1
|
Peck LS, Mance HE, Ellis MB, Matok D, Grange LJ. Population characteristics and predation rates of the dominant soft-bodied and durophagous predators on temperate intertidal shores. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240308. [PMID: 39100169 PMCID: PMC11296203 DOI: 10.1098/rsos.240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Substantial research exists on predation and its ecology. Most research has focused on durophagous fishes, brachyuran crabs, and lobsters. Data are lacking, however, on soft-bodied predators like anemones, and their contribution to overall levels of predation remains largely unevaluated. Here, we compared predation rates of the durophagous predator, the crab C. maenas and the soft-bodied predator, the anemone Actinia equina on 15 intertidal shores around Anglesey, north Wales, UK. We employed a novel approach to assess predation based on measuring faecal output from recently collected individuals and converting it to food consumed using absorption efficiencies (AEs) measured using potential prey species inhabiting the same shores. Anemone mean abundance was 8.21 (± 0.27, s.e.) individuals.m-2, whereas for C. maenas it was 0.23 (± 0.02, s.e.) individuals.m-2. AEs when fed mussel tissue, a polychaete worm, or a shrimp were 92.8-94.0% in C. maenas and 40.5-95.8% in A. equina. This difference in values reflected the different feeding modes of the two predators. Unexpectedly, A. equina consumed 3.5-7 times more prey than C. maenas. The consumption of larger amounts of prey by an anemone than the dominant durophagous predator has important consequences for calculating energy flows in food webs, understanding predation controls in assemblages, and potentially for wider predation trends.
Collapse
Affiliation(s)
- Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, CambridgeCB3 0ET, UK
| | - Hannah E. Mance
- School of Ocean Sciences, Bangor University, BangorLL57 2DG, UK
| | - Miles B. Ellis
- School of Ocean Sciences, Bangor University, BangorLL57 2DG, UK
| | - Daniel Matok
- School of Ocean Sciences, Bangor University, BangorLL57 2DG, UK
| | - Laura J. Grange
- School of Ocean Sciences, Bangor University, BangorLL57 2DG, UK
| |
Collapse
|
2
|
Li S, Nilsson E, Seidel L, Ketzer M, Forsman A, Dopson M, Hylander S. Baltic Sea coastal sediment-bound eukaryotes have increased year-round activities under predicted climate change related warming. Front Microbiol 2024; 15:1369102. [PMID: 38596378 PMCID: PMC11002985 DOI: 10.3389/fmicb.2024.1369102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.
Collapse
Affiliation(s)
- Songjun Li
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Marcelo Ketzer
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Ko YW, Lee DS, Kim JH, Ha SY, Kim S, Choi HG. The glacier melting process is an invisible barrier to the development of Antarctic subtidal macroalgal assemblages. ENVIRONMENTAL RESEARCH 2023; 233:116438. [PMID: 37331559 DOI: 10.1016/j.envres.2023.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ecological macroalgal succession in glacier-free areas has remained at the pioneer seral stage despite six decades of glacial retreat at Marian Cove, King George Island, Antarctica. With the rapid melting of glaciers in the West Antarctic Peninsula owing to global warming, a massive amount of meltwater is flowing into the coast, creating marine environmental gradients such as turbidity, water temperature, and salinity. This study examined the spatial and vertical distributions (up to a depth of 25 m) of macroalgal assemblages from nine sites in Maxwell Bay and Marian Cove. The macroalgal assemblages were analyzed for six sites located 0.2, 0.8, 1.2, 2.2, 3.6, and 4.1 km away from the glacier, including three sites where the glacial retreat history of Marian Cove could be estimated. To investigate the effects of meltwater, differences in the coastal environment were analyzed based on data collected from five stations located 0.4, 0.9, 3.0, 4.0, and 5.0 km away from the glacier. The macroalgal assemblages and marine environment were divided into two groups-inside and outside the cove-based on the region 2-3 km away from the glacier, which has been ice-free since 1956 and shows significant differences. In the three sites near the glacier front, Palmaria decipiens was dominant, and three to four species were distributed, whereas in the two sites outside the cove, nine and 14 species appeared, respectively, similar to the assemblage of the other three sites in Maxwell Bay. Palmaria decipiens, a representative opportunistic pioneer species in Antarctica, is dominant because of its physiological adaptation despite the high turbidity and low water temperature of the glacier front. This study shows that macroalgal assemblages in Antarctic fjord-like coves respond to glacial retreat and are valuable in understanding the macroalgal succession in Antarctica.
