1
|
Jeyaraman N, Jeyaraman M, Muthu S, Balaji S, Ramasubramanian S, Patro BP. Chondrogenic Potential of Umbilical Cord-Derived Mesenchymal Stromal Cells: Insights and Innovations. Indian J Orthop 2024; 58:1349-1361. [PMID: 39324097 PMCID: PMC11420429 DOI: 10.1007/s43465-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Background The advent of tissue engineering and regenerative medicine has introduced innovative approaches to treating degenerative and traumatic injuries, particularly in cartilage, a tissue with limited self-repair capabilities. Among the various stem cell sources, umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have garnered significant interest due to their non-invasive collection, minimal ethical concerns, and robust regenerative potential, particularly in cartilage regeneration. Methods A comprehensive literature review was conducted using multiple databases, including PubMed, Scopus, Web of Science, and Google Scholar. Search terms focused on "umbilical cordderived mesenchymal stromal cells," "chondrogenesis," "cartilage regeneration," and related topics. Studies published in the past two decades were included, with selection criteria emphasizing methodological rigor and relevance to UC-MSC chondrogenesis. The review synthesizes findings from various sources to provide a thorough analysis of the potential of UC-MSCs in cartilage tissue engineering. Results UC-MSCs exhibit significant chondrogenic potential, supported by their ability to differentiate into chondrocytes under specific conditions. Recent advancements include the development of biomaterial scaffolds and the application of genetic engineering techniques, such as CRISPR/Cas9, to enhance chondrogenic differentiation. Despite these advancements, challenges remain in standardizing cell isolation techniques, scaling up production for clinical use, and ensuring the long-term functionality of regenerated cartilage. Conclusion UC-MSCs offer a promising solution for cartilage regeneration in the field of regenerative medicine. Ongoing research is focused on overcoming current challenges through the use of advanced technologies, including bioreactors and gene editing. Collaborative efforts among researchers, clinicians, and bioengineers are essential to translating the potential of UC-MSCs into effective clinical therapies, which could significantly advance tissue regeneration and therapeutic innovation. Graphical Abstract
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600077 India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600077 India
- VirginiaTech India, Dr MGR Educational and Research Institute, Tamil Nadu, Chennai, 600095 India
- Department of Orthopaedics, Orthopaedic Research Group, Tamil Nadu, Coimbatore, 641045 India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Tamil Nadu, Coimbatore, 641045 India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, Coimbatore, 641021 India
- Department of Orthopaedics, Government Karur Medical College, Tamil Nadu, Karur, 639004 India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Tamil Nadu, Chennai, 600002 India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Tamil Nadu, Chennai, 600002 India
| | - Bishnu Prasad Patro
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| |
Collapse
|
2
|
Endo N, Matsumoto T, Kazama T, Kano K, Shimizu M, Ryu K, Tokuhashi Y, Nakanishi K. Therapeutic potential of dedifferentiated fat cells in a rat model of osteoarthritis of the knee. Regen Ther 2024; 26:50-59. [PMID: 38859891 PMCID: PMC11163150 DOI: 10.1016/j.reth.