1
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Manohar MM, Campbell BE, Walduck AK, Moore RJ. Enhancement of live vaccines by co-delivery of immune modulating proteins. Vaccine 2022; 40:5769-5780. [PMID: 36064671 DOI: 10.1016/j.vaccine.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.
Collapse
Affiliation(s)
- Megha M Manohar
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
3
|
Vasquez R, Bagon BB, Song JH, Han NS, Kang DK. A novel, non-GMO surface display in Limosilactobacillus fermentum mediated by cell surface hydrolase without anchor motif. BMC Microbiol 2022; 22:190. [PMID: 35922769 PMCID: PMC9347134 DOI: 10.1186/s12866-022-02608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies have demonstrated the potential of surface display technology in therapeutic development and enzyme immobilization. Utilization of lactic acid bacteria in non-GMO surface display applications is advantageous due to its GRAS status. This study aimed to develop a novel, non-GMO cell wall anchoring system for lactic acid bacteria using a cell-surface hydrolase (CshA) from Lactiplantibacillus plantarum SK156 for potential industrial and biomedical applications. Analysis of the CshA revealed that it does not contain any known classical anchor domains. Although CshA lacks a classical anchor domain, it successfully displayed the reporter protein superfolder GFP on the surface of several lactic acid bacteria in host dependent manner. CshA-sfGFP fusion protein was displayed greatest on Limosilactobacillus fermentum SK152. Pretreatment with trichloroacetic acid further enhanced the binding of CshA to Lm. fermentum. The binding conditions of CshA on pretreated Lm. fermentum (NaCl, pH, time, and temperature) were also optimized, resulting in a maximum binding of up to 106 CshA molecules per pretreated Lm. fermentum cell. Finally, this study demonstrated that CshA-decorated pretreated Lm. fermentum cells tolerates gastrointestinal stress, such as low pH and presence of bile acid. To our knowledge, this study is the first to characterize and demonstrate the cell-surface display ability of CshA. The potential application of CshA in non-GMO antigen delivery system and enzyme immobilization remains to be tested.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Bernadette B Bagon
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Nam Soo Han
- Department of Food Science and Technology, Chungbuk National University, Cheongju, 361-763, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Wiull K, Boysen P, Kuczkowska K, Moen LF, Carlsen H, Eijsink VGH, Mathiesen G. Comparison of the Immunogenic Properties of Lactiplantibacillus plantarum Carrying the Mycobacterial Ag85B-ESAT-6 Antigen at Various Cellular Localizations. Front Microbiol 2022; 13:900922. [PMID: 35722346 PMCID: PMC9204040 DOI: 10.3389/fmicb.2022.900922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Kamilla Wiull,
| | - Preben Boysen
- Faculty of Veterinary Medicine, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Katarzyna Kuczkowska
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lars Fredrik Moen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- Geir Mathiesen,
| |
Collapse
|
5
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|
6
|
main mechanisms of the effect of intestinal microflora on the immune system and their importance in clinical practice. Fam Med 2021. [DOI: 10.30841/2307-5112.4.2021.249409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Tay PKR, Lim PY, Ow DSW. A SH3_5 Cell Anchoring Domain for Non-recombinant Surface Display on Lactic Acid Bacteria. Front Bioeng Biotechnol 2021; 8:614498. [PMID: 33585415 PMCID: PMC7873443 DOI: 10.3389/fbioe.2020.614498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are a group of gut commensals increasingly recognized for their potential to deliver bioactive molecules in vivo. The delivery of therapeutic proteins, in particular, can be achieved by anchoring them to the bacterial surface, and various anchoring domains have been described for this application. Here, we investigated a new cell anchoring domain (CAD4a) isolated from a Lactobacillus protein, containing repeats of a SH3_5 motif that binds non-covalently to peptidoglycan in the LAB cell wall. Using a fluorescent reporter, we showed that C-terminal CAD4a bound Lactobacillus fermentum selectively out of a panel of LAB strains, and cell anchoring was uniform across the cell surface. Conditions affecting CAD4a anchoring were studied, including temperature, pH, salt concentration, and bacterial growth phase. Quantitative analysis showed that CAD4a allowed display of 105 molecules of monomeric protein per cell. We demonstrated the surface display of a functional protein with superoxide dismutase (SOD), an antioxidant enzyme potentially useful for treating gut inflammation. SOD displayed on cells could be protected from gastric digestion using a polymer matrix. Taken together, our results show the feasibility of using CAD4a as a novel cell anchor for protein surface display on LAB.
