1
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
2
|
Ghatak A, Shanbhag AP, Datta S. Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms. Biochem Biophys Res Commun 2024; 691:149298. [PMID: 38011820 DOI: 10.1016/j.bbrc.2023.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India; Biomoneta Research Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| | - Anirudh P Shanbhag
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India.
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| |
Collapse
|
3
|
Lou F, Okoye CO, Gao L, Jiang H, Wu Y, Wang Y, Li X, Jiang J. Whole-genome sequence analysis reveals phenanthrene and pyrene degradation pathways in newly isolated bacteria Klebsiella michiganensis EF4 and Klebsiella oxytoca ETN19. Microbiol Res 2023; 273:127410. [PMID: 37178499 DOI: 10.1016/j.micres.2023.127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are diverse pollutants of significant environmental concerns, requiring effective biodegradation. This study used different bioinformatics tools to conduct whole-genome sequencing of two novel bacterial strains, Klebsiella michiganensis EF4 and K. oxytoca ETN19, to improve our understanding of their many genomic functions and degradation pathways of phenanthrene and pyrene. After 28 days of cultivation, strain EF4 degraded approximately 80% and 60% of phenanthrene and pyrene, respectively. However, their combinations (EF4 +ETN19) showed tremendous phenanthrene degradation efficiency, supposed to be at the first-level kinetic model with a t1/2 value of approximately 6 days. In addition, the two bacterial genomes contained carbohydrate-active enzymes and secondary metabolites biosynthetic gene clusters associated with PAHs degradation. The two genomes contained the bZIP superfamily of transcription factors, primarily the cAMP-response element-binding protein (CREB), which could regulate the expression of several PAHs degradation genes and enzymes. Interestingly, the two genomes were found to uniquely degrade phenanthrene through a putative pathway that catabolizes 2-carboxybenzalpyruvate into the TCA cycle. An operon containing multicomponent proteins, including a novel gene (JYK05_14550) that could initiate the beginning step of phenanthrene and pyrene degradation, was found in the EF4 genome. However, the degradation pathway of ETN19 showed that the yhfP gene encoding putative quinone oxidoreductase was associated with phenanthrene and pyrene catabolic processes. Furthermore, the significant expression of catechol 1,2-dioxygenase and quinone oxidoreductase genes in EF4 +ETN19 and ETN19 following the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed the ability of the bacteria combination to degrade pyrene and phenanthrene effectively. These findings present new insight into the possible co-metabolism of the two bacterial species in the rapid biodegradation of phenanthrene and pyrene in soil environments.
Collapse
Affiliation(s)
- Feiyue Lou
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
5
|
Use of Shotgun Metagenomics to Assess the Microbial Diversity and Hydrocarbons Degrading Functions of Auto-Mechanic Workshops Soils Polluted with Gasoline and Diesel Fuel. Microorganisms 2023; 11:microorganisms11030722. [PMID: 36985295 PMCID: PMC10059880 DOI: 10.3390/microorganisms11030722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Bioaugmentation is a valuable technique for oil recovery. This study investigates the composition and functions of microbial communities in gasoline- and diesel-contaminated soils of garages Matoko (SGM) and Guy et Paul (SGP) originating from auto mechanic workshops as well as the concentration of soil enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase. The work aimed to evaluate the presence of petroleum-hydrocarbon-degrading bacteria for the development of foreseen bioremediation of oil-contaminated soils. Microbial diversity, as given by shotgun metagenomics, indicated the presence of 16 classes, among which Actinobacteria and Gammaproteobacteria dominated, as well as more than 50 families, including the dominant Gordoniaceae (26.63%) in SGM and Pseudomonadaceae (57.89%) in SGP. The dominant bacterial genera in the two soils were, respectively, Gordonia (26.7%) and Pseudomonas (57.9%). The exploration of the bacterial metabolic abilities using HUMANn2 allowed to detect genes and pathways involved in alkanes and aromatic hydrocarbons in the two contaminated soils. Furthermore, enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase were found in high concentrations ranging between 90.27 ± 5.3 and 804.17 ± 20.5 µg pN/g soil/h, which indicated active microbial metabolism. The high diversity of microorganisms with a hydrocarbon degradation genetic package revealed that the bacteria inhabiting the two soils are likely good candidates for the bioaugmentation of oil-contaminated soils.
