1
|
Chen C, Li M, Li F, Liang X, Zhang H, Gu Y, Guo G. Dynamic Alterations of the Intestinal Microbiota of Fifth-Instar Silkworms ( Bombyx mori) Fed an Artificial Diet or Mulberry Leaves. INSECTS 2024; 15:970. [PMID: 39769572 PMCID: PMC11677146 DOI: 10.3390/insects15120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Intestinal microbes are known to impact the growth and development of insects. However, there are few reports on the intestinal microbiota of silkworms (Bombyx mori). The present study used Illumina 16S rRNA gene sequencing to investigate the changes over time in the intestinal bacteriome of fifth-instar silkworms fed mulberry leaf (MB) or artificial diet (AD). The results showed that the intestinal microbiota richness was significantly higher, before the 4th day of the fifth instar, in the silkworms fed AD rather than MB, while the richness was consistent between the AD and MB groups directly before cocooning. Proteobacteria was the most dominant phylum in MBs, AD, and the silkworm intestinal bacteriome, regardless of sex, feed type, or date, except that Firmicutes was the most dominant phylum for females on the 6th day of the fifth instar. Acinetobacter was the dominant genus in silkworms fed MB, while Enterococcus was the dominant genus in silkworms fed AD. Only 3.62% of the intestinal microbiota of silkworms fed MB was derived from MB, while 13.71% of the intestinal microbiota of silkworms fed AD was derived from AD. Thus, both bacterial communities were dominated by bacteria of unknown origin (non-feed sources). In the correlation network analysis, the silkworms fed AD appeared to have more complex interactions than the silkworms fed MB. Proteobacteria was the phylum most closely related to silkworm cocoon quality and feeding efficiency. Pantoea was the genera most closely related to cocoon quality and silkworm feeding efficiency in silkworms fed MB. AD had a significant impact on the predicted functions of the intestinal microbiota. There were significant differences in all six KEGG level 1 functions and all BugBase (except for Gram_Positive) phenotypes between silkworms fed AD or MB. The BugBase "Aerobic" phenotype was significantly higher in females compared to males, in both the AD and MB groups, while the "Oxidative_Stress_Tolerant" phenotype was the opposite. Overall, the findings suggest that the diversity, community structure, and predicted functions of intestinal bacteria in silkworms were significantly influenced by feed type. The study provides insights into the complex silkworm intestinal bacterial diversity and a foundation for probiotic screening.
Collapse
Affiliation(s)
- Chuanjie Chen
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| | - Meng Li
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| | - Feng Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Xiaoyan Liang
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| | - Haiyang Zhang
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| | - Yinyu Gu
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| | - Guang Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai 265500, China; (C.C.); (M.L.); (X.L.); (H.Z.)
- Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Yantai 265500, China
| |
Collapse
|
2
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
3
|
El Khoury S, Gauthier J, Mercier PL, Moïse S, Giovenazzo P, Derome N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol Spectr 2024; 12:e0057824. [PMID: 39189755 PMCID: PMC11448422 DOI: 10.1128/spectrum.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
Pesticides are causing honeybee mortality worldwide. Research carried out on honeybees indicates that application of pesticides has a significant impact on the core gut community, which ultimately leads to an increase in the growth of harmful pathogens. Disturbances caused by pesticides also affect the way bacterial members interact, which results in gut microbial dysbiosis. Administration of beneficial microbes has been previously demonstrated to be effective in treating or preventing disease in honeybees. The objective of this study was to measure under in vivo conditions the ability of two bacterial strains (the Enterobacter sp. and Pantoea sp.) isolated from honeybee gut to improve survival and mitigate gut microbiota dysbiosis in honeybees exposed to a sublethal clothianidin dose (0.1 ppb). Both gut bacterial strains were selected for their ability to degrade clothianidin in vitro regardless of their host-microbe interaction characteristics (e.g., beneficial, neutral, or harmful). To this end, we conducted cage trials on 4- to 6-day-old newly emerging honeybees. During microbial administration, we jointly monitored the taxonomic distribution and activity level of bacterial symbionts quantifying 16S rRNA transcripts. First, curative administration of the Pantoea sp. strain significantly improved the survival of clothianidin-exposed honeybees compared to sugar control bees (i.e., supplemented with sugar [1:1]). Second, curative administration of the Enterobacter sp. strain significantly mitigated the clothianidin-induced dysbiosis observed in the midgut structural network, but without improving survival. IMPORTANCE The present work suggests that administration of bacterial strains isolated from honeybee gut may promote recovery of gut microbiota homeostasis after prolonged clothianidin exposure, while improving survival. This study highlights that gut bacterial strains hold promise for developing efficient microbial formulations to mitigate environmental pesticide exposure in honeybee colonies.
