1
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
2
|
Langyue H, Ying Z, Jianfeng J, Yue Z, Huici Y, Hongyan L. IRF4-mediated Treg phenotype switching can aggravate hyperoxia-induced alveolar epithelial cell injury. BMC Pulm Med 2024; 24:130. [PMID: 38491484 PMCID: PMC10941512 DOI: 10.1186/s12890-024-02940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.
Collapse
Affiliation(s)
- He Langyue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Ying
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiang Jianfeng
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Yue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yao Huici
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Lu Hongyan
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
3
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. Lysine demethylase KDM3A alleviates hyperoxia-induced bronchopulmonary dysplasia in mice by promoting ETS1 expression. Exp Cell Res 2024; 435:113945. [PMID: 38286256 DOI: 10.1016/j.yexcr.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
4
|
Zhang Z, Chen K, Pan D, Liu T, Hang C, Ying Y, He J, Lv Y, Ma X, Chen Z, Liu L, Zhu J, Du L. A predictive model for preterm infants with bronchopulmonary dysplasia based on ferroptosis-related lncRNAs. BMC Pulm Med 2023; 23:367. [PMID: 37784105 PMCID: PMC10544375 DOI: 10.1186/s12890-023-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most challenging chronic lung disease for prematurity, with difficulties in early identification. Given lncRNA emerging as a novel biomarker and the regulator of ferroptosis, this study aims to develop a BPD predictive model based on ferroptosis-related lncRNAs (FRLs). METHODS Using a rat model, we firstly explored mRNA levels of ferroptosis-related genes and ferrous iron accumulation in BPD rat lungs. Subsequently, a microarray dataset of umbilical cord tissue from 20 preterm infants with BPD and 34 preterm infants without BPD were downloaded from the Gene Expression Omnibus databases. Random forest and LASSO regression were conducted to identify diagnostic FRLs. Nomogram was used to construct a predictive BPD model based on the FRLs. Finally, umbilical cord blood lymphocytes of preterm infants born before 32 weeks gestational age and term infants were collected and determined the expression level of diagnostic FRLs by RT-qPCR. RESULTS Increased iron accumulation and several dysregulated ferroptosis-associated genes were found in BPD rat lung tissues, indicating that ferroptosis was participating in the development of BPD. By exploring the microarray dataset of preterm infants with BPD, 6 FRLs, namely LINC00348, POT1-AS1, LINC01103, TTTY8, PACRG-AS1, LINC00691, were determined as diagnostic FRLs for modeling. The area under the receiver operator characteristic curve of the model was 0.932, showing good discrimination of BPD. In accordance with our analysis of microarray dataset, the mRNA levels of FRLs were significantly upregulated in umbilical cord blood lymphocytes from preterm infants who had high risk of BPD. CONCLUSION The incorporation of FRLs into a predictive model offers a non-invasive approach to show promise in improving early detection and management of this challenging chronic lung disease in premature infant, enabling timely intervention and personalized treatment strategies.
Collapse
Affiliation(s)
- Ziming Zhang
- Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kewei Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dandan Pan
- Department of Neonatology, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Tieshuai Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcheng Hang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuhan Ying
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia He
- Teaching Experimental Center of Public Health, Zhejiang University, Hangzhou, China
| | - Ying Lv
- Department and Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaolu Ma
- Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng Chen
- Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ling Liu
- Department of Neonatology, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Jiajun Zhu
- Department of Neonatology, Women's Hospital School of Medicine, Zhejiang University, Key Laboratory& Women's Hospital, Hangzhou, China.
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
5
|
Liu G, Yin C, Qian M, Xiao X, Wu H, Fu F. LncRNA gadd7 promotes mitochondrial membrane potential decrease and apoptosis of alveolar type II epithelial cells by positively regulating MFN1 in an in vitro model of hyperoxia-induced acute lung injury. Eur J Histochem 2023; 67:3535. [PMID: 37254890 PMCID: PMC10277814 DOI: 10.4081/ejh.2023.3535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
The mortality and morbidity rates of ovarian cancer (OC) are high, but the underlying mechanisms of OC have not been characterized. In this study, we determined the role of Rho GTPase Activating Protein 30 (ARHGAP30) in OC progression. We measured ARHGAP30 abundance in OC tissue samples and cells using immunohistochemistry (IHC) and RT-qPCR. EdU, transwell, and annexin V/PI apoptosis assays were used to evaluate proliferation, invasiveness, and apoptosis of OC cells, respectively. The results showed that ARHGAP30 was overexpressed in OC tissue samples and cells. Inhibition of ARHGAP30 suppressed growth and metastasis of OC cells, and enhanced apoptosis. Knockdown of ARHGAP30 in OC cells significantly inhibited the PI3K/AKT/mTOR pathway. Treatment with the PI3K/AKT/mTOR pathway inhibitor buparlisib simulated the effects of ARHGAP30 knockdown on growth, invasiveness, and apoptosis of OC cells. Following buparlisib treatment, the expression levels of p-PI3K, p-AKT, and p-mTOR were significantly decreased. Furthermore, buparlisib inhibited the effects of ARHGAP30 upregulation on OC cell growth and invasiveness. In conclusion, ARHGAP30 regulated the PI3K/AKT/mTOR pathway to promote progression of OC.
