1
|
Santos-Álvarez JC, Velázquez-Enríquez JM, Reyes-Jiménez E, Ramírez-Hernández AA, Iñiguez-Palomares R, Rodríguez-Beas C, Canseco SP, Aguilar-Ruiz SR, Castro-Sánchez L, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Allium sativum nanovesicles exhibit anti-inflammatory and antifibrotic activity in a bleomycin-induced lung fibrosis model. Mol Biol Rep 2024; 51:1166. [PMID: 39560703 DOI: 10.1007/s11033-024-10104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and highly fatal disease characterized by excessive accumulation of extracellular matrix (ECM), foci of myofibroblasts, and a usual pattern of interstitial pneumonia. As suggested by international guidelines, the treatment for this disease involves supportive therapies, as there is currently no effective treatment. Plant-derived nanovesicles have emerged as a new treatment for various diseases and have been tested in cellular and murine models. METHODS AND RESULTS This research aimed to test the use of Allium sativum nanovesicles (AS-NV) in a murine model of IPF induced by bleomycin. AS-NV reduced the amount of collagen and restored lung architecture in the mouse model. AS-NV was tested on human lung fibroblasts, which do not affect the viability of healthy cells. AS-NV treatment decreases the mRNA levels of genes related to fibrosis, inflammation, and ECM deposition (Mmp2,Timp-2,Vegf,Pcna,Col1a1,Tgf-β,α-Sma,IL-1β,and Hif1a) in bleomycin-induced idiopathic pulmonary fibrosis. CONCLUSIONS This research highlights the anti-inflammatory and antifibrotic activity of AS-NV, which contributes to plant nanovesicle mechanisms in IPF; however, more AS-NV studies are needed to identify alternative treatments for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
| | - Ramon Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, 83000, Mexico
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina, UNAM-UABJO, Oaxaca de Juárez, 68120, Mexico
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Luis Castro-Sánchez
- CONAHCYT-Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, 28045, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, 68120, Mexico.
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 68120, Mexico.
| |
Collapse
|
2
|
Wu TJ, Teng M, Jing X, Pritchard KA, Day BW, Naylor S, Teng RJ. Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence? Cells 2024; 13:1774. [PMID: 39513884 PMCID: PMC11544778 DOI: 10.3390/cells13211774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity. Oxidative stress (OS) and inflammation are the major contributors to BPD. Despite aggressive treatments, BPD prevalence remains unchanged, which underscores the urgent need to explore more potential therapies. The endoplasmic reticulum (ER) plays crucial roles in surfactant and protein synthesis, assisting mitochondrial function, and maintaining metabolic homeostasis. Under OS, disturbed metabolism and protein folding transform the ER structure to refold proteins and help degrade non-essential proteins to resume cell homeostasis. When OS becomes excessive, the endogenous chaperone will leave the three ER stress sensors to allow subsequent changes, including cell death and senescence, impairing the growth potential of organs. The contributing role of ER stress in BPD is confirmed by reproducing the BPD phenotype in rat pups by ER stress inducers. Although chemical chaperones attenuate BPD, ER stress is still associated with cellular senescence. N-acetyl-lysyltyrosylcysteine amide (KYC) is a myeloperoxidase inhibitor that attenuates ER stress and senescence as a systems pharmacology agent. In this review, we describe the role of ER stress in BPD and discuss the therapeutic potentials of chemical chaperones and KYC, highlighting their promising role in future therapeutic interventions.