Collapse
Affiliation(s)
- Sarah El Khoury
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Jeff Gauthier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Pierre Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Stéphane Moïse
- INRS, Institut National de la Recherche Scientifique, Québec, Canada
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Yue H, Ma X, Sun S, Hu H, Wu J, Xu T, Huang D, Luo Y, Wu J, Huang T. Diversity and saline-alkali resistance of Coleoptera endosymbiont bacteria in arid and semi-arid climate. Microbiol Spectr 2024; 12:e0023224. [PMID: 38912811 PMCID: PMC11302287 DOI: 10.1128/spectrum.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/21/2024] [Indexed: 06/25/2024] Open
Abstract
Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes. IMPORTANCE Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
- School of Future Technology, Xinjiang University, Urumqi, China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shuwen Sun
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Hongying Hu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jieyi Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Xu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Danyang Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Junqiang Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Haytham H, Kamel C, Wafa D, Salma F, Naima BM, George T, Ameur C, Msaad Guerfali M. Probiotic consortium modulating the gut microbiota composition and function of sterile Mediterranean fruit flies. Sci Rep 2024; 14:1058. [PMID: 38212383 PMCID: PMC10784543 DOI: 10.1038/s41598-023-50679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.. There is evidence that the bacterial symbiont of insects may play critical roles in digestion, development, reproduction, and behavior. Probiotics are an increasingly common approach for restoring the intestinal microbiota structure and fitness parameters of sterile insects, particularly in the Vienna 8 genetic sexing strain (V8-GSS) of the Mediterranean fruit fly (medfly), Ceratitis capitata. Here, we explore the influence of the previously isolated bacterial strain, Lactococcus lactis, Enterobacter sp., and Klebsiella oxytoca, administration as probiotic consortia (LEK-PC) to the larvae and/or adult diet over the course of 20 rearing generations on fitness parameters. The experiment was carried out in four colonies: a control colony (C), one to which probiotics were not added, one to which probiotics were added to the larval medium (L+), one to which probiotics were added to the adult medium (A+), and one to which probiotics were added to both the larval and adult mediums (AL+). Emergence, flight ability, survival under stress conditions, and mating competitiveness, were all significantly improved by the LEK-PC treatment independently of the administration stage. The intestinal microbiota structure of various medfly V8-GSS colonies also underwent a significant shift, despite the fact that the core microbial community was unaffected by the LEK-PC administration stage, according to 16S metagenomics sequencing. Comparison of the metabolic function prediction and associated carbohydrate enzymes among colonies treated with "LEK-PC" showed an enrichment of metabolic functions related to carbohydrates, amino acids, cofactors, and vitamins metabolism, as well as, glycoside hydrolase enzymes in the AL+ colony compared to the control. This study enriches the knowledge regarding the benefits of probiotic treatment to modulate and restore the intestinal microbiota of C. capitata sterile males for a better effectiveness of the SIT.
Collapse
Affiliation(s)
- Hamden Haytham
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Charaabi Kamel
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Djobbi Wafa
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Fadhel Salma
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Bel Mokhtar Naima
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Tsiamis George
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Cherif Ameur
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia.