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Mature adipocyte-derived dedifferentiated fat cells (DFATs) represent a subtype of multipotent cells that exhibit comparable phenotypic and functional characteristics to adipose-derived stem cells (ASCs). In this study, we assessed the chondroprotective properties of intra-articularly administrated DFATs in a rat model of osteoarthritis (OA). We also investigated in vitro the expression of anti-inflammatory and chondroprotective genes in DFATs prepared from the infrapatellar fat pad (IFP) and subcutaneous adipose-tissue (SC) of human origin. Methods In the cell transplantation experiment, rats were assigned to the DFAT and Control group (n = 10 in each group) and underwent anterior cruciate ligament transection (ACLT) accompanied by medial meniscus resection (MMx) to induce OA. One week later, they received intra-articular injections of 1 × 106 DFATs (DFAT group) or PBS (control group) four times, with a weekly administration frequency. Macroscopic and microscopic evaluations were conducted five weeks post-surgery. In the in vitro experiments. DFATs derived from the IFP (IFP-DFATs) and SC (SC-DFATs) were prepared from donor-matched tissue samples (n = 3). The gene expression of PTGS2, TNFAIP6, PRG4, BMP2, and BMP6 under TNF-α or IFN-γ stimulation in these cells was evaluated using RT-PCR. Furthermore, the effect of co-culturing synovial fibroblasts with DFATs on the gene expression of ADAMTS4 and IL-6 were evaluated. Results Intra-articular injections of DFATs significantly inhibited cartilage degeneration in the rat OA model induced by ACLT and MMx. RT-PCR analysis revealed that both IFP-DFATs and SC-DFATs upregulated the expression of genes involved in immune regulation, anti-inflammation, and cartilage protection such as PTGS2, TNFAIP6, and BMP2, under stimulation by inflammatory cytokines. Co-culture with DFATs suppressed the expression of ADAMTS4 and IL6 in synovial fibroblasts. Conclusions The intra-articular injection of DFATs resulted in chondroprotective effects in the rat OA model. Both SC-DFATs and IFP-DFATs induced the expression of anti-inflammatory and chondroprotective genes in vitro. These results indicate that DFATs appear to possess therapeutic potential in inhibiting cartilage degradation and could serve as a promising cellular resource for OA treatment.
Collapse
Affiliation(s)
- Noriyuki Endo
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Manabu Shimizu
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Keinosuke Ryu
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Ajeeb B, Detamore M. Comparison of multiple synthetic chondroinductive factors in pellet culture against a TGF-β positive control. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100369. [PMID: 37252634 PMCID: PMC10213102 DOI: 10.1016/j.ocarto.2023.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Despite the advances in surgical and cell therapy regenerative techniques for cartilage repair, the challenge is to overcome an inferior fibrocartilage repair tissue. In vitro, TGF-β1 and TGF-β3 are the primary growth factors employed to induce chondrogenic differentiation. However, the clinical application of native proteins may present challenges regarding stability, cost, or reproducibility. Therefore, there remains an unmet clinical need for the identification of small chondroinductive synthetic molecules. From the literature, two peptides-CM10 and CK2.1-appear to be promising candidates; however, they have not been directly compared to TGF-β with human bone marrow-derived stem cells (hBMSCs). Similarly, two promising compounds-kartogenin and SM04690-have been reported in the literature to exhibit chondroinductive potential in vivo and in vitro; however, kartogenin was not directly compared against TGF-β. In the current study, we evaluated the chondroinductive potential of CM10, CK2.1, kartogenin, and SM04690, and directly compared them to each other and to a TGF-β3 positive control. Following 21 days of culture, none of the evaluated chondrogenic factors, either individually or even in combinations of two, resulted in a higher gene expression of chondrogenic markers as compared to TGF-β3. Additionally, no collagen II gene expression was detected except in the TGF-β3 positive control group. Given that the evaluated factors have confirmed efficacy in the literature, but not in the current study with a positive control, there may be value in the future identification of new chondroinductive factors that are less situation-dependent, with rigorous evaluations of their effect on chondrogenesis using positive controls.
