1
|
Sun W, Zhang XA, Wang Z. The role and regulation mechanism of Chinese traditional fitness exercises on the bone and cartilage tissue in patients with osteoporosis: A narrative review. Front Physiol 2023; 14:1071005. [PMID: 36926189 PMCID: PMC10011494 DOI: 10.3389/fphys.2023.1071005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis (ops) is a systemic degenerative bone disease characterized by bone mass reduction, bone mineral density loss, bone microstructure destruction, bone fragility, and increased fracture susceptibility. Thus far, drug therapy is the main method used to prevent and treat osteoporosis. However, long-term drug treatment will inevitably lead to drug resistance and certain side effects. In response, rehabilitation treatment is generally recommended, which involves drug supplementation combined with the treatment. A Chinese traditional fitness exercise is an organic combination of sports and traditional Chinese medicine with a series of advantages such as being safe, convenient, non-toxic, and harmless. Hence, it is one of the rehabilitation methods widely used in clinical practice. By searching the CNKI, PubMed, Web of Science, Embase, Cochrane Library, and other relevant databases, our research clarifies the current situation of four kinds of Chinese traditional fitness exercises widely used in clinical practice, namely, Taijiquan, Baduanjin, Wuqinxi, and Yijin Jing. In addition, the molecular mechanism of osteoporosis is summarized in this study. Based on the research, Chinese traditional fitness exercises are expected to directly stimulate the bone through a mechanical load to improve bone density. Moderate and regular traditional Chinese fitness exercises also improve osteoporosis by regulating the endocrine system with the secretion of hormones and factors such as estrogen and irisin, which are beneficial for bone formation. Finally, the purpose of promoting bone formation, reducing bone loss, and preventing and treating osteoporosis is achieved. The various means of Chinese traditional fitness exercises have different emphases, and the effect of improving bone density differs in various parts of the body. The exercisers may choose the exercise flexibly based on their own needs. Chinese traditional fitness exercises can improve the bone density of the exercisers and relieve pain, improve balance, and regulate the psychological state. Consequently, it is worth promoting to be applied in clinical practices.
Collapse
Affiliation(s)
- Weibo Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Qin H, Zhao W, Jiao Y, Zheng H, Zhang H, Jin J, Li Q, Chen X, Gao X, Han Y. Aqueous Extract of Salvia miltiorrhiza Bunge- Radix Puerariae Herb Pair Attenuates Osteoporosis in Ovariectomized Rats Through Suppressing Osteoclast Differentiation. Front Pharmacol 2021; 11:581049. [PMID: 33708107 PMCID: PMC7941748 DOI: 10.3389/fphar.2020.581049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional herb pair Salvia miltiorrhiza Bunge-Radix Puerariae (DG) owns various biological activities including anti-inflammatory and anti-oxidative stress. Oxidative stress is one high-risk factor for osteoporosis, then effect of DG on osteoporosis and underlying mechanisms was explored both in vivo and in vitro. Firstly, the predication from network pharmacology hinted that DG has the potential for ameliorating osteoporosis. Consistent with predication, DG significantly restored bone loss and deficiency of type II collagen, decreased TRAP and Cathepsin K positive areas in femur. Meanwhile it improved important characteristics of microarchitectural deterioration of tissue, reduced the numbers of NFATc1-positive osteoclast in the vertebra as well as decreased the serum osteoclast-specific cytokine RANKL and OPG release in OVX rats exhibiting its protective effect against osteoporosis. In vitro, DG noticeably decreased osteoclastic-special marker protein expressions of RANK, c-Fos and NFATc1. Furthermore, autophagy pathway p62/LC3B, ROS production and NF-κB were all activated by RANKL stimulation and blocked by DG pretreatment. Moreover, autophagy inhibitors, ROS scavenger, Ca2+ chelator and NF-κB inhibitor remarkably suppressed c-Fos and NFATc1 expressions. Taken together, DG may ameliorate osteoporosis by regulating osteoclast differentiation mediated by autophagy and oxidative stress. This study provided a mechanistic basis for DG treating osteoporosis and offered a safe dose for DG in preventing and improving bone diseases.
