1
|
Shirai T. Design and construction of artificial metabolic pathways for the bioproduction of useful compounds. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:261-266. [PMID: 40115772 PMCID: PMC11921127 DOI: 10.5511/plantbiotechnology.24.0721c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/21/2024] [Indexed: 03/23/2025]
Abstract
To efficiently produce useful compounds using biological cells, it is essential to optimally design all metabolic reactions and pathways, including not only the flow of carbon within the cell but also the production and consumption of energy and the balance of oxidation-reduction. Computational scientific methods are effective for the rational design of metabolic pathways and the optimization of metabolic fluxes. Based on this blueprint, it is crucial to accurately construct the cell, test and analyze whether it conforms to the design, and learn from the results to redesign the system in an effective cycle. This review introduces essential metabolic design techniques in synthetic biology and discusses the potential of using plant cells or plant genes effectively in synthetic biology for the production of useful compounds.
Collapse
Affiliation(s)
- Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, Cell Factory Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Song S, Qiu R, Huang Y, Zhou Z, Yan J, Ou Q, Wei D, He J, Liang Y, Du X, Yao W, Lu T. Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. Toxicol Res (Camb) 2024; 13:tfae123. [PMID: 39119266 PMCID: PMC11303830 DOI: 10.1093/toxres/tfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR. Methods In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo. Results The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity. Conclusions This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yan Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Donghui Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jingxuan He
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yi Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Xingyue Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
3
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
4
|
Liu HL, Wang CHT, Chiang EPI, Huang CC, Li WH. Tryptophan plays an important role in yeast's tolerance to isobutanol. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:200. [PMID: 34645498 PMCID: PMC8513309 DOI: 10.1186/s13068-021-02048-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Isobutanol is considered a potential biofuel, thanks to its high-energy content and octane value, limited water solubility, and compatibility with gasoline. As its biosynthesis pathway is known, a microorganism, such as Saccharomyces cerevisiae, that inherently produces isobutanol, can serve as a good engineering host. Isobutanol's toxicity, however, is a major obstacle for bioproduction. This study is to understand how yeast tolerates isobutanol. RESULTS A S. cerevisiae gene-deletion library with 5006 mutants was used to screen genes related to isobutanol tolerance. Image recognition was efficiently used for high-throughput screening via colony size on solid media. In enrichment analysis of the 161 isobutanol-sensitive clones identified, more genes than expected were mapped to tryptophan biosynthesis, ubiquitination, and the pentose phosphate pathway (PPP). Interestingly, adding exogenous tryptophan enabled both tryptophan biosynthesis and PPP mutant strains to overcome the stress. In transcriptomic analysis, cluster analysis of differentially expressed genes revealed the relationship between tryptophan and isobutanol stress through some specific cellular functions, such as biosynthesis and transportation of amino acids, PPP, tryptophan metabolism, nicotinate/nicotinamide metabolism (e.g., nicotinamide adenine dinucleotide biosynthesis), and fatty acid metabolism. CONCLUSIONS The importance of tryptophan in yeast's tolerance to isobutanol was confirmed by the recovery of isobutanol tolerance in defective strains by adding exogenous tryptophan to the growth medium. Transcriptomic analysis showed that amino acid biosynthesis- and transportation-related genes in a tryptophan biosynthesis-defective host were up-regulated under conditions similar to nitrogen starvation. This may explain why ubiquitination was required for the protein turnover. PPP metabolites may serve as precursors and cofactors in tryptophan biosynthesis to enhance isobutanol tolerance. Furthermore, the tolerance mechanism may also be linked to tryptophan downstream metabolism, including the kynurenine pathway and nicotinamide adenine dinucleotide biosynthesis. Both pathways are responsible for cellular redox balance and anti-oxidative ability. Our study highlights the central role of tryptophan in yeast's isobutanol tolerance and offers new clues for engineering a yeast host with strong isobutanol tolerance.
Collapse
Affiliation(s)
- Hsien-Lin Liu
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan
| | - Christine H-T Wang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd. , Taichung, 402, Taiwan
| | - Chieh-Chen Huang
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd. , Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Growth Enhancement Facilitated by Gaseous CO2 through Heterologous Expression of Reductive Tricarboxylic Acid Cycle Genes in Escherichia coli. FERMENTATION 2021. [DOI: 10.3390/fermentation7020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzymatic mechanisms of carbon fixation by autotrophs, such as the reductive tricarboxylic acid cycle (rTCA), have inspired biotechnological approaches to producing bio-based chemicals directly through CO2. To explore the possibility of constructing an rTCA cycle in Escherichia coli and to investigate their potential for CO2 assimilation, a total of ten genes encoding the key rTCA cycle enzymes, including α-ketoglutarate:ferredoxin oxidoreductase, ATP-dependent citrate lyase, and fumarate reductase/succinate dehydrogenase, were cloned into E. coli. The transgenic E. coli strain exhibited enhanced growth and the ability to assimilate external inorganic carbon with a gaseous CO2 supply. Further experiments conducted in sugar-free medium containing hydrogen as the electron donor and dimethyl sulfoxide (DMSO) as the electron acceptor proved that the strain is able to undergo anaerobic respiration, using CO2 as the major carbon source. The transgenic stain demonstrated CO2-enhanced growth, whereas the genes involved in chemotaxis, flagellar assembly, and acid-resistance were upregulated under the anaerobic respiration. Furthermore, metabolomic analysis demonstrated that the total concentrations of ATP, ADP, and AMP in the transgenic strain were higher than those in the vector control strain and these results coincided with the enhanced growth. Our approach offers a novel strategy to engineer E. coli for assimilating external gaseous CO2.