Collapse
Affiliation(s)
- Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Dong Seok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Ha Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun-Yong Ha
- Division of Ocean Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Han-Gu Choi
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
4
|
Antarctic Seabed Assemblages in an Ice-Shelf-Adjacent Polynya, Western Weddell Sea. BIOLOGY 2022; 11:biology11121705. [PMID: 36552215 PMCID: PMC9774262 DOI: 10.3390/biology11121705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
Collapse
|
5
|
Abstract
AbstractDespite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
Collapse
|
6
|
Fonseca VG, Kirse A, Giebner H, Vause BJ, Drago T, Power DM, Peck LS, Clark MS. Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach. ISME COMMUNICATIONS 2022; 2:37. [PMID: 37938273 PMCID: PMC9723778 DOI: 10.1038/s43705-022-00118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 07/04/2023]
Abstract
Marine sediment communities are major contributors to biogeochemical cycling and benthic ecosystem functioning, but they are poorly described, particularly in remote regions such as Antarctica. We analysed patterns and drivers of diversity in metazoan and prokaryotic benthic communities of the Antarctic Peninsula with metabarcoding approaches. Our results show that the combined use of mitochondrial Cox1, and 16S and 18S rRNA gene regions recovered more phyla, from metazoan to non-metazoan groups, and allowed correlation of possible interactions between kingdoms. This higher level of detection revealed dominance by the arthropods and not nematodes in the Antarctic benthos and further eukaryotic diversity was dominated by benthic protists: the world's largest reservoir of marine diversity. The bacterial family Woeseiaceae was described for the first time in Antarctic sediments. Almost 50% of bacteria and 70% metazoan taxa were unique to each sampled site (high alpha diversity) and harboured unique features for local adaptation (niche-driven). The main abiotic drivers measured, shaping community structure were sediment organic matter, water content and mud. Biotic factors included the nematodes and the highly abundant bacterial fraction, placing protists as a possible bridge for between kingdom interactions. Meiofauna are proposed as sentinels for identifying anthropogenic-induced changes in Antarctic marine sediments.
Collapse
Affiliation(s)
- V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK.
| | - A Kirse
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - H Giebner
- Zoological Research Museum Alexander Koenig (ZFMK), Bonn, Germany
| | - B J Vause
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - T Drago
- Portuguese Institute for Sea and Atmosphere (IPMA), Tavira, Portugal
- Institute Dom Luiz (IDL), University of Lisbon, Lisbon, Portugal
| | - D M Power
- Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - L S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| |
Collapse
|
7
|
Benthic Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on Climate Change in Shallow Waters of the Antarctic Peninsula. BIOLOGY 2022; 11:biology11020320. [PMID: 35205187 PMCID: PMC8869673 DOI: 10.3390/biology11020320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67° S). Soft substrata benthic assemblages (391 ± 499 t C km-2) contained 60% less carbon than hard substrata benthic assemblages (648 ± 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year-1. Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.