Collapse
Affiliation(s)
- Guoyue Liu
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| | - Cunzhi Yin
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| | - Mingjiang Qian
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| | - Xuan Xiao
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| | - Hang Wu
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| | - Fujian Fu
- Intensive Care Unit, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou.
| |
Collapse
|
6
|
Zhu Y, Mi L, Lu H, Ju H, Hao X, Xu S. ILC2 regulates hyperoxia-induced lung injury via an enhanced Th17 cell response in the BPD mouse model. BMC Pulm Med 2023; 23:188. [PMID: 37254088 DOI: 10.1186/s12890-023-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUD Recent research has focused on the role of immune cells and immune responses in the pathogenesis of bronchopulmonary dysplasia (BPD), but the exact mechanisms have not yet been elucidated. Previously, the key roles of type 2 innate lymphoid cells (ILC2) in the lung immune network of BPD were explored. Here, we investigated the role Th17 cell response in hyperoxia-induced lung injury of BPD, as well as the relationship between ILC2 and Th17 cell response. METHODS A hyperoxia-induced BPD mouse model was constructed and the pathologic changes of lung tissues were evaluated by Hematoxylin-Eosin staining. Flow cytometry analysis was conducted to determine the levels of Th17 cell, ILC2 and IL-6+ILC2. The expression levels of IL-6, IL-17 A, IL-17 F, and IL-22 in the blood serum and lung tissues of BPD mice were measured by ELISA. To further confirm the relationship between ILC2 and Th17 cell differentiation, ILC2 depletion was performed in BPD mice. Furthermore, we used immunomagnetic beads to enrich ILC2 and then flow-sorted mouse lung CD45+Lin-CD90.2+Sca-1+ILC2. The sorted ILC2s were injected into BPD mice via tail vein. Following ILC2 adoptive transfusion, the changes of Th17 cell response and lung injury were detected in BPD mice. RESULTS The expression levels of Th17 cells and Th17 cell-related cytokines, including IL-17 A, IL-17 F, and IL-22, were significantly increased in BPD mice. Concurrently, there was a significant increase in the amount of ILC2 and IL-6+ILC2 during hyperoxia-induced lung injury, which was consistent with the trend for Th17 cell response. Compared to the control BPD group, ILC2 depletion was found to partially abolish the Th17 cell response and had protective effects against lung injury after hyperoxia. Furthermore, the adoptive transfer of ILC2 enhanced the Th17 cell response and aggravated lung injury in BPD mice. CONCLUSIONS This study found that ILC2 regulates hyperoxia-induced lung injury by targeting the Th17 cell response in BPD, which shows a novel strategy for BPD immunotherapy.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Lanlan Mi
- Department of Neonatology, Shanghai Children's Medical Center, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China.
| | - Huimin Ju
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Xiaobo Hao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Suqing Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
7
|
Desouky MA, George MY, Michel HE, Elsherbiny DA. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chem Biol Interact 2023; 379:110491. [PMID: 37105514 DOI: 10.1016/j.cbi.2023.110491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Perturbation of the protein homeostasis circuit is one of the principal attributes associated with many neurodegenerative disorders, such as Parkinson's disease (PD). This study aimed to explore the neuroprotective effect of roflumilast (ROF), a phosphodiesterase-4 inhibitor, in a rotenone-induced rat model of PD and investigate the potential underlying mechanisms. Interestingly, ROF (1 mg/kg, p.o.) attenuated motor impairment, prevented brain lesions, and rescued the dopaminergic neurons in rotenone-treated rats. Furthermore, it reduced misfolded α-synuclein burden. ROF also promoted the midbrain cyclic adenosine monophosphate level, which subsequently enhanced the 26S proteasome activity and the expression of the 20S proteasome. ROF counteracted rotenone-induced endoplasmic reticulum stress, which was demonstrated by its impact on activating transcription factor 6, glucose-regulated protein 78, and C/EBP homologous protein levels. Moreover, ROF averted rotenone-induced oxidative stress, as evidenced by its effects on the levels of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, reduced glutathione, and lipid peroxides with a significant anti-apoptotic activity. Collectively, this study implies repurposing of ROF as a novel neuroprotective drug owning to its ability to restore normal protein homeostasis.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|