Collapse
Affiliation(s)
- Huan Qin
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yang Jiao
- Department of Biomedical Engineering City University of Hong Kong, Hong Kong SAR, China
| | - Haoyi Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Hao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jingyu Jin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuping Chen
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Gao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Carnovali M, Banfi G, Mariotti M. Age-dependent modulation of bone metabolism in zebrafish scales as new model of male osteoporosis in lower vertebrates. GeroScience 2020; 43:927-940. [PMID: 32997256 PMCID: PMC8110640 DOI: 10.1007/s11357-020-00267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
After middle age, in human bone, the resorption usually exceeds formation resulting in bone loss and increased risk of fractures in the aged population. Only few in vivo models in higher vertebrates are available for pathogenic and therapeutic studies about bone aging. Among these, male Danio rerio (zebrafish) can be successfully used as low vertebrate model to study degenerative alterations that affect the skeleton during aging, reducing the role of sex hormones. In this paper, we investigated the early bone aging mechanisms in male zebrafish (3, 6, 9 months old) scales evaluating the physiological changes and the effects of prednisolone, a pro-osteoporotic drug. The results evidentiated an age-dependent reduction of the mineralization rate in the fish scales, as highlighted by growing circle measurements. Indeed, the osteoblastic ALP activity at the matrix deposition site was found progressively downregulated. The higher TRAP activity was found in 63% of 9-month-old fish scales associated with resorption lacunae along the scale border. Gene expression analysis evidentiated that an increase of the tnfrsf1b (homolog of human rank) in aging scales may be responsible for resorption stimulation. Interestingly, prednisolone inhibited the physiological growth of the scale and induced in aged scales a more significant bone resorption compared with untreated fish (3.8% vs 1.02%). Bone markers analysis shown a significant reduction of ALP/TRAP ratio due to a prednisolone-dependent stimulation of tnfsf11 (homolog of human rankl) in scales of older fish. The results evidentiated for the first time the presence of a senile male osteoporosis in lower vertebrate. This new model could be helpful to identify the early mechanisms of bone aging and new therapeutic strategies to prevent age-related bone alterations in humans.
Collapse
Affiliation(s)
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy. .,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Bolignano D, Greco M, Arcidiacono V, Tripolino O, Vita C, Provenzano M, Donato C, Chiarella S, Fuiano G, De Sarro G, Russo E, Andreucci M, Foti DP, Coppolino G. Increased circulating Cathepsin-K levels reflect PTH control in chronic hemodialysis patients. J Nephrol 2020; 34:451-458. [PMID: 32656749 DOI: 10.1007/s40620-020-00801-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mineral bone disease (MBD) is remarkably frequent among chronic hemodialysis (HD) patients. In this setting, deranged PTH levels portend an adjunctive risk of worsen outcomes. Various evidence exists demonstrating that PTH strongly induces Cathepsin-K, a cysteine protease mainly found in lysosomes of osteoclasts and macrophages which promotes bone and extracellular matrix remodelling. Cathepsin-K levels are altered in various bone disorders, systemic inflammation and even in non-advanced CKD. In this study, we tested the hypothesis of an association between Cathepsin-K, uremic-MBD and circulating PTH levels in a cohort of chronic HD patients. METHODS We measured Cathepsin-K in 85 stable chronic HD patients and dialysis vintage > 6 months by a commercially available ELISA kit and we collected routine clinical parameters, including intact PTH. Patients were further stratified according to their "on- target" or "off-target" PTH status. RESULTS Cathepsin-K levels were significantly higher in HD patients than in healthy controls (p < 0.0001) and were independently associated with alkaline phosphatase (β = 0.37; p < 0.001), PTH (β = 0.30; p = 0.02) and C-reactive protein (β = 0.24; p = 0.008) levels. Cathepsin-K was also higher in patients with off-target PTH as compared to those with controlled PTH levels (230 [40-420] vs. 3250 [820-4205] pg/mL; p < 0.0001). At ROC analyses, Cathepsin-K levels were able to identify off-target PTH and parathyroidectomized patients (AUCs 0.85 [95% CI 0.71-0.98] and 0.97 [95% CI 0.92-0.99], respectively). CONCLUSION In chronic HD patients, Cathepsin-K associates with PTH levels, raising the intriguing hypothesis that this protein represents a causal link between mineral and inflammatory complications and could be tested as a candidate biomarker of MBD severity and PTH balance.