| |
Collapse
|
6
|
ElKraly OA, Awad M, El-Saadany HM, Hassanein SE, Elrahman TA, Elnagdy SM. Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Anim Microbiome 2023; 5:44. [PMID: 37715236 PMCID: PMC10504801 DOI: 10.1186/s42523-023-00264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023] Open
Abstract
Endosymbionts are known to have significant effects on their insect hosts, including nutrition, reproduction, and immunity. Insects gut microbiota is a critical component that affects their physiological and behavioral characteristics. The black cutworm (BCW), Agrotis ipsilon, is an economically important lepidopteran pest that has a diverse gut microbiome composed of nine species belonging to three phyla: Proteobacteria, Actinobacteria, and Firmicutes. This study was conducted to investigate the diversity of gut bacteria isolated from BCW larvae and moths and their effects on metabolism and pesticide degradation. The bacterial isolates were identified using the 16 S rRNA gene. The study showed that the gut microbiome composition significantly affected the metabolism of BCW larvae. Based on the screening results of synthesis of digestive enzymes and pesticide degradation, Brachybacterium conglomeratum and Glutamicibacter sp were selected to perform the remaining experiments as single isolates and consortium. The consortium-fed larvae showed high metabolic indices compared to antibiotic-fed larvae and the control. The gut bacteria were also shown to degrade three pesticide groups. Concerns regarding the health risk of chlorpyrifos have been raised due to its extensive use in agriculture. The isolated B. conglomeratum was more effective in chlorpyrifos degradation than the consortium. Furthermore, the study also examined the presence of sex related endosymbionts (Wolbachia, Spiroplasma, and Rickettsia) in the reproductive tissues of adults. The outcomes demonstrated that none of the examined endosymbionts existed. In conclusion, the study highlights the importance of the gut microbiome in insect physiology and behavior and its potential applications in biotechnology. It provides insights into developing eco-friendly pest control and bioremediation strategies using gut bacteria.
Collapse
Affiliation(s)
- Omnia Abdullah ElKraly
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt
- Bio-insecticides Production Unit, Plant Protection Research Institute (PPRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| | - Hassan Mohamed El-Saadany
- Bio-insecticides Production Unit, Plant Protection Research Institute (PPRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Sameh E Hassanein
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Tahany Abd Elrahman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt
| | - Sherif M Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamma St, Giza, 12613, Giza, Egypt.
| |
Collapse
|
7
|
Hafsi A, Delatte H. Enterobactereaceae symbiont as facilitators of biological invasion: review on Tephritidae fruit flies. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Nikolouli K, Sassù F, Ntougias S, Stauffer C, Cáceres C, Bourtzis K. Enterobacter sp. AA26 as a Protein Source in the Larval Diet of Drosophila suzukii. INSECTS 2021; 12:923. [PMID: 34680692 PMCID: PMC8539531 DOI: 10.3390/insects12100923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
The Spotted-Wing Drosophila fly, Drosophila suzukii, is an invasive pest species infesting major agricultural soft fruits. Drosophila suzukii management is currently based on insecticide applications that bear major concerns regarding their efficiency, safety and environmental sustainability. The sterile insect technique (SIT) is an efficient and friendly to the environment pest control method that has been suggested for the D. suzukii population control. Successful SIT applications require mass-rearing of the strain to produce competitive and of high biological quality males that will be sterilized and consequently released in the wild. Recent studies have suggested that insect gut symbionts can be used as a protein source for Ceratitis capitata larval diet and replace the expensive brewer's yeast. In this study, we exploited Enterobacter sp. AA26 as partial and full replacement of inactive brewer's yeast in the D. suzukii larval diet and assessed several fitness parameters. Enterobacter sp. AA26 dry biomass proved to be an inadequate nutritional source in the absence of brewer's yeast and resulted in significant decrease in pupal weight, survival under food and water starvation, fecundity, and adult recovery.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Fabiana Sassù
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
- Roklinka 224, Dolní Jirčany, 252 44 Psáry, Czech Republic
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece;
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
| |
Collapse
|
9
|