Collapse
Affiliation(s)
- Pei Kun Richie Tay
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pei Yu Lim
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
8
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
9
|
The Role of Mucosal Immunity and Recombinant Probiotics in SARS-CoV2 Vaccine Development. Probiotics Antimicrob Proteins 2021; 13:1239-1253. [PMID: 33770348 PMCID: PMC7996120 DOI: 10.1007/s12602-021-09773-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), causing the 2019 novel coronavirus disease (COVID-19), was introduced by WHO (World Health Organization) as "pandemic" in March 2020. According to WHO, thus far (23 November 2020) 58,425,681 infected cases including 1,385,218 deaths have been reported worldwide. In order to reduce transmission and spread of this lethal virus, attempts are globally being made to develop an appropriate vaccine. Intending to neutralize pathogens at their initial entrance site, protective mucosal immunity is inevitably required. In SARS-CoV2 infection and transmission, respiratory mucosa plays a key role; hence, apparently mucosal vaccination could be a superior approach to elicit mucosal and systemic immune responses simultaneously. In this review, the advantages of mucosal vaccination to control COVID-19 infection, limitations, and outcomes of mucosal vaccines have been highlighted. Considering the gut microbiota dysregulation in COVID-19, we further provide evidences on utilization of recombinant probiotics, particularly lactic acid bacteria (LAB) as vaccine carrier. Their intrinsic immunomodulatory features, natural adjuvanticity, and feasible expression of relevant antigen in the mucosal surface make them more appealing as live cell factory. Among all available platforms, bioengineered probiotics are considered as the most affordable, most practical, and safest vaccination approach to halt this emerging virus.
Collapse
|
10
|
Mirzaei R, Attar A, Papizadeh S, Jeda AS, Hosseini-Fard SR, Jamasbi E, Kazemi S, Amerkani S, Talei GR, Moradi P, Jalalifar S, Yousefimashouf R, Hossain MA, Keyvani H, Karampoor S. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol 2021; 166:1819-1840. [PMID: 33745067 PMCID: PMC7980799 DOI: 10.1007/s00705-021-05036-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 is an acute respiratory infection accompanied by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected millions of people globally. To date, there are no highly efficient therapies for this infection. Probiotic bacteria can interact with the gut microbiome to strengthen the immune system, enhance immune responses, and induce appropriate immune signaling pathways. Several probiotics have been confirmed to reduce the duration of bacterial or viral infections. Immune fitness may be one of the approaches by which protection against viral infections can be reinforced. In general, prevention is more efficient than therapy in fighting viral infections. Thus, probiotics have emerged as suitable candidates for controlling these infections. During the COVID-19 pandemic, any approach with the capacity to induce mucosal and systemic reactions could potentially be useful. Here, we summarize findings regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. However, the benefits of probiotics are strain-specific, and it is necessary to identify the bacterial strains that are scientifically established to be beneficial.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Attar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saher Papizadeh
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Jamasbi
- Department of Anatomical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Amerkani
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholam Reza Talei
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Akhter Hossain
- The Florey University of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang M, Fu T, Hao J, Li L, Tian M, Jin N, Ren L, Li C. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int J Biol Macromol 2020; 160:736-740. [PMID: 32485251 PMCID: PMC7260514 DOI: 10.1016/j.ijbiomac.2020.05.239] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic in the past four months and causes respiratory disease in humans of almost all ages. Although several drugs have been announced to be partially effective treatments for this disease, no approved vaccine is available. Here, we described the construction of a recombinant Lactobacillus plantarum strain expressing the SARS-CoV-2 spike protein. The results showed that the spike gene with optimized codons could be efficiently expressed on the surface of recombinant L. plantarum and exhibited high antigenicity. The highest protein yield was obtained under the following conditions: cells were induced with 50 ng/mL SppIP at 37 °C for 6-10 h. The recombinant spike (S) protein was stable under normal conditions and at 50 °C, pH = 1.5, or a high salt concentration. Recombinant L. plantarum may provide a promising food-grade oral vaccine candidate against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maopeng Wang
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Tingting Fu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
12
|
Vilander AC, Dean GA. Adjuvant Strategies for Lactic Acid Bacterial Mucosal Vaccines. Vaccines (Basel) 2019; 7:vaccines7040150. [PMID: 31623188 PMCID: PMC6963626 DOI: 10.3390/vaccines7040150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive, acid-tolerant bacteria that have long been used in food fermentation and are generally recognized as safe (GRAS). LAB are a part of a normal microbiome and act as probiotics, improving the gastrointestinal microbiome and health when consumed. An increasing body of research has shown the importance of the microbiome on both mucosal immune heath and immune response to pathogens and oral vaccines. Currently, there are few approved mucosal vaccines, and most are attenuated viruses or bacteria, which necessitates cold chain, carries the risk of reversion to virulence, and can have limited efficacy in individuals with poor mucosal health. On account of these limitations, new types of mucosal vaccine vectors are necessary. There has been increasing interest and success in developing recombinant LAB as next generation mucosal vaccine vectors due to their natural acid and bile resistance, stability at room temperature, endogenous activation of innate and adaptive immune responses, and the development of molecular techniques that allow for manipulation of their genomes. To enhance the immunogenicity of these LAB vaccines, numerous adjuvant strategies have been successfully employed. Here, we review these adjuvant strategies and their mechanisms of action which include: Toll-like receptor ligands, secretion of bacterial toxins, secretion of cytokines, direct delivery to antigen presenting cells, and enterocyte targeting. The ability to increase the immune response to LAB vaccines gives them the potential to be powerful mucosal vaccine vectors against mucosal pathogens.