Collapse
|
8
|
Clarke LJ, Suter L, Deagle BE, Polanowski AM, Terauds A, Johnstone GJ, Stark JS. Environmental DNA metabarcoding for monitoring metazoan biodiversity in Antarctic nearshore ecosystems. PeerJ 2021; 9:e12458. [PMID: 34820189 PMCID: PMC8601059 DOI: 10.7717/peerj.12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Antarctic benthic ecosystems support high biodiversity but their characterization is limited to a few well-studied areas, due to the extreme environment and remoteness making access and sampling difficult. Our aim was to compare water and sediment as sources of environmental DNA (eDNA) to better characterise Antarctic benthic communities and further develop practical approaches for DNA-based biodiversity assessment in remote environments. We used a cytochrome c oxidase subunit I (COI) metabarcoding approach to characterise metazoan communities in 26 nearshore sites across 12 locations in the Vestfold Hills (East Antarctica) based on DNA extracted from either sediment cores or filtered seawater. We detected a total of 99 metazoan species from 12 phyla across 26 sites, with similar numbers of species detected in sediment and water eDNA samples. However, significantly different communities were detected in the two sample types at sites where both were collected (i.e., where paired samples were available). For example, nematodes and echinoderms were more likely to be detected exclusively in sediment and water eDNA samples, respectively. eDNA from water and sediment core samples are complementary sample types, with epifauna more likely to be detected in water column samples and infauna in sediment. More reference DNA sequences are needed for infauna/meiofauna to increase the proportion of sequences and number of taxa that can be identified. Developing a better understanding of the temporal and spatial dynamics of eDNA at low temperatures would also aid interpretation of eDNA signals from polar environments. Our results provide a preliminary scan of benthic metazoan communities in the Vestfold Hills, with additional markers required to provide a comprehensive biodiversity survey. However, our study demonstrates the choice of sample type for eDNA studies of benthic ecosystems (sediment, water or both) needs to be carefully considered in light of the research or monitoring question of interest.
Collapse
Affiliation(s)
- Laurence J Clarke
- Australian Antarctic Division, Kingston, Tasmania, Australia.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Leonie Suter
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Bruce E Deagle
- Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | | | - Aleks Terauds
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | | | | |
Collapse
|
9
|
Cicala F, Arteaga MC, Herzka SZ, Hereu CM, Jimenez-Rosenberg SPA, Saavedra-Flores A, Robles-Flores J, Gomez R, Batta-Lona PG, Galindo-Sánchez CE. Environmental conditions drive zooplankton community structure in the epipelagic oceanic water of the southern Gulf of Mexico: A molecular approach. Mol Ecol 2021; 31:546-561. [PMID: 34697853 DOI: 10.1111/mec.16251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023]
Abstract
Zooplankton plays a pivotal role in sustaining the majority of marine ecosystems. The distribution patterns and diversity of zooplankton provide key information for understanding the functioning of these ecosystems. Nevertheless, due to the numerous cryptic and sibling species and the lack of diagnostic characteristics for early developmental stages, the identification of the global-to-local patterns of zooplankton biodiversity and biogeography remains challenging in different research fields. The spatial and temporal changes in the zooplankton community in the open waters of the southern Gulf of Mexico were assessed using metabarcoding analysis of the V9 region of 18S rRNA and mitochondrial cytochrome oxidase c subunit I (COI). Additionally, a multiscale analysis was implemented to evaluate which environmental predictors may explain the variability in the structure of the zooplankton community. Our findings suggest that the synergistic effects of dissolved oxygen concentration, temperature, and longitude (intended as a proxy for still unidentified predictors) may explain both spatial and temporal zooplankton variability even with low contribution. Furthermore, the zooplankton distribution probably reflects the coexistence of three heterogeneous ecoregions and a bio-physical partitioning of the studied area. Finally, some taxa were either exclusive or predominant with either 18S or COI markers. This may suggest that comprehensive assessments of the zooplankton community may be more accurately met by the use of multilocus approaches.