Collapse
Affiliation(s)
- Boushra Ajeeb
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
4
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
5
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
6
|
Bär SI, Biersack B, Schobert R. 3D cell cultures, as a surrogate for animal models, enhance the diagnostic value of preclinical in vitro investigations by adding information on the tumour microenvironment: a comparative study of new dual-mode HDAC inhibitors. Invest New Drugs 2022; 40:953-961. [PMID: 35796910 PMCID: PMC9395463 DOI: 10.1007/s10637-022-01280-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Anchorage-independent 3D-cultures of multicellular tumour spheroids (MCTS) and in vitro microtumours of cancer cells can provide upfront information on the effects of anticancer drug candidates, tantamount to that obtained from animal xenograft studies. Unlike 2D cancer cell cultures, 3D-models take into account the influence of the tumour microenvironment and the location dependence of drug effects and accumulation. We exemplified this by comparison of the effects of two new dual-mode anticancer agents, Troxbam and Troxham, and their monomodal congeners SAHA (suberoylanilide hydroxamic acid) and CA-4 (combretastatin A-4). We assessed the growth of MCTS of HCT116<sup>wt</sup> human colon carcinoma cells exposed to these compounds, as well as the spatial distribution of dead HCT116<sup>wt</sup> cells in these MCTS. Also, fluorescence imaging of live and fixed MCTS was used to assess the type of cellular death induced by test compounds. Furthermore, an innovative perfusion bioreactor system was used to grow microtumours in the presence or absence of test compounds. Both new investigational compounds led to significant reductions of the size of such MCTS and also of corresponding in vitro microtumours by inducing caspase-9 dependent apoptosis and elevated levels of reactive oxygen species. 3D multicellular tumour spheroids are easy to grow and employ for compound tests in the familiar well-plate set-up. Together with 3D microtumours grown at scaffolds in continuously perfused bioreactors they allow to study, early on in the course of drug evaluations, the communication of tumour cells with their microenvironment to an extent hitherto available only in animal experiments.
Collapse
Affiliation(s)
- Sofia I Bär
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
7
|
Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2402-2422. [PMID: 34428384 DOI: 10.1080/09205063.2021.1971823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors (GFs) are soluble proteins extracellular that control a wide range of cellular processes as well as tissue regeneration. While transforming growth factor beta-1 (TGF-β1) promotes chondrogenesis, its medical use is restricted by its potential protein instability, which necessitates high doses of the protein, which can result in adverse side effects such as inefficient cartilage formation. In this work, we have developed a novel hydrogel composite based on the polymer, cross-linked thiolated chitosan; TCS and carboxymethyl cellulose; CMC (TCS/CMC) hydrogel system was utilized as injectable TGF-β1 carriers for cartilage tissue engineering applications. Rheological measurements showed that the elastic modulus of TCS/CMC hydrogels with an optimized CMC concentration could reach around 2.5 kPa or higher than their respective viscous modulus, indicating that they behaved like strong hydrogels. Crosslinking significantly alters the overall network distribution, surface morphology, pore size, porosity, gelation time, swelling ratio, water content, and in vitro degradation of the TCS/CMC hydrogels. TCS/CMC hydrogels maintain more than 90% of their weight and retain their original form after 21 days. TGF-β1 released marginally from TCS/CMC hydrogels as incubation time increased, up to 21 days, with around 18.6 ± 0.9% of the drug stored inside the TCS/CMC hydrogels. On day 21, BMSC treated with TGF-β1 in medium or TGF-β1-loaded TCS/CMC hydrogels grew faster than the other groups. For in vivo cartilage repair, full-thickness cartilage defects were induced on rat knees for 8 weeks. The optimal ability of this novel TGF-β1-loaded TCS/CMC hydrogel system was further demonstrated by histological analysis, resulting in a novel therapeutic strategy for repairing articular cartilage defects.Research HighlightsAn in situ forming and injectable thiolated chitosan and carboxymethyl cellulose hydrogel was fabricated for cartilage tissue engineering.TCS/CMC displays suitable gelation time with high swelling ratio, tunable mechanical properties and highly porous.TGF-β1-loaded-TCS/CMC hydrogels showed maximum drug release activity.TGF-β1-loaded-TCS/CMC hydrogels had good biocompatibility to articular chondrocytes.An injectable TCS/CMC/TGF-β1 hydrogel is a promising material system for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Yipeng Yan
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| |
Collapse
|
8
|