Msaad Guerfali M, Charaabi K, Hamden H, Djobbi W, Fadhl S, Mosbah A, Cherif A. Probiotic based-diet effect on the immune response and induced stress in irradiated mass reared Ceratitis capitata males (Diptera: Tephritidae) destined for the release in the sterile insect technique programs. PLoS One 2021; 16:e0257097. [PMID: 34506561 PMCID: PMC8432743 DOI: 10.1371/journal.pone.0257097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Ceratitis capitata (medfly) is one of the most devastating crop pests worldwide. The Sterile Insect Technique (SIT) is a control method that is based on the mass rearing of males, their sterilization, and release in the field. However, the effectiveness of the technique depends on the quality of the released males and their fitness. We previously isolated and selected a probiotic bacteria (Enterobacter sp.), from wild-caught medflies, according to criteria that improved biological quality traits of reared medfly males.We firstly evaluated the impact of the irradiation on the expression of different immune and stress genes in the medfly sterile males. Expression was measured at differents time points ranging from 0 to 168 h after irradiation to capture the response of genes with distinct temporal expression patterns. Then, we supplemented the larval diet with previously isolated Enterobacter sp.strain, live and autoclaved at various concentrations to see whether the probiotic treatments affect, through their protective role, the gene expression level, and quality traits. The irradiation had significant effect on the genes attacin, cecropin, PGPR-LC, hsp23, and hsp70 level expression. The expression of attacin and PGPR-LC was up-regulated while that of cecropin was down-regulated. Hsp genes showed decreased levels between 0 and 18 h to peak at 72 h. However, the supplementation of the probiotic strain, either live or autoclaved, was statistically significant only for attacingene. However, significant interaction time x probiotic was noticed for attacin, cecropin, hsp23 and hsp70. The probiotic treatments also improved the quality control parameters like pupal weight. From this work we can conclude that a consortium of parabiotics (autoclaved probiotics) treatment will be recommended in insectaries considering both the beneficial effects on mass reared insects and its general safety for insectary workers and for environment.
Collapse
Affiliation(s)
- Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Wafa Djobbi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Salma Fadhl
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunisia
| | - Amor Mosbah
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- Laboratory of Biology and Bio-Geo Resources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
10
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
11
|
Guzman J, Vilcinskas A. Bacteria associated with cockroaches: health risk or biotechnological opportunity? Appl Microbiol Biotechnol 2020; 104:10369-10387. [PMID: 33128616 PMCID: PMC7671988 DOI: 10.1007/s00253-020-10973-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Abstract Cockroaches have existed for 300 million years and more than 4600 extant species have been described. Throughout their evolution, cockroaches have been associated with bacteria, and today Blattabacterium species flourish within specialized bacteriocytes, recycling nitrogen from host waste products. Cockroaches can disseminate potentially pathogenic bacteria via feces and other deposits, particularly members of the family Enterobacteriaceae, but also Staphylococcus and Mycobacterium species, and thus, they should be cleared from sites where hygiene is essential, such as hospitals and kitchens. On the other hand, cockroaches also carry bacteria that may produce metabolites or proteins with potential industrial applications. For example, an antibiotic-producing Streptomyces strain was isolated from the gut of the American cockroach Periplaneta americana. Other cockroach-associated bacteria, including but not limited to Bacillus, Enterococcus, and Pseudomonas species, can also produce bioactive metabolites that may be suitable for development as pharmaceuticals or plant protection products. Enzymes that degrade industrially relevant substrates, or that convert biomasses into useful chemical precursors, are also expressed in cockroach-derived bacteria and could be deployed for use in the food/feed, paper, oil, or cosmetics industries. The analysis of cockroach gut microbiomes has revealed a number of lesser-studied bacteria that may form the basis of novel taxonomic groups. Bacteria associated with cockroaches can therefore be dangerous or useful, and this review explores the bacterial clades that may provide opportunities for biotechnological exploitation. Key points • Members of the Enterobacteriaceae are the most frequently cultivated bacteria from cockroaches. • Cultivation-independent studies have revealed a diverse community, led by the phyla Bacteroidetes and Firmicutes. • Although cockroaches may carry pathogenic bacteria, most strains are innocuous and may be useful for biotechnological applications. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-10973-6.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
12
|