Collapse
Affiliation(s)
- Francesco Cicala
- Department of Marine Biotechnology, CICESE, Ensenada, Baja California, México
| | - María C Arteaga
- Department of Conservation Biology, CICESE, Ensenada, Baja California, México
| | - Sharon Z Herzka
- Department of Biological Oceanography, CICESE, Ensenada, Baja California, México
| | - Clara M Hereu
- Department of Marine Biotechnology, CICESE, Ensenada, Baja California, México
| | | | | | | | - Ricardo Gomez
- Department of Marine Biotechnology, CICESE, Ensenada, Baja California, México
| | - Paola G Batta-Lona
- Department of Marine Biotechnology, CICESE, Ensenada, Baja California, México
| | | |
Collapse
|
10
|
van der Loos LM, Nijland R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol Ecol 2021; 30:3270-3288. [PMID: 32779312 PMCID: PMC8359149 DOI: 10.1111/mec.15592] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
With the growing anthropogenic pressure on marine ecosystems, the need for efficient monitoring of biodiversity grows stronger. DNA metabarcoding of bulk samples is increasingly being implemented in ecosystem assessments and is more cost-efficient and less time-consuming than monitoring based on morphology. However, before raw sequences are obtained from bulk samples, a profound number of methodological choices must be made. Here, we critically review the recent methods used for metabarcoding of marine bulk samples (including benthic, plankton and diet samples) and indicate how potential biases can be introduced throughout sampling, preprocessing, DNA extraction, marker and primer selection, PCR amplification and sequencing. From a total of 64 studies evaluated, our recommendations for best practices include to (a) consider DESS as a fixative instead of ethanol, (b) use the DNeasy PowerSoil kit for any samples containing traces of sediment, (c) not limit the marker selection to COI only, but preferably include multiple markers for higher taxonomic resolution, (d) avoid touchdown PCR profiles, (e) use a fixed annealing temperature for each primer pair when comparing across studies or institutes, (f) use a minimum of three PCR replicates, and (g) include both negative and positive controls. Although the implementation of DNA metabarcoding still faces several technical complexities, we foresee wide-ranging advances in the near future, including improved bioinformatics for taxonomic assignment, sequencing of longer fragments and the use of whole-genome information. Despite the bulk of biases involved in metabarcoding of bulk samples, if appropriate controls are included along the data generation process, it is clear that DNA metabarcoding provides a valuable tool in ecosystem assessments.
Collapse
Affiliation(s)
- Luna M. van der Loos
- Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
- Present address:
Department of BiologyPhycology Research GroupGhent UniversityGhentBelgium
| | - Reindert Nijland
- Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
11
|
Exploring the diversity of the deep sea—four new species of the amphipod genus Oedicerina described using morphological and molecular methods. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Collections of the amphipod genus Oedicerina were obtained during six expeditions devoted to the study of deep-sea environments of the Pacific Ocean. The material revealed four species new to science. Two species (Oedicerina henricisp. nov. and Oedicerina teresae sp. nov.) were found at abyssal depths of the central eastern Pacific in the Clarion-Clipperton Zone; one species (Oedicerina claudei sp. nov.) was recovered in the Sea of Okhotsk (north-west Pacific), and one (Oedicerina lesci sp. nov.) in the abyss adjacent to the Kuril-Kamchatka Trench (KKT). The four new species differ from each other and known species by the shapes of the rostrum, coxae 1 and 4, basis of pereopod 7, armatures of pereonite 7, pleonites and urosomites. An identification key for all known species is provided. The study of the cytochrome c oxidase subunit I gene of the four new species and Oedicerina ingolfi collected in the North Atlantic confirmed their genetic distinction. However, small intraspecific variation within each of the studied species was observed. In the case of the new species occurring across the KKT, the same haplotype was found on both sides of the trench, providing evidence that the trench does not constitute an insurmountable barrier for population connectivity. None of the species have so far been found on both sides of the Pacific.