Collapse
Affiliation(s)
- Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
3
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
4
|
Cao Z, Wu T, Fang Y, Sun F, Ding H, Zhao L, Shi L. Dissecting causal relationships between immune cells, plasma metabolites, and COPD: a mediating Mendelian randomization study. Front Immunol 2024; 15:1406234. [PMID: 38868780 PMCID: PMC11168115 DOI: 10.3389/fimmu.2024.1406234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Objective This study employed Mendelian Randomization (MR) to investigate the causal relationships among immune cells, COPD, and potential metabolic mediators. Methods Utilizing summary data from genome-wide association studies, we analyzed 731 immune cell phenotypes, 1,400 plasma metabolites, and COPD. Bidirectional MR analysis was conducted to explore the causal links between immune cells and COPD, complemented by two-step mediation analysis and multivariable MR to identify potential mediating metabolites. Results Causal relationships were identified between 41 immune cell phenotypes and COPD, with 6 exhibiting reverse causality. Additionally, 21 metabolites were causally related to COPD. Through two-step MR and multivariable MR analyses, 8 cell phenotypes were found to have causal relationships with COPD mediated by 8 plasma metabolites (including one unidentified), with 1-methylnicotinamide levels showing the highest mediation proportion at 26.4%. Conclusion We have identified causal relationships between 8 immune cell phenotypes and COPD, mediated by 8 metabolites. These findings contribute to the screening of individuals at high risk for COPD and offer insights into early prevention and the precocious diagnosis of Pre-COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Tong Wu
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yakun Fang
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Ding
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lingling Zhao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
5
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
6
|
Hao W, Yu TT, Zuo DZ, Hu HZ, Zhou PP. Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting the NF-κB and TGF-β1/Smad2/3 pathways. Exp Lung Res 2023; 49:205-219. [PMID: 38044666 DOI: 10.1080/01902148.2023.2286465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1β, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-β1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-β1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1β, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-β1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-β1/Smad2/3 pathway, thereby improving BLM-induced PF.
Collapse
Affiliation(s)
- Wei Hao
- Department of Functional Experimental Training Center, Basic Medical College, Wannan Medical College, Wuhu, China
| | - Ting-Ting Yu
- Department of Functional Experimental Training Center, Basic Medical College, Wannan Medical College, Wuhu, China
| | - Dong-Ze Zuo
- Department of Pharmacy, Second People's Hospital of Hefei, Hefei, China
| | - Heng-Zhao Hu
- School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Ping-Ping Zhou
- Department of Physiology, Basic Medical College, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Khedoe PPSJ, van Schadewijk WAAM, Schwiening M, Ng-Blichfeldt JP, Marciniak SJ, Stolk J, Gosens R, Hiemstra PS. Cigarette smoke restricts the ability of mesenchymal cells to support lung epithelial organoid formation. Front Cell Dev Biol 2023; 11:1165581. [PMID: 37795260 PMCID: PMC10546195 DOI: 10.3389/fcell.2023.1165581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Adequate lung epithelial repair relies on supportive interactions within the epithelial niche, including interactions with WNT-responsive fibroblasts. In fibroblasts from patients with chronic obstructive pulmonary disease (COPD) or upon in vitro cigarette smoke exposure, Wnt/β-catenin signalling is distorted, which may affect interactions between epithelial cells and fibroblasts resulting in inadequate lung repair. We hypothesized that cigarette smoke (CS), the main risk factor for COPD, interferes with Wnt/β-catenin signalling in fibroblasts through induction of cellular stress responses, including oxidative- and endoplasmic reticulum (ER) stress, and thereby alters epithelial repair support potential. Therefore, we assessed the effect of CS-exposure and the ER stress inducer Thapsigargin (Tg) on Wnt/β-catenin signalling activation in MRC-5 fibroblasts, and on their ability to support lung epithelial organoid formation. Exposure of MRC-5 cells for 15 min with 5 AU/mL CS extract (CSE), and subsequent 6 h incubation induced oxidative stress (HMOX1). Whereas stimulation with 100 nM Tg increased markers of both the integrated stress response (ISR - GADD34/PPP1R15A, CHOP) and the unfolded protein response (UPR - XBP1spl, GADD34/PPP1R15A, CHOP and HSPA5/BIP), CSE only induced GADD34/PPP1R15A expression. Strikingly, although treatment of MRC-5 cells with the Wnt activator CHIR99021 upregulated the Wnt/β-catenin target gene AXIN2, this response was diminished upon CSE or Tg pre-exposure, which was confirmed using a Wnt-reporter. Furthermore, pre-exposure of MRC-5 cells to CSE or Tg, restricted their ability to support organoid formation upon co-culture with murine pulmonary EpCam+ cells in Matrigel at day 14. This restriction was alleviated by pre-treatment with CHIR99021. We conclude that exposure of MRC-5 cells to CSE increases oxidative stress, GADD34/PPP1R15A expression and impairs their ability to support organoid formation. This inhibitory effect may be restored by activating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- P. P. S. J. Khedoe