Collapse
Affiliation(s)
- Allison C Vilander
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Gregg A Dean
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Kuczkowska K, Øverland L, Rocha SDC, Eijsink VGH, Mathiesen G. Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Vaccine 2019; 37:6371-6379. [PMID: 31526620 DOI: 10.1016/j.vaccine.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus spp. comprise a large group of Gram-positive lactic acid bacteria with varying physiological, ecological and immunomodulatory properties that are widely exploited by mankind, primarily in food production and as health-promoting probiotics. Recent years have shown increased interest in using lactobacilli for delivery of vaccines, mainly due to their ability to skew the immune system towards pro-inflammatory responses. We have compared the potential of eight Lactobacillus species, L. plantarum, L. brevis, L. curvatus, L. rhamnosus, L. sakei, L. gasseri, L. acidophilus and L. reuteri, as immunogenic carriers of the Ag85B-ESAT-6 antigen from Mycobacterium tuberculosis. Surface-display of the antigen was achieved in L. plantarum, L. brevis, L. gasseri and L. reuteri and these strains were further analyzed in terms of their in vitro and in vivo immunogenicity. All strains activated human dendritic cells in vitro. Immunization of mice using a homologous prime-boost regimen comprising a primary subcutaneous immunization followed by three intranasal boosters, led to slightly elevated IgG levels in serum in most strains, and, importantly, to significantly increased levels of antigen-specific mucosal IgA. Cellular immunity was assessed by studying antigen-specific T cell responses in splenocytes, which did not reveal proliferation as assessed by the expression of Ki67, but which showed clear antigen-specific IFN-γ and IL-17 responses for some of the groups. Taken together, the present results indicate that L. plantarum and L. brevis are the most promising carriers of TB vaccines.
Collapse
Affiliation(s)
- Katarzyna Kuczkowska
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway.
| | - Lise Øverland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway
| | - Sergio D C Rocha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Aas, Norway
| |
Collapse
|
14
|
Kuczkowska K, Copland A, Øverland L, Mathiesen G, Tran AC, Paul MJ, Eijsink VGH, Reljic R. Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection. Front Immunol 2019; 10:1588. [PMID: 31354727 PMCID: PMC6632704 DOI: 10.3389/fimmu.2019.01588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccination is considered the most effective strategy for controlling tuberculosis (TB). The existing vaccine, the Bacille Calmette-Guérin (BCG), although partially protective, has a number of limitations. Therefore, there is a need for developing new TB vaccines and several strategies are currently exploited including the use of viral and bacterial delivery vectors. We have previously shown that Lactobacillus plantarum (Lp) producing Ag85B and ESAT-6 antigens fused to a dendritic cell-targeting peptide (referred to as Lp_DC) induced specific immune responses in mice. Here, we analyzed the ability of two Lp-based vaccines, Lp_DC and Lp_HBD (in which the DC-binding peptide was replaced by an HBD-domain directing the antigen to non-phagocytic cells) to activate antigen-presenting cells, induce specific immunity and protect mice from Mycobacterium tuberculosis infection. We tested two strategies: (i) Lp as BCG boosting vaccine (a heterologous regimen comprising parenteral BCG immunization followed by intranasal Lp boost), and (ii) Lp as primary vaccine (a homologous regimen including subcutaneous priming followed by intranasal boost). The results showed that both Lp constructs applied as a BCG boost induced specific cellular immunity, manifested in T cell proliferation, antigen-specific IFN-γ responses and multifunctional T cells phenotypes. More importantly, intranasal boost with Lp_DC or Lp_HBD enhanced protection offered by BCG, as shown by reduced M. tuberculosis counts in lungs. These findings suggest that Lp constructs could be developed as a potential mucosal vaccine platform against mycobacterial infections.
Collapse
Affiliation(s)
- Katarzyna Kuczkowska
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Alastair Copland
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lise Øverland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Andy C Tran
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Mathew J Paul
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
15
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall-anchoring motif (LysM) from inclusion bodies using non-denaturing reagent (N-laurylsarcosine). BMC Biotechnol 2019; 19:27. [PMID: 31088425 PMCID: PMC6518676 DOI: 10.1186/s12896-019-0522-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated. RESULTS Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days). CONCLUSION The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|