Collapse
|
12
|
Thyrring J, Peck LS. Global gradients in intertidal species richness and functional groups. eLife 2021; 10:64541. [PMID: 33739285 PMCID: PMC8032391 DOI: 10.7554/elife.64541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Whether global latitudinal diversity gradients exist in rocky intertidal α-diversity and across functional groups remains unknown. Using literature data from 433 intertidal sites, we investigated α-diversity patterns across 155° of latitude, and whether local-scale or global-scale structuring processes control α-diversity. We, furthermore, investigated how the relative composition of functional groups changes with latitude. α-Diversity differed among hemispheres with a mid-latitudinal peak in the north, and a non-significant unimodal pattern in the south, but there was no support for a tropical-to-polar decrease in α-diversity. Although global-scale drivers had no discernible effect, the local-scale drivers significantly affected α-diversity, and our results reveal that latitudinal diversity gradients are outweighed by local processes. In contrast to α-diversity patterns, species richness of three functional groups (predators, grazers, and suspension feeders) declined with latitude, coinciding with an inverse gradient in algae. Polar and tropical intertidal data were sparse, and more sampling is required to improve knowledge of marine biodiversity.
Collapse
Affiliation(s)
- Jakob Thyrring
- British Antarctic Survey, Cambridge, United Kingdom.,Department of Zoology, University of British Columbia, Vancouver, Canada.,Arctic Research Centre, Department of Bioscience, Aarhus University, Silkeborg, Denmark.,Homerton College, University of Cambridge, Cambridge, United Kingdom.,Marine Ecology, Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Lloyd S Peck
- British Antarctic Survey, Cambridge, United Kingdom
| |
Collapse
|
13
|
Green vs brown food web: Effects of habitat type on multidimensional stability proxies for a highly-resolved Antarctic food web. FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Souster TA, Barnes DKA, Hopkins J. Variation in zoobenthic blue carbon in the Arctic's Barents Sea shelf sediments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190362. [PMID: 32862809 PMCID: PMC7481665 DOI: 10.1098/rsta.2019.0362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The flow of carbon from atmosphere to sediment fauna and sediments reduces atmospheric CO2, which in turn reduces warming. Here, during the Changing Arctic Ocean Seafloor programme, we use comparable methods to those used in the Antarctic (vertical, calibrated camera drops and trawl-collected specimens) to calculate the standing stock of zoobenthic carbon throughout the Barents Sea. The highest numbers of morphotypes, functional groups and individuals were found in the northernmost sites (80-81.3° N, 29-30° E). Ordination (non-metric multidimensional scaling) suggested a cline of faunal transition from south to north. The functional group dominance differed across all six sites, despite all being apparently similar muds. Of the environmental variables we measured, only water current speed could significantly explain any of our spatial carbon differences. We found no obvious relationship with sea ice loss and thus no evidence of Arctic blue carbon-climate feedback. Blue carbon in the Barents Sea can be comparable with the highest levels in Antarctic shelf sediments. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- T. A. Souster
- Ulster University, Coleraine Campus, Coleraine, UK
- Biological Sciences, British Antarctic Survey, UKRI, Cambridge, UK
- e-mail:
| | - D. K. A. Barnes
- Biological Sciences, British Antarctic Survey, UKRI, Cambridge, UK
| | - J. Hopkins
- Marine Physics and Ocean Climate, National Oceanography Centre, Liverpool, UK
| |
Collapse
|
15
|
Robinson BJO, Barnes DKA, Morley SA. Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105025. [PMID: 32907735 DOI: 10.1016/j.marenvres.2020.105025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Disturbance is a key factor in most natural environments and, globally, disturbance regimes are changing, driven by increased anthropogenic influences, including climate change. There is, however, still a lack of understanding about how disturbance interacts with species dispersal capacity to shape marine assemblage structure. We examined the impact of ice scour disturbance history (2009-2016) on the nearshore seafloor in a highly disturbed region of the Western Antarctic Peninsula by contrasting the response of two groups with different dispersal capacities: one consisting of high-dispersal species (mobile with pelagic larvae) and one of low-dispersal species (sessile with benthic larvae). Piecewise Structural Equation Models were constructed to test multi-factorial predictions of the underlying mechanisms, based on hypothesised responses to disturbance for the two groups. At least two or three disturbance factors, acting at different spatial scales, drove assemblage composition. A comparison between both high- and low-dispersal models demonstrated that these mechanisms are dispersal dependent. Disturbance should not be treated as a single metric, but should incorporate remote and direct disturbance events with consideration of taxa-dispersal and disturbance legacy. These modelling approaches can provide insights into how disturbance shapes assemblages in other disturbance regimes, such as fire-prone forests and trawl fisheries.