Gossla E, Bernhardt A, Tonndorf R, Aibibu D, Cherif C, Gelinsky M. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation. Int J Mol Sci 2021; 22:ijms22179341. [PMID: 34502249 PMCID: PMC8430627 DOI: 10.3390/ijms22179341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
The replacement of damaged or degenerated articular cartilage tissue remains a challenge, as this non-vascularized tissue has a very limited self-healing capacity. Therefore, tissue engineering (TE) of cartilage is a promising treatment option. Although significant progress has been made in recent years, there is still a lack of scaffolds that ensure the formation of functional cartilage tissue while meeting the mechanical requirements for chondrogenic TE. In this article, we report the application of flock technology, a common process in the modern textile industry, to produce flock scaffolds made of chitosan (a biodegradable and biocompatible biopolymer) for chondrogenic TE. By combining an alginate hydrogel with a chitosan flock scaffold (CFS+ALG), a fiber-reinforced hydrogel with anisotropic properties was developed to support chondrogenic differentiation of embedded human chondrocytes. Pure alginate hydrogels (ALG) and pure chitosan flock scaffolds (CFS) were studied as controls. Morphology of primary human chondrocytes analyzed by cLSM and SEM showed a round, chondrogenic phenotype in CFS+ALG and ALG after 21 days of differentiation, whereas chondrocytes on CFS formed spheroids. The compressive strength of CFS+ALG was higher than the compressive strength of ALG and CFS alone. Chondrocytes embedded in CFS+ALG showed gene expression of chondrogenic markers (COL II, COMP, ACAN), the highest collagen II/I ratio, and production of the typical extracellular matrix such as sGAG and collagen II. The combination of alginate hydrogel with chitosan flock scaffolds resulted in a scaffold with anisotropic structure, good mechanical properties, elasticity, and porosity that supported chondrogenic differentiation of inserted human chondrocytes and expression of chondrogenic markers and typical extracellular matrix.
Collapse
Affiliation(s)
- Elke Gossla
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (E.G.); (M.G.)
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (E.G.); (M.G.)
- Correspondence:
| | - Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, D-01062 Dresden, Germany; (R.T.); (D.A.); (C.C.)
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, D-01062 Dresden, Germany; (R.T.); (D.A.); (C.C.)
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, D-01062 Dresden, Germany; (R.T.); (D.A.); (C.C.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (E.G.); (M.G.)
| |
Collapse
|
9
|
Radeloff K, Weiss D, Hagen R, Kleinsasser N, Radeloff A. Differentiation Behaviour of Adipose-Derived Stromal Cells (ASCs) Seeded on Polyurethane-Fibrin Scaffolds In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9080982. [PMID: 34440186 PMCID: PMC8391877 DOI: 10.3390/biomedicines9080982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) are a promising cell source for tissue engineering and regenerative medicine approaches for cartilage replacement. For chondrogenic differentiation, human (h)ASCs were seeded on three-dimensional polyurethane (PU) fibrin composites and induced with a chondrogenic differentiation medium containing TGF-ß3, BMP-6, and IGF-1 in various combinations. In addition, in vitro predifferentiated cell-seeded constructs were implanted into auricular cartilage defects of New Zealand White Rabbits for 4 and 12 weeks. Histological, immunohistochemical, and RT-PCR analyses were performed on the constructs maintained in vitro to determine extracellular matrix (ECM) deposition and expression of specific cartilage markers. Chondrogenic differentiated constructs showed a uniform distribution of cells and ECM proteins. RT-PCR showed increased gene expression of collagen II, collagen X, and aggrecan and nearly stable expression of SOX-9 and collagen I. Rabbit (r)ASC-seeded PU-fibrin composites implanted in ear cartilage defects of New Zealand White Rabbits showed deposition of ECM with structures resembling cartilage lacunae by Alcian blue staining. However, extracellular calcium deposition became detectable over the course of 12 weeks. RT-PCR showed evidence of endochondral ossification during the time course with the expression of specific marker genes (collagen X and RUNX-2). In conclusion, hASCs show chondrogenic differentiation capacity in vitro with the expression of specific marker genes and deposition of cartilage-specific ECM proteins. After implantation of predifferentiated rASC-seeded PU-fibrin scaffolds into a cartilage defect, the constructs undergo the route of endochondral ossification.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Evangelisches Krankenhaus, Carl von Ossietzky-University of Oldenburg, 26122 Oldenburg, Germany;
- Correspondence:
| | - Dorothee Weiss
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Evangelisches Krankenhaus, Carl von Ossietzky-University of Oldenburg, 26122 Oldenburg, Germany;
| |
Collapse
|