1
|
Zhang J, Lin L, Wei W, Wei D. Identification, Characterization, and Computer-Aided Rational Design of a Novel Thermophilic Esterase from Geobacillus subterraneus, and Application in the Synthesis of Cinnamyl Acetate. Appl Biochem Biotechnol 2024; 196:3553-3575. [PMID: 37713064 DOI: 10.1007/s12010-023-04697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Investigation of a novel thermophilic esterase gene from Geobacillus subterraneus DSMZ 13552 indicated a high amino acid sequence similarity of 25.9% to a reported esterase from Geobacillus sp. A strategy that integrated computer-aided rational design tools was developed to select mutation sites. Six mutants were selected from four criteria based on the simulated saturation mutation (including 19 amino acid residues) results. Of these, the mutants Q78Y and G119A were found to retain 87% and 27% activity after incubation at 70 °C for 20 min, compared with the 19% activity for the wild type. Subsequently, a double-point mutant (Q78Y/G119A) was obtained and identified with optimal temperature increase from 65 to 70 °C and a 41.51% decrease in Km. The obtained T1/2 values of 42.2 min (70 °C) and 16.9 min (75 °C) for Q78Y/G119A showed increases of 340% and 412% compared with that in the wild type. Q78Y/G119A was then employed as a biocatalyst to synthesize cinnamyl acetate, for which the conversion rate reached 99.40% with 0.3 M cinnamyl alcohol at 60 °C. The results validated the enhanced enzymatic properties of the mutant and indicated better prospects for industrial application as compared to that in the wild type. This study reported a method by which an enzyme could evolve to achieve enhanced thermostability, thereby increasing its potential for industrial applications, which could also be expanded to other esterases.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
2
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
3
|
Burkhardt C, Baruth L, Neele Meyer-Heydecke, Klippel B, Margaryan A, Paloyan A, Panosyan HH, Antranikian G. Mining thermophiles for biotechnologically relevant enzymes: evaluating the potential of European and Caucasian hot springs. Extremophiles 2023; 28:5. [PMID: 37991546 PMCID: PMC10665251 DOI: 10.1007/s00792-023-01321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
The development of sustainable and environmentally friendly industrial processes is becoming very crucial and demanding for the rapid implementation of innovative bio-based technologies. Natural extreme environments harbor the potential for discovering and utilizing highly specific and efficient biocatalysts that are adapted to harsh conditions. This review focuses on extremophilic microorganisms and their enzymes (extremozymes) from various hot springs, shallow marine vents, and other geothermal habitats in Europe and the Caucasus region. These hot environments have been partially investigated and analyzed for microbial diversity and enzymology. Hotspots like Iceland, Italy, and the Azores harbor unique microorganisms, including bacteria and archaea. The latest results demonstrate a great potential for the discovery of new microbial species and unique enzymes that can be explored for the development of Circular Bioeconomy.Different screening approaches have been used to discover enzymes that are active at extremes of temperature (up 120 °C), pH (0.1 to 11), high salt concentration (up to 30%) as well as activity in the presence of solvents (up to 99%). The majority of published enzymes were revealed from bacterial or archaeal isolates by traditional activity-based screening techniques. However, the latest developments in molecular biology, bioinformatics, and genomics have revolutionized life science technologies. Post-genomic era has contributed to the discovery of millions of sequences coding for a huge number of biocatalysts. Both strategies, activity- and sequence-based screening approaches, are complementary and contribute to the discovery of unique enzymes that have not been extensively utilized so far.
Collapse
Affiliation(s)
- Christin Burkhardt
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Leon Baruth
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Neele Meyer-Heydecke
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Barbara Klippel
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Armine Margaryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Ani Paloyan
- Scientific and Production Center, "Armbiotechnology" NAS RA, 14 Gyurjyan Str. 0056, Yerevan, Armenia
| | - Hovik H Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Garabed Antranikian
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany.
| |
Collapse
|
4
|
Genome-scale reconstruction and metabolic modelling of the fast-growing thermophile Geobacillus sp. LC300. Metab Eng Commun 2022; 15:e00212. [DOI: 10.1016/j.mec.2022.e00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
5
|
New Platform for Screening Genetic Libraries at Elevated Temperatures: Biological and Genomic Information and Genetic Tools of Geobacillus thermodenitrificans K1041. Appl Environ Microbiol 2022; 88:e0105122. [PMID: 36069579 PMCID: PMC9499010 DOI: 10.1128/aem.01051-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus thermodenitrificans K1041 is an unusual thermophile that is highly transformable via electroporation, making it a promising host for screening genetic libraries at elevated temperatures. In this study, we determined its biological properties, draft genome sequence, and effective vectors and also optimized the electroporation procedures in an effort to enhance its utilization. The organism exhibited swarming motility but not detectable endospore formation, and growth was rapid at 60°C under neutral and relatively low-salt conditions. Although the cells showed negligible acceptance of shuttle plasmids from general strains of Escherichia coli, methylation-controlled plasmids from dam mutant strains were efficiently accepted, suggesting circumvention of a restriction-modification system in G. thermodenitrificans K1041. We optimized the electroporation procedure to achieve efficiencies of 103 to 105 CFU/μg for five types of plasmids, which exhibited the different copy numbers and segregational stabilities in G. thermodenitrificans K1041. Some sets of plasmids were compatible. Moreover, we observed substantial plasmid-directed production of heterologous proteins in the intracellular or extracellular environments. Our successful construction of a library of promoter mutants using K1041 cells as hosts and subsequent screening at elevated temperatures to identify improved promoters revealed that G. thermodenitrificans K1041 was practical as a library host. The draft genomic sequence of the organism contained 3,384 coding genes, including resA and mcrB genes, which are involved in restriction-modification systems. Further examination revealed that in-frame deletions of resA increased transformation efficiencies, but mcrB deletion had no effect. The ΔresA mutant exhibited transformation efficiencies of >105 CFU/μg for some plasmids. IMPORTANCE Geobacillus thermodenitrificans K1041 has yet to be fully characterized. Although it is transformable via electroporation, it rarely accepts Escherichia coli-derived plasmids. This study clarified the biological and genomic properties of G. thermodenitrificans K1041. Additionally, we developed an electroporation procedure resulting in efficient acceptance of E. coli-derived plasmids. This procedure produced transformants using small amounts of plasmids immediately after the ligation reaction. Thus, G. thermodenitrificans K1041 was identified as a host for screening promoter mutants at elevated temperatures. Furthermore, because this strain efficiently produced heterologous proteins, it could serve as a host for screening thermostable proteins encoded in random mutant libraries or metagenomes. We also generated a ΔresA mutant that exhibited transformation efficiencies of >105 CFU/μg, which were highest in cases of electroporation-based transformation of Geobacillus spp. with E. coli-derived plasmids. Our findings provide a new platform for screening diverse genetic libraries at elevated temperatures.