Collapse
Affiliation(s)
- Davide Bolignano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Marta Greco
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Valentina Arcidiacono
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Omar Tripolino
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Caterina Vita
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Michele Provenzano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Cinzia Donato
- Renal Unit, "Pugliese-Ciaccio" Hospital of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Fuiano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | | | - Emilio Russo
- Pharmacology Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | | | - Giuseppe Coppolino
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
5
|
Kosugi K, Tajima T, Menuki K, Okuma KF, Tokuda K, Fukuda H, Okada Y, Tsukamoto M, Yamanaka Y, Zenke Y, Sakai A. Disruption of the aldehyde dehydrogenase 2 gene increases the bone anabolic response to intermittent PTH treatment in an ovariectomized mouse model. Bone 2020; 136:115370. [PMID: 32325250 DOI: 10.1016/j.bone.2020.115370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is the enzyme that oxidizes the acetaldehyde produced by alcohol metabolism. This variant not only affects the response to alcohol but is also associated with several diseases, such as esophageal cancer, myocardial infarction, and particularly osteoporosis. In our previous study, we reported that compared to wild-type (WT) mice, Aldh2 knockout (KO) mice naturally have a strong bone formation ability, and high expression of parathyroid hormone receptor (PTHR1) in osteocytes. The effect of the Aldh2 gene on bone metabolism in response to intermittent PTH treatment is unknown. The purpose of this study was to clarify the effect of the Aldh2 gene on the bone anabolic response to intermittent PTH treatment in ovariectomized mice. Female KO and WT mice were ovariectomized at 8 weeks of age. At 14 weeks of age, the KO and WT mice were divided into vehicle-treated (Veh) and PTH-treated (PTH) groups (i.e., the WT-Veh, WT-PTH, KO-Veh and KO-PTH groups). PTH (1-34) and vehicle were subcutaneously administered to each group at a dose of 40 μg/kg body weight (BW) five times per week for 4 weeks. Micro-CT showed that the bone volume (BV), trabecular number (Tb.N), connectivity density (Conn.D), and cortical thickness (Ct.Th) values in the KO-PTH mice were significantly higher than those in the KO-Veh mice. Histomorphometric analysis showed that the BV, Tb.N, and mineral apposition rate (MAR) values in the KO-PTH group were significantly higher than those in the KO-Veh group. The mRNA expression level of PTHR1 in the KO-PTH group was significantly increased and that of p21 in the KO-PTH group was significantly decreased compared with the levels in the KO-Veh group. The expression of PTHR in osteocytes from the KO-PTH group was also significantly increased compared with that in osteocytes from the KO-Veh group. Furthermore, cell cultures revealed that the ALP+CFU-f/total CFU-f percentage was significantly higher in the KO-PTH group than in the KO-Veh group. We concluded that in ovariectomized Aldh2 KO mice, the bone anabolic response to intermittent PTH treatment was significantly enhanced compared to that in WT mice, which may be mediated by the high expression level of PTHR1.