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - M. Schwiening
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J. P. Ng-Blichfeldt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - S. J. Marciniak
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J. Stolk
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| | - R. Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
8
|
Wilson SE. The corneal fibroblast: The Dr. Jekyll underappreciated overseer of the responses to stromal injury. Ocul Surf 2023; 29:53-62. [PMID: 37080483 DOI: 10.1016/j.jtos.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To review the functions of corneal fibroblasts in wound healing. METHODS Literature review. RESULTS Corneal fibroblasts arise in the corneal stroma after anterior, posterior or limbal injuries and are derived from keratocytes. Transforming growth factor (TGF) β1 and TGFβ2, along with platelet-derived growth factor (PDGF), are the major modulators of the keratocyte to corneal fibroblast transition, while fibroblast growth factor (FGF)-2, TGFβ3, and retinoic acid are thought to regulate the transition of corneal fibroblasts back to keratocytes. Adequate and sustained levels of TGFβ1 and/or TGFβ2, primarily from epithelium, tears, aqueous humor, and corneal endothelium, drive the development of corneal fibroblasts into myofibroblasts. Myofibroblasts have been shown in vitro to transition back to corneal fibroblasts, although apoptosis of myofibroblasts has been documented as a major contributor to the resolution of fibrosis in several in situ corneal injury models. Corneal fibroblasts, aside from their role as a major progenitor to myofibroblasts, also perform many critical functions in the injured cornea, including the production of critical basement membrane (BM) components during regeneration of the epithelial BM and Descemet's membrane, production of non-basement membrane-associated stromal collagen type IV to control and downregulate TGFβ effects on stromal cells, release of chemotactic chemokines that attract bone marrow-derived cells to the injured stroma, production of growth factors that modulate regeneration and maturation of the overlying epithelium, and production of collagens and other ECM components that contribute to stromal integrity after injury. CONCLUSIONS Corneal fibroblasts are major contributors to and overseers of the corneal response to injuries.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
10
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau, Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia.
| |
Collapse
|
11
|
Yue D, Zhang Q, Zhang J, Liu W, Chen L, Wang M, Li R, Qin S, Song X, Ji Y. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 171:107706. [PMID: 36565570 DOI: 10.1016/j.envint.2022.107706] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Fine particulate matter (PM2.5) has been widely reported to contribute to the pathogenesis of pulmonary diseases. The direct hazardous effect of PM2.5 on the respiratory system at high concentrations in vitro and in vivo have been well identified. However, its effect on the pre-existing respiratory diseases of patients at environment-related concentrations remains unclear. Diesel exhaust PM2.5 as a primary representative of ambient PM2.5 fine particles were used to investigated the effect of PM2.5 on the fibrosis progression of existing pulmonary fibrosis disease models. This study reported that PM2.5 could result in the enhanced sensitivity to fibrotic response, which may be ascribed to ferroptosis induced by PM2.5 in damaged lung areas. Proteomic analysis revealed that the upregulation of HO-1 as a key mechanism in the ferroptosis and exacerbation of pulmonary fibrosis induced by PM2.5. As a result, HO-1 degraded heme-containing protein and released iron in fibrotic cells, leading to generation of mitochondrial ROS and impaired mitochondrial function. Transmission electron microscopic assay verified that PM2.5 entered the mitochondria of fibrotic cells and was accompanied by significant mitochondrial morphological changes characterized by increased mitochondrial membrane density and reduced mitochondrial size. The HO-1 inhibitor zinc protoporphyrin and mitochondrion-targeted antioxidant Mito-TEMPO significantly attenuated PM2.5-induced ferroptosis and exacerbation of fibrosis. In addition, AMPK-ULK1 axis-triggered autophagy activation and NCOA4-mediated degradation of ferritin by autophagy were found to be related to the PM2.5-induced ferroptosis of fibrotic cells. As evidenced by the inhibition of autophagy with 3-methyladenine or AMPK inhibitor, NCOA4 knockdown decreased intracellular iron accumulation and lipid peroxidation, thereby relieving PM2.5-induced epithelial-mesenchymal transition and cell death in fibrotic cells. Overall, this study provided experimental support for the idea that PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis, and HO-1-mediated mitochondrial dysfunction and NCOA4-mediated ferritinophagy are jointly required for the PM2.5-induced ferroptosis and enhanced fibrosis effects.
