1
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
2
|
Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging-A Systematic Review. Cells 2021; 10:cells10040813. [PMID: 33917352 PMCID: PMC8067363 DOI: 10.3390/cells10040813] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin, as the outermost organ of the body, is constantly exposed to both intrinsic and extrinsic causative factors of aging. Intrinsic aging is related to compromised cellular proliferative capacity, and may be accelerated by harmful environmental influences with the greatest significance of ultraviolet radiation exposure, contributing not only to premature aging, but also to skin carcinogenesis. The overall skin cancer burden and steadily increasing global antiaging market provide an incentive for searching novel targets to improve skin resistance against external injury. Sirtuin 1, initially linked to extension of yeast and rodent lifespan, plays a key role in epigenetic modification of proteins, histones, and chromatin by which regulates the expression of genes implicated in the oxidative stress response and apoptosis. The spectrum of cellular pathways regulated by sirtuin 1 suggests its beneficial impact on skin aging. However, the data on its role in carcinogenesis remains controversial. The aim of this review was to discuss the relevance of sirtuin 1 in skin aging, in the context of intrinsic factors, related to genetic premature aging syndromes, as well as extrinsic modifiable ones, with the assessment of its future application. PubMed were searched from inception to 4 January 2021 for relevant papers with further search carried out on ClinicalTrials.gov. The systematic review included 46 eligible original articles. The evidence from numerous studies proves sirtuin 1 significance in both chronological and premature aging as well as its dual role in cancer development. Several botanical compounds hold the potential to improve skin aging symptoms.
Collapse
|
3
|
Vanderstraeten J, Verschaeve L. Biological effects of radiofrequency fields: Testing a paradigm shift in dosimetry. ENVIRONMENTAL RESEARCH 2020; 184:109387. [PMID: 32182484 DOI: 10.1016/j.envres.2020.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Biological effects have been reproducibly reported in rodents exposed to radiofrequency fields (RF) without significant change of the body temperature. These observations relaunch the controversial question of non-thermal effects of RF. If true, such effects would imply to consider RF energy absorption/interaction in tissues, not as volume-averaged, but locally down to the microscale, which is of potential consequence in particular at frequencies beyond 3 GHz. We propose study protocols to explore that question.
Collapse
Affiliation(s)
- Jacques Vanderstraeten
- Environmental and Work Health Research Center, Faculty of Medicine, School of Public Health, Université Libre de Bruxelles, Belgium.
| | - Luc Verschaeve
- Service Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| |
Collapse
|
4
|
Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 2019; 120:19635-19646. [PMID: 31338869 DOI: 10.1002/jcb.29270] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Age-related cataract is one of the prior causes of blindness and the incidence rates of cataract are even rising. Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, lens epithelial cell (LEC cell) apoptosis is activated, which might lead to the opacity of the lens and accelerate the progression of cataract development. Meanwhile, autophagy is also active to face oxidative stress. miRNAs have been reported to involve cataract. However, the underlying mechanism is not clear. The present study aimed to investigate the regulatory effect of miR23b-3p on apoptosis and autophagy in LEC cells under oxidative stress. The expression levels of miR-23b-3p were examined in age-related cataract tissues and LEC cells treated with hydrogen peroxide, showing that miR23b-3p expression levels were upregulated. Knockdown of miR23b-3p expression in LEC cells brought about apoptosis significantly decreased while autophagy significantly increased during hydrogen peroxide. We predicted microRNA miRNA-23b-3p might participate in regulating silent information regulator 1 (SIRT1) by bioinformatics database of TargetScan. Luciferase reporter assays confirmed that miRNA-23b-p could suppress SIRT1 expression by binding its 3'UTR. In addition, overexpression or knockdown of miR-23b-3p could decrease or increase SIRT1 expression, which indicated that Mir-23b-3p could suppress SIRT1 expression. In addition, enhanced SIRT1 could attenuate the regulation of cell apoptosis and autophagy induced by overexpression of miR-23b-3p. Taken together, our findings revealed that miR-23b-3p regulated apoptosis and autophagy via suppressing SIRT1 in LEC cell under oxidative stress, which could provide new ideas for clinical treatment of cataract.
Collapse
Affiliation(s)
- Wenkai Zhou
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunxia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong Shi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qichang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J 2018; 286:1058-1073. [PMID: 30238623 DOI: 10.1111/febs.14663] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Louise S Christiansen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Lu B, Christensen IT, Ma LW, Wang XL, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC. miR-211 promotes lens epithelial cells apoptosis by targeting silent mating-type information regulation 2 homolog 1 in age-related cataracts. Int J Ophthalmol 2018; 11:201-207. [PMID: 29487807 DOI: 10.18240/ijo.2018.02.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/21/2017] [Indexed: 01/12/2023] Open
Abstract
AIM To detect the expression of miR-211 in age-related cataract tissue, explore the effects of miR-211 on lens epithelial cell proliferation and apoptosis, and identify its target gene. METHODS This study used real-time quantitative polymerase chain reaction (RT-qPCR) to measure the expression of miR-211 and its predicted target gene [silent mating-type information regulation 2 homolog 1 (SIRT1)] in 46 anterior lens capsules collected from age-related cataract patients. Human lens epithelial cell line (SRA01/04) cells were transfected with either miR-211 mimics, mimic controls, miR-211 inhibitors or inhibitor controls, 72h after transfection, miRNA and protein expression of SIRT1 were measured using RT-qPCR and Western blotting; then cells were exposed to 200 µmol/L H2O2 for 1h, whereupon cell viability was measured by MTS assay, caspase-3 assay was performed. Dual luciferase reporter assay was performed to verify the relationship between miR-211 of SIRT1. RESULTS Compared to the control group, expression of miR-211 was significantly increased (P<0.001), the miRNA and protein expression of SIRT1 were significantly decreased (P<0.001) in the anterior lens capsules of patients with age-related cataracts. Relative to the control group, SIRT1 miRNA and protein levels in the miR-211 mimic group were significantly reduced, cell proliferation activity significantly decreased, and caspase-3 activity was significantly increased (P<0.001). In the miR-211 inhibitor group, SIRT1 miRNA and protein expression were significantly increased, cell proliferation activity significantly increased, and caspase-3 activity was significantly decreased (P<0.001). A dual luciferase reporter assay confirmed that SIRT1 is a direct target of miR-211. CONCLUSION miR-211 is highly expressed in the anterior lens capsules of patients with age-related cataracts. By negatively regulating the expression of SIRT1, miR-211 promotes lens epithelial cell apoptosis and inhibits lens epithelial cell proliferation.
Collapse
Affiliation(s)
- Bo Lu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Ian T Christensen
- University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Li-Wei Ma
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Xin-Ling Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Ling-Feng Jiang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Chun-Xia Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Li Feng
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Qi-Chang Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| |
Collapse
|