Collapse
|
6
|
Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, Ren L, Wang H, Han Y, McMinn A, Sung YY, Mok WJ, Wong LL, He J, Wang M. Characterization and genomic analysis of phage vB_ValR_NF, representing a new viral family prevalent in the Ulva prolifera blooms. Front Microbiol 2023; 14:1161265. [PMID: 37213492 PMCID: PMC10196503 DOI: 10.3389/fmicb.2023.1161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| |
Collapse
|
7
|
Iminova L, Delegan Y, Frantsuzova E, Bogun A, Zvonarev A, Suzina N, Anbumani S, Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation. BIOTECHNOLOGY REPORTS 2022; 35:e00741. [PMID: 35665370 PMCID: PMC9157199 DOI: 10.1016/j.btre.2022.e00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
Strain 7B grows in the presence of up to 10% sodium chloride and degrades crude oil, oil sludge and individual hydrocarbons. Over 15 days of the experiment, the strain utilized 51% of oil at 28°C and 24% at 45°C. When colonizing the wheat root, the strain forms biofilms in the calyptrogen sheath and at the base of the root hairs.
Rhodococci are typical soil inhabitants which take part in remediation of soil polluted with hydrocarbons. In this paper, we describe a new strain, Rhodococcus qingshengii 7B, which is capable of growth and hydrocarbon degradation at 45°C and in the presence of up to 10% NaCl in the medium. The genome of the 7B strain consists of a 6,278,280 bp chromosome and two plasmids. The circular plasmid is 103,992 bp in length. The linear plasmid is 416,450 bp in length. Genome analysis revealed the genes of degradation of various hydrocarbons, resistance to salt stress and plant growth promoting activity. This strain is promising for use in remediation of oil-contaminated soils, because it has a pronounced ability to utilize crude oil, oil sludge and individual hydrocarbons in a wide temperature range. Over 15 days of the experiment, the strain utilized 51% of crude oil at 28°C and 24% at 45 °С.
Collapse
|
8
|
|
9
|
Marzuki I, Septiningsih E, Kaseng ES, Herlinah H, Sahrijanna A, Sahabuddin S, Asaf R, Athirah A, Isnawan BH, Samidjo GS, Rumagia F, Hamidah E, Santi IS, Nisaa K. Investigation of Global Trends of Pollutants in Marine Ecosystems around Barrang Caddi Island, Spermonde Archipelago Cluster: An Ecological Approach. TOXICS 2022; 10:301. [PMID: 35736909 PMCID: PMC9229392 DOI: 10.3390/toxics10060301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
High-quality marine ecosystems are free from global trending pollutants' (GTP) contaminants. Accuracy and caution are needed during the exploitation of marine resources during marine tourism to prevent future ecological hazards that cause chain effects on aquatic ecosystems and humans. This article identifies exposure to GTP: microplastic (MP); polycyclic aromatic hydrocarbons (PAH); pesticide residue (PR); heavy metal (HM); and medical waste (MW), in marine ecosystems in the marine tourism area (MTA) area and Barrang Caddi Island (BCI) waters. A combination of qualitative and quantitative analysis methods were used with analytical instruments and mathematical formulas. The search results show the average total abundance of MPs in seawater (5.47 units/m3) and fish samples (7.03 units/m3), as well as in the sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on an analysis of the polymer structure, it was identified that the dominant light group was MPs: polyethylene (PE); polypropylene (PP); polystyrene (PS); followed by polyamide-nylon (PA); and polycarbonate (PC). Several PAH pollutants were identified in the samples. In particular, naphthalene (NL) types were the most common pollutants in all of the samples, followed by pyrene (PN), and azulene (AZ). Pb+2 and Cu+2 pollutants around BCI were successfully calculated, showing average concentrations in seawater of 0.164 ± 0.0002 mg/L and 0.293 ± 0.0007 mg/L, respectively, while in fish, the concentrations were 1.811 ± 0.0002 µg/g and 4.372 ± 0.0003 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ernawati Syahruddin Kaseng
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Herlinah Herlinah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Andi Sahrijanna
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Sahabuddin Sahabuddin
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ruzkiah Asaf
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Admi Athirah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Gatot Supangkat Samidjo
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Faizal Rumagia
- Study Program of Fisheries Resource Utilization, Faculty of Fisheries and Marine, Khairun University, Ternate 97719, North Maluku, Indonesia;
| | - Emmy Hamidah
- Department of Agrotechnology, Universitas Islam Darul ‘Ulum, Lamongan 62253, Jawa Timur, Indonesia;
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia;
| | - Khairun Nisaa
- National Research and Innovation Agency (BRIN), Jakarta 10340, DKI, Indonesia;
| |
Collapse
|