Collapse
Affiliation(s)
- Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
12
|
Zhan P, Lu X, Li Z, Wang WJ, Peng K, Liang NN, Wang Y, Li J, Fu L, Zhao H, Xu DX, Tan ZX. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol 2022; 113:109359. [DOI: 10.1016/j.intimp.2022.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
13
|
Zhu J, Liu L, Ma X, Cao X, Chen Y, Qu X, Ji M, Liu H, Liu C, Qin X, Xiang Y. The Role of DNA Damage and Repair in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:2292. [PMID: 36421478 PMCID: PMC9687113 DOI: 10.3390/antiox11112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mortality rate of idiopathic pulmonary fibrosis (IPF) increases yearly due to ineffective treatment. Given that the lung is exposed to the external environment, it is likely that oxidative stress, especially the stimulation of DNA, would be of particular importance in pulmonary fibrosis. DNA damage is known to play an important role in idiopathic pulmonary fibrosis initiation, so DNA repair systems targeting damage are also crucial for the survival of lung cells. Although many contemporary reports have summarized the role of individual DNA damage and repair pathways in their hypotheses, they have not focused on idiopathic pulmonary fibrosis. This review, therefore, aims to provide a concise overview for researchers to understand the pathways of DNA damage and repair and their roles in IPF.
Collapse
Affiliation(s)
- Jiahui Zhu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lexin Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaodi Ma
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xinyu Cao
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yu Chen
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Ming Ji
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
14
|
Cui X, Zhang Y, Lu Y, Xiang M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front Pharmacol 2022; 13:879204. [PMID: 35559240 PMCID: PMC9086276 DOI: 10.3389/fphar.2022.879204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Pulmonary diseases are main causes of morbidity and mortality worldwide. Current studies show that though specific pulmonary diseases and correlative lung-metabolic deviance own unique pathophysiology and clinical manifestations, they always tend to exhibit common characteristics including reactive oxygen species (ROS) signaling and disruptions of proteostasis bringing about accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER is generated by the unfolded protein response. When the adaptive unfolded protein response (UPR) fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis, which is called ER stress. The ER stress mainly includes the accumulation of misfolded and unfolded proteins in lumen and the disorder of Ca2+ balance. ROS mediates several critical aspects of the ER stress response. We summarize the latest advances in of the UPR and ER stress in the pathogenesis of pulmonary disease and discuss potential therapeutic strategies aimed at restoring ER proteostasis in pulmonary disease.
Collapse
Affiliation(s)
- Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingdong Lu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Li A, Chen JY, Hsu CL, Oyang YJ, Huang HC, Juan HF. A Single-Cell Network-Based Drug Repositioning Strategy for Post-COVID-19 Pulmonary Fibrosis. Pharmaceutics 2022; 14:pharmaceutics14050971. [PMID: 35631558 PMCID: PMC9147547 DOI: 10.3390/pharmaceutics14050971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Post-COVID-19 pulmonary fibrosis (PCPF) is a long-term complication that appears in some COVID-19 survivors. However, there are currently limited options for treating PCPF patients. To address this problem, we investigated COVID-19 patients’ transcriptome at single-cell resolution and combined biological network analyses to repurpose the drugs treating PCPF. We revealed a novel gene signature of PCPF. The signature is functionally associated with the viral infection and lung fibrosis. Further, the signature has good performance in diagnosing and assessing pulmonary fibrosis. Next, we applied a network-based drug repurposing method to explore novel treatments for PCPF. By quantifying the proximity between the drug targets and the signature in the interactome, we identified several potential candidates and provided a drug list ranked by their proximity. Taken together, we revealed a novel gene expression signature as a theragnostic biomarker for PCPF by integrating different computational approaches. Moreover, we showed that network-based proximity could be used as a framework to repurpose drugs for PCPF.
Collapse
Affiliation(s)
- Albert Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Jhih-Yu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei 106, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 106, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (H.-C.H.); (H.-F.J.)
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (H.-C.H.); (H.-F.J.)
| |
Collapse
|