Collapse
|
6
|
Zhang B, Sun L, Song X, Huang D, Li M, Peng C, Wang W. Genetically engineered thermotolerant facultative anaerobes for high-efficient degradation of multiple hazardous nitroalkanes. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124253. [PMID: 33144004 DOI: 10.1016/j.jhazmat.2020.124253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Nitroalkanes are important industrial raw materials but also toxic pollutants, which are difficult to degrade once released into the environment. In this study, to significantly improve the degradation-efficiency of multiple nitroalkanes, a facultative anaerobe was genetically engineered, possible influencing factors and simulated application experiments of bioreactor were tested and evaluated. Among all engineered recombinants, the most effective strains NG-S1 (anaerobic) and NG-S2 (aerobic) displayed 2-fold and 2.8-fold final degradation rates higher than the wild type, respectively. Exogenous components, particularly those that enhance coenzyme synthesis, helped to increase the degradation rate, as the level of coenzymes affected full function of overexpressed nitroalkane oxidase. Importantly, simulated mixed-nitroalkane-wastewater bioreactor experiments proved excellent and sustainable degradation performance of the engineered strains for potential industrial applications. Collectively, these findings provide a promising thermophilic biological engineering platform and a new perspective for high-efficient and continuous environmental bioremediation of hazardous pollutants under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xiaoru Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Mostafa YS, Alamri SA, Hashem M, Nafady NA, Abo-Elyousr KA, Mohamed ZA. Thermostable Cellulase Biosynthesis from Paenibacillus alvei and its Utilization in Lactic Acid Production by Simultaneous Saccharification and Fermentation. Open Life Sci 2020; 15:185-197. [PMID: 33987475 PMCID: PMC8114780 DOI: 10.1515/biol-2020-0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cellulosic date palm wastes may have beneficial biotechnological applications for eco-friendly utilization. This study reports the isolation of thermophilic cellulase-producing bacteria and their application in lactic acid production using date palm leaves. The promising isolate was identified as Paenibacillus alvei by 16S rRNA gene sequencing. Maximum cellulase production was acquired using alkaline treated date palm leaves (ATDPL) at 48 h and yielded 4.50 U.mL-1 FPase, 8.11 U.mL-1 CMCase, and 2.74 U.mL-1 β-glucosidase. The cellulase activity was optimal at pH 5.0 and 50°C with good stability at a wide temperature (40-70°C) and pH (4.0-7.0) range, demonstrating its suitability in simultaneous saccharification and fermentation. Lactic acid fermentation was optimized at 4 days, pH 5.0, 50°C, 6.0% cellulose of ATDPL, 30 FPU/ g cellulose, 1.0 g. L-1 Tween 80, and 5.0 g. L-l yeast extract using Lactobacillus delbrueckii. The conversion efficiency of lactic acid from the cellulose of ATDPL was 98.71%, and the lactic acid productivity was 0.719 g. L-1 h-1. Alkaline treatment exhibited a valuable effect on the production of cellulases and lactic acid by reducing the lignin content and cellulose crystallinity. The results of this study offer a credible procedure for using date palm leaves for microbial industrial applications.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
| | - Saad A. Alamri
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, AbhaSaudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, Egypt
| | - Nivien A. Nafady
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, Egypt
| | | | - Zakaria A. Mohamed
- King Abdulaziz University, Faculty of Meteorology, Environmental and Arid Land Agriculture, Department of Arid Land Agriculture, JeddahSaudi Arabia
| |
Collapse
|
8
|
Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing. Biochem Soc Trans 2020; 47:1781-1794. [PMID: 31845725 DOI: 10.1042/bst20190293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023]
Abstract
Conversion of cellulosic biomass (non-edible plant material) to products such as chemical feedstocks and liquid fuels is a major goal of industrial biotechnology and an essential component of plans to move from an economy based on fossil carbon to one based on renewable materials. Many microorganisms can effectively degrade cellulosic biomass, but attempts to engineer this ability into industrially useful strains have met with limited success, suggesting an incomplete understanding of the process. The recent discovery and continuing study of enzymes involved in oxidative depolymerisation, as well as more detailed study of natural cellulose degradation processes, may offer a way forward.
Collapse
|
9
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|