Salgueiro J, Pimper LE, Segura DF, Milla FH, Russo RM, Asimakis E, Stathopoulou P, Bourtzis K, Cladera JL, Tsiamis G, Lanzavecchia SB. Gut Bacteriome Analysis of Anastrepha fraterculus sp. 1 During the Early Steps of Laboratory Colonization. Front Microbiol 2020; 11:570960. [PMID: 33193166 PMCID: PMC7606190 DOI: 10.3389/fmicb.2020.570960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated to insect species are involved in essential biological functions such as host nutrition, reproduction and survivability. Main factors have been described as modulators of gut bacterial community, such as diet, habit, developmental stage and taxonomy of the host. The present work focuses on the complex changes that gut microbial communities go through when wild insects are introduced to artificial rearing conditions. Specifically, we analyzed the effect of the laboratory colonization on the richness and diversity of the gut bacteriome hosted by the fruit fly pest Anastrepha fraterculus sp. 1. Bacterial profiles were studied by amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in gut samples of males and females, in teneral (1-day-old, unfed) and post-teneral (15-day-old, fed) flies. A total of 3,147,665 sequence reads were obtained and 32 bacterial operational taxonomic units (OTUs) were identified. Proteobacteria was the most abundant phylum (93.3% of the total reads) and, Wolbachia and Enterobacter were the most represented taxa at the genus level (29.9% and 27.7%, respectively, of the total read counts). Wild and laboratory flies showed highly significant differences in the relative abundances of bacteria. The analysis of the core bacteriome showed the presence of five OTUs in all samples grouped by origin, while nine and five OTUs were exclusively detected in laboratory and wild flies, respectively. Irrespective of fly origin or sex, a dominant presence of Wolbachia was observed in teneral flies, whereas Enterobacter was highly abundant in post-teneral individuals. We evidenced significant differences in bacterial richness and diversity among generations under laboratory colonization (F0, F1, F3 and F6) and compared to laboratory and wild flies, displaying also differential patterns between teneral and post-teneral flies. Laboratory and wild A. fraterculus sp. 1 harbor different gut bacterial communities. Laboratory colonization has an important effect on the microbiota, most likely associated to the combined effects of insect physiology and environmental conditions (e.g., diet and colony management).
Collapse
Affiliation(s)
- Julieta Salgueiro
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lida E Pimper
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Romina M Russo
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge L Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
13
|
Kyritsis GA, Augustinos AA, Ntougias S, Papadopoulos NT, Bourtzis K, Cáceres C. Enterobacter sp. AA26 gut symbiont as a protein source for Mediterranean fruit fly mass-rearing and sterile insect technique applications. BMC Microbiol 2019; 19:288. [PMID: 31870292 PMCID: PMC6929400 DOI: 10.1186/s12866-019-1651-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Insect species have established sophisticated symbiotic associations with diverse groups of microorganisms including bacteria which have been shown to affect several aspects of their biology, physiology, ecology and evolution. In addition, recent studies have shown that insect symbionts, including those localized in the gastrointestinal tract, can be exploited for the enhancement of sterile insect technique (SIT) applications against major insect pests such as the Mediterranean fruit fly (medfly) Ceratitis capitata. We previously showed that Enterobacter sp. AA26 can be used as probiotic supplement in medfly larval diet improving the productivity and accelerating the development of the VIENNA 8 genetic sexing strain (GSS), which is currently used in large scale operational SIT programs worldwide. Results Enterobacter sp. AA26 was an adequate nutritional source for C. capitata larvae, comprising an effective substitute for brewer’s yeast. Incorporating inactive bacterial cells in the larval diet conferred a number of substantial beneficial effects on medfly biology. The consumption of bacteria-based diet (either as full or partial yeast replacement) resulted in decreased immature stages mortality, accelerated immature development, increased pupal weight, and elongated the survival under stress conditions. Moreover, neither the partial nor the complete replacement of yeast with Enterobacter sp. AA26 had significant impact on adult sex ratio, females’ fecundity, adults’ flight ability and males’ mating competitiveness. The absence of both yeast and Enterobacter sp. AA26 (deprivation of protein source and possible other important nutrients) from the larval diet detrimentally affected the larval development, survival and elongated the immature developmental duration. Conclusions Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS as assessed by the FAO/IAEA/USDA standard quality control tests. We discuss this finding in the context of mass-rearing and SIT applications.
Collapse
Affiliation(s)
- Georgios A Kyritsis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.,Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446, N. Ionia, Magnisia, Greece
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas Sofias 12, 67100, Xanthi, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446, N. Ionia, Magnisia, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| |
Collapse
|