance to apoptosis induction and autophagic flux inhibition by LXX-8250 treatment. Moreover, LXX-8250 treatment suppressed glycolysis, to which the cells overexpressed with PFKFB4 were tolerant. LXX-8250 treatment inhibited the growth of melanoma xenografts and suppressed PFKFB4 expression and glycolysis in vivo. Taken together, LXX-8250 treatment induced apoptosis through inhibiting autophagic flux and glycolysis in melanoma cells, which was mediated by suppression of PFKFB4 expression. The study provides a novel strategy to melanoma treatment.
Collapse
Affiliation(s)
- Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Jia Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
- *Correspondence: Lin Huang,
| |
Collapse
|
9
|
Zhou Y, Fan Y, Qiu B, Lou M, Liu X, Yuan K, Tong J. Effect of PFKFB4 on the Prognosis and Immune Regulation of NSCLC and Its Mechanism. Int J Gen Med 2022; 15:6341-6353. [PMID: 35942289 PMCID: PMC9356739 DOI: 10.2147/ijgm.s369126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background NSCLC (non-small cell lung cancer) has become the malignancy with the highest incidence and mortality rate worldwide. Fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is a key regulator of glycolysis with both kinase and phosphatase activities. The Warburg effect, or increased glycolysis in tumors, provides the metabolic basis for cancer cell proliferation and metastasis, and the Warburg pathway enzyme PFKFB4 is a newly identified important kinase. This study aimed to elucidate the poor prognostic relevance of PFKFB4 in non-small cell lung cancer tissues and its relationship with immune cell infiltration, immune cell biomarkers, and immune checkpoints. Methods In this study, immunohistochemical methods were used to assess PFKFB4 expression levels in 140 surgical specimens from patients with histologically confirmed non-small cell lung cancer and to investigate the relationship between PFKFB4 expression levels and the patients’ clinicopathological characteristics. The impact of PFKFB4 expression on prognosis was evaluated using Kaplan–Meier survival analysis and Cox regression analysis. Results When compared to normal paracrine tissues, PFKFB4 expression was enhanced in lung cancer tissues, and Kaplan–Meier survival analysis revealed that patients with high PFKFB4 expression had a worse prognosis. In NSCLC, PFKFB4 was found to be associated with immune cell infiltration and immunological checkpoints. Conclusion PFKFB4 expression may be upregulated as a sign of poor prognosis in NSCLC, and PFKFB4 may be implicated not only in the genesis and progression of NSCLC but also in its immunological control.
Collapse
Affiliation(s)
- Yong Zhou
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yongfei Fan
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Binzhe Qiu
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ming Lou
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoshuang Liu
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, People’s Republic of China
| | - Kai Yuan
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Jichun Tong
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Correspondence: Jichun Tong; Kai Yuan, Email ;
| |
Collapse
|
10
|
Sun J, Jin R. PFKFB4 modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Bioorg Med Chem Lett 2022; 73:128916. [DOI: 10.1016/j.bmcl.2022.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
|
11
|
A Novel Hypoxia-Related Gene Signature with Strong Predicting Ability in Non-Small-Cell Lung Cancer Identified by Comprehensive Profiling. Int J Genomics 2022; 2022:8594658. [PMID: 35634481 PMCID: PMC9135579 DOI: 10.1155/2022/8594658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is the most common malignant tumor among males and females worldwide. Hypoxia is a typical feature of the tumor microenvironment, and it affects cancer development. Circular RNAs (circRNAs) have been reported to sponge miRNAs to regulate target gene expression and play an essential role in tumorigenesis and progression. This study is aimed at identifying whether circRNAs could be used as the diagnostic biomarkers for NSCLC. Methods The heterogeneity of samples in this study was assessed by principal component analysis (PCA). Furthermore, the Gene Expression Omnibus (GEO) database was normalized by the affy R package. We further screened the differentially expressed genes (DEGs) and differentially expressed circular RNAs (DEcircRNAs) using the DEseq2 R package. Moreover, we analyzed the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs using the cluster profile R package. Besides, the Gene Set Enrichment Analysis (GSEA) was used to identify the biological function of DEGs. The interaction between DEGs and the competing endogenous RNAs (ceRNA) network was detected using STRING and visualized using Cytoscape. Starbase predicted the miRNAs of target hub genes, and miRanda predicted the target miRNAs of circRNAs. The RNA-seq profiler and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Then, the variables were assessed by the univariate and multivariate Cox proportional hazard regression models. Significant variables in the univariate Cox proportional hazard regression model were included in the multivariate Cox proportional hazard regression model to analyze the association between the variables of clinical features. Furthermore, the overall survival of variables was determined by the Kaplan-Meier survival curve, and the time-dependent receiver operating characteristic (ROC) curve analysis was used to calculate and validate the risk score in NSCLC patients. Moreover, predictive nomograms were constructed and used to predict the prognostic features between the high-risk and low-risk score groups. Results We screened a total of 2039 DEGs, including 1293 upregulated DEGs and 746 downregulated DEGs in hypoxia-treated A549 cells. A549 cells treated with hypoxia had a total of 70 DEcircRNAs, including 21 upregulated and 49 downregulated DEcircRNAs, compared to A549 cells treated with normoxia. The upregulated genes were significantly enriched in 284 GO terms and 42 KEGG pathways, while the downregulated genes were significantly enriched in 184 GO terms and 25 KEGG pathways. Moreover, the function analysis by GSEA showed enrichment in the enzyme-linked receptor protein signaling pathway, hypoxia-inducible factor- (HIF-) 1 signaling pathway, and G protein-coupled receptor (GPCR) downstream signaling. Furthermore, six hub modules and 10 hub genes, CDC45, EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5, AURKA, and POLE2, were identified. The ceRNA network was constructed, and it consisted of 4 circRNAs, 14 miRNAs, and 38 mRNAs. The ROC curve was constructed and calculated. The area under the curve (AUC) value was 0.62, and the optimal threshold was 0.28. Based on the optimal threshold, the patients were divided into the high-risk score and low-risk score groups. The survival rate in the high-risk score group was lower than that in the low-risk score group. The expression of SERPINE1, STC2, and LPCAT1; clinical stage; and age of the patient were significantly correlated with the high-risk score. Moreover, nomograms were established based on the risk factors in multivariate analysis, and the median survival time, 3-year survival probability, and 5-year survival were possibly predicted according to nomograms. Conclusion The ceRNA network associated with NSCLC was identified, and the hub genes, circRNAs, might act as the potential biomarkers for NSCLC.
Collapse
|
12
|
Systematic pan-cancer landscape identifies CARM1 as a potential prognostic and immunological biomarker. BMC Genom Data 2022; 23:7. [PMID: 35033016 PMCID: PMC8761291 DOI: 10.1186/s12863-021-01022-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. RESULTS Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. CONCLUSIONS Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.
Collapse
|