Collapse
|
6
|
Wang Z, Xue T, Hu D, Ma Y. A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli. Front Bioeng Biotechnol 2020; 8:524198. [PMID: 33072717 PMCID: PMC7537768 DOI: 10.3389/fbioe.2020.524198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tingli Xue
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dongsheng Hu
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Centre of Chemical Science and Engineering, and Key Laboratory for Green Chemical Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Frontier Technology Institute, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Chang RL, Stanley JA, Robinson MC, Sher JW, Li Z, Chan YA, Omdahl AR, Wattiez R, Godzik A, Matallana-Surget S. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage. EMBO J 2020; 39:e104523. [PMID: 33073387 PMCID: PMC7705453 DOI: 10.15252/embj.2020104523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation‐resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ‐irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein‐intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.
Collapse
Affiliation(s)
- Roger L Chang
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Julian A Stanley
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Matthew C Robinson
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Joel W Sher
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Zhanwen Li
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Yujia A Chan
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ashton R Omdahl
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
8
|
Xu G, Xiao L, Wu A, Han R, Ni Y. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 2020; 193:257-270. [PMID: 32929579 DOI: 10.1007/s12010-020-03417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h-1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h-1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
9
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
10
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
11
|
Liu HL, Chang JJ, Thia C, Lin YJ, Lo SC, Huang CC, Li WH. Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell factories. Microb Cell Fact 2019; 18:155. [PMID: 31506091 PMCID: PMC6737703 DOI: 10.1186/s12934-019-1205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022] Open
Abstract
Background A microorganism engineered for non-native tasks may suffer stresses it never met before. Therefore, we examined whether a Kluyveromyces marxianus strain engineered with a carotenoid biosynthesis pathway can serve as an anti-stress chassis for building cell factories. Results Carotenoids, a family of antioxidants, are valuable natural products with high commercial potential. We showed that the free radical removal ability of carotenoids can confer the engineered host with a higher tolerance to ethanol, so that it can produce more bio-ethanol than the wild type. Moreover, we found that this engineered strain has improved tolerance to other toxic effects including furfurals, heavy metals such as arsenate (biomass contaminant) and isobutanol (end product). Furthermore, the enhanced ethanol tolerance of the host can be applied to bioconversion of a natural medicine that needs to use ethanol as the delivery solvent of hydrophobic precursors. The result suggested that the engineered yeast showed enhanced tolerance to ethanol-dissolved hydrophobic 10-deacetylbaccatin III, which is considered a sustainable precursor for paclitaxel (taxol) bioconversion. Conclusions The stress tolerances of the engineered yeast strain showed tolerance to several toxins, so it may serve as a chassis for cell factories to produce target products, and the co-production of carotenoids may make the biorefinary more cost-effective.
Collapse
Affiliation(s)
- Hsien-Lin Liu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan.,Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, No. 91 Hsueh-Shih Road, Taichung, 402, Taiwan.,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Caroline Thia
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Chieh-Chen Huang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan. .,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd, South Dist, Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng 2019; 53:24-34. [DOI: 10.1016/j.ymben.2018.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
|
13
|
Tan Z, Zhu C, Fu J, Zhang X, Li M, Zhuang W, Ying H. Regulating Cofactor Balance In Vivo with a Synthetic Flavin Analogue. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Jingwen Fu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 30 S Puzhu Rd 211816 Nanjing China
| |
Collapse
|
14
|
Tan Z, Zhu C, Fu J, Zhang X, Li M, Zhuang W, Ying H. Regulating Cofactor Balance In Vivo with a Synthetic Flavin Analogue. Angew Chem Int Ed Engl 2018; 57:16464-16468. [PMID: 30341805 DOI: 10.1002/anie.201810881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 11/07/2022]
Abstract
A novel strategy to regulate cofactor balance in vivo for whole-cell biotransformation using a synthetic flavin analogue is reported. High efficiency, easy operation, and good applicability were observed for this system. Confocal laser scanning microscopy was employed to verify that the synthetic flavin analogue can directly permeate into Escherichia coli cells without modifying the cell membrane. This work provides a promising intracellular redox regulatory approach to construct more efficient cell factories.
Collapse
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Jingwen Fu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816, Nanjing, China
| |
Collapse
|
15
|
|
16
|
Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol 2017; 38:529-540. [PMID: 28911245 DOI: 10.1080/07388551.2017.1376309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Weiliang Dong
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Yujia Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Jiangfeng Ma
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Wenming Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Hao Wu
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| |
Collapse
|