Collapse
Affiliation(s)
- Kenji Kosugi
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Kunitaka Menuki
- Department of Orthopaedic Surgery, Kitakyushu Municipal Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Kayoko Furukawa Okuma
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kotaro Tokuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hokuto Fukuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yukichi Zenke
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
6
|
Ma Y, Wu X, Xiao X, Ma Y, Feng L, Yan W, Chen J, Yang D. Effects of teriparatide versus percutaneous vertebroplasty on pain relief, quality of life and cost-effectiveness in postmenopausal females with acute osteoporotic vertebral compression fracture: A prospective cohort study. Bone 2020; 131:115154. [PMID: 31733423 DOI: 10.1016/j.bone.2019.115154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Osteoporotic vertebral compression fracture (OVCF) is a common disease in senior patients. Conservative treatments (usual care) and percutaneous vertebroplasty (PVP) are typically applied to treat OVCFs; however, their efficacies are not fully satisfactory. While Teriparatide (TPTD) is effective in both anti-osteoporosis and bone healing, whether TPTD could be applied as a conservative treatment for acute OVCFs remains unclear. METHODS This investigation represents a real-world prospective cohort study, where 60 postmenopausal women (≥55 years old) with acute OVCFs were equally assigned to a TPTD conservative group or PVP (plus alendronate) group based on the patient's choice. TPTD (20 μg, s.c., once daily) or alendronate (70 mg, p.o., once weekly) were administrated together with 0.6 mg Caltrate and 500 iu Vitamin D3 per day. A health survey (SF-36) was conducted at 0-, 1- and 3-months post-treatment. Back pain and the Oswestry Disability Index (ODI) were measured at 0-week, 1-week, 1-month and 3-months after treatment, while the direct medical cost was analyzed at the end of the third month. RESULTS Both treatments with TPTD and PVP significantly and similarly improved the patients' health quality, with reduced visual analogue and ODI scores at the end of the first and third months. PVP was more effective in reducing pain at the early time point (1 week, p < 0.05). 24 of 27 patients who were rescanned with magnetic resonance imaging in the TPTD group showed bone healing. The mid-vertebral height was increased by PVP (p < 0.05) but not by TPTD. The cost of TPTD treatment was 21,868.61 ± 167.05 RMB per capita, while the cost for PVP treatment was 33,265.95 ± 1491.11 RMB per capita (p < 0.05). CONCLUSION TPTD conservative treatment obtained similar therapeutic effects but cost less than PVP in terms of treating acute OVCF.
Collapse
Affiliation(s)
- Yangyang Ma
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoliang Wu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Xiao
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ma
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lan Feng
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjuan Yan
- Department of Conservative and Endodontic Dentistry, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianting Chen
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dehong Yang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Carnovali M, Luzi L, Terruzzi I, Banfi G, Mariotti M. Liquiritigenin Reduces Blood Glucose Level and Bone Adverse Effects in Hyperglycemic Adult Zebrafish. Nutrients 2019; 11:nu11051042. [PMID: 31075971 PMCID: PMC6566992 DOI: 10.3390/nu11051042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia that induces other pathologies including diabetic retinopathy and bone disease. Adult Danio rerio (zebrafish) represents a powerful model to study both glucose and bone metabolism. Then, the aim of this study was to evaluate the effects of liquiritigenin (LTG) on blood glucose level and diabetes complications in hyperglycemic adult zebrafish. LTG is a flavonoid extracted from Glycyrrhiza glabra roots which possess important antioxidant, anti-inflammatory, and anti-diabetic properties. During four weeks of glucose treatment, LTG significantly prevented the onset of the hyperglycemia in adult zebrafish. Moreover, hyperglycemic fish showed increased advanced glycation end-products (AGEs) and parathormone levels whereas LTG completely prevented both of these metabolic alterations. Large bone-loss areas were found in the scales of glucose-treated fish whereas only small resorption lacunae were detected after glucose/LTG treatment. Biochemical and histological tartrate resistant acid phosphatase (TRAP) assays performed on explanted scales confirmed that LTG prevented the increase of osteoclastic activity in hyperglycemic fish. The osteoblastic alkaline phosphatase (ALP) activity was clearly lost in scales of glucose-treated fish whereas the co-treatment with LTG completely prevented such alteration. Gene expression analysis showed that LTG prevents the alteration in crucial bone regulatory genes. Our study confirmed that LTG is a very promising natural therapeutic approach for blood glucose lowering and to contrast the development of bone complications correlated to chronic hyperglycemia.
Collapse
Affiliation(s)
- Marta Carnovali
- Gruppo Ospedaliero San Donato Foundation, 20122 Milan, Italy.
| | - Livio Luzi
- Policlinico San Donato IRCCS, 20097 Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy.
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20122 Milan, Italy.
| | - Massimo Mariotti
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy.
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy.
| |
Collapse
|