1
|
Wang YY, Zhu GQ, Xia K, Zeng HB, He YH, Xie H, Wang ZX, Xu R. Omentin-1 inhibits the development of benign prostatic hyperplasia by attenuating local inflammation. Mol Med 2024; 30:41. [PMID: 38519941 PMCID: PMC10960431 DOI: 10.1186/s10020-024-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.
Collapse
Affiliation(s)
- Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Kun Xia
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750000, Ningxia, China
| | - Hong-Bo Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yun-Hui He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Ratajczak W, Laszczyńska M, Rył A, Dołęgowska B, Sipak O, Stachowska E, Słojewski M, Lubkowska A. Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota-derived short chain fatty acids. Aging (Albany NY) 2023; 15:10875-10896. [PMID: 37847180 PMCID: PMC10637784 DOI: 10.18632/aging.205091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 10/18/2023]
Abstract
Recent studies indicate that inflammation is one of the causes of the development of benign prostatic hyperplasia (BPH). Inflammation may result from past infections, metabolic disorders, but also from the state of functioning of the intestinal microbiota. The aim of the study was to assess whether the diagnostic lipid parameters for metabolic syndrome and short-chain fatty acids (SCFAs) are related to the immunoexpression of interleukins in prostate tissue with benign hyperplasia. The study involved 103 men with BPH, who were divided into two groups depending on the presence of MetS. We analysed tissue immunoexpression of two proinflammatory interleukins: IL-6, which is known to be involved in the development of BPH, and IL-18, which has not been analysed so far. The results of our study indicate that men with BPH + MetS in the stroma of the prostate have a significantly higher overall percentage of IL-6+ cells compared to men without MetS (p = 0.034). The analysis of IL-18 immunoexpression in prostate tissue indicated that in men with BPH + MetS, the glandular part of the prostate had a significantly higher percentage of cells with strong IL-18 expression (p = 0.040). We also noticed a relationship between tissue expression of IL-6 and IL-18 and lipid parameters (TG and HDL). We conclude that lipid disorders occurring in men with BPH increase inflammation in the prostate gland. Moreover, it has also been demonstrated for the first time that, indirectly, through SCFAs, the gut microbiota can act to prevent or create an inflammatory microenvironment in the prostate gland.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | - Maria Laszczyńska
- Department of Nursing, State University of Applied Sciences, Leśna, Koszalin 75-582, Poland
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich, Szczecin 70-111, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Żołnierska, Żołnierska, Szczecin 71-210, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego, Szczecin 71-460, Poland
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Powstańców Wielkopolskich, Szczecin 70-111, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| |
Collapse
|
3
|
Dec P, Poniewierska-Baran A, Modrzejewski A, Pawlik A. The Role of Omentin-1 in Cancers Development and Progression. Cancers (Basel) 2023; 15:3797. [PMID: 37568613 PMCID: PMC10417146 DOI: 10.3390/cancers15153797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Adipose tissue serves as an energy store and is also an active endocrine organ, exerting activity that influences obesity-related processes through the production of regulatory proteins called adipokines or adipocytokines. Adipokines play important direct and indirect roles in the pathogenesis of insulin resistance, the regulation of local and systemic inflammatory processes, and related metabolic complications. There have been an increasing number of studies showing the relationship between some adipokines and carcinogenesis. This work reviews the current literature concerning the effects of omentin-1 on carcinogenesis.
Collapse
Affiliation(s)
- Paweł Dec
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, 71-422 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|