Collapse
Affiliation(s)
- Ben J O Robinson
- National Oceanography Centre Southampton, University of Southampton, European Way, Southampton, SO14 3ZH, UK; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK.
| | - David K A Barnes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| |
Collapse
|
16
|
Schratzberger M, Somerfield PJ. Effects of widespread human disturbances in the marine environment suggest a new agenda for meiofauna research is needed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138435. [PMID: 32570325 DOI: 10.1016/j.scitotenv.2020.138435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The response of an ecological community to a disturbance event, and its capacity to recover, are of major interest to ecologists, especially at a time of increasing frequencies and intensities of environmental change brought about by humans. Meiofauna, a group of small-sized organisms, are an abundant and ubiquitous component of seafloor communities that respond rapidly to environmental change. We summarise the available research on the response of metazoan meiofauna to the most widespread anthropogenic disturbances in the marine environment, including bottom fishing, the introduction of invasive species and anthropogenic climate change. We show that disturbance effects on habitats interact critically with effects on resident meiofauna species. Their responses are consistent with competitive replacement, where disparate disturbance effects on competing species drive shifts in dominance and intra- and interspecific interactions. The widespread replacement of habitat-specific ecological specialists by broadly-adapted ecological generalists and opportunists results in biotic and functional homogenisation of once disparate biotas. Anthropogenic disturbances may facilitate novel interactions among meiofauna species, and between meiofauna and other benthic organisms, but the number and breadth of these interactions is likely to be limited. Knowledge about the dependence of meiofauna species on their environment and on other benthic species has been growing. Future studies will be most meaningful if this knowledge is expanded alongside understanding the potential of locally adapted species to respond to shifts in environmental conditions.
Collapse
Affiliation(s)
- Michaela Schratzberger
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, United Kingdom; Collaborative Centre for Sustainable Use of the Seas, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Paul J Somerfield
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
17
|
Valdivia N, Garrido I, Bruning P, Piñones A, Pardo LM. Biodiversity of an Antarctic rocky subtidal community and its relationship with glacier meltdown processes. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104991. [PMID: 32662431 DOI: 10.1016/j.marenvres.2020.104991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Glacier meltdown is a major environmental response to climate change in the West Antarctic Peninsula. Yet, the consequences of this process for local biodiversity are still not well understood. Here, we analyse the diversity and structure of a species-rich marine subtidal macrobenthic community (consumers and primary producers) across two abiotic environmental gradients defined by the distance from a glacier (several km) and depth (between 5 and 20 m depth) in Fildes Bay, King George Island. The analysis of spatially extensive records of seawater turbidity, high-frequency temperature and salinity data, and suction dredge samples of macrobenthic organisms revealed non-linear and functional group-dependent associations between biodiversity, glacier influence, and depth. Turbidity peaked in shallow waters and in the nearby of the glacier. Temperature and salinity, on the other hand, slightly decreased in the proximity of the glacier relative to reference sites. According to the spatial pattern in turbidity, species richness of consumers was lowest in shallow waters and near to the glacier. Also, Shannon's diversity of consumers significantly decreased in the nearby of glacier across depths. Moreover, the spatial variation in community structure of consumers and primary producers depended on both glacier distance and depth. These results suggest that glacier melting can have significant effects on diversity and community structure. Therefore, the accelerated glacier meltdown may have major consequences for the biodiversity in this ecosystem.
Collapse
Affiliation(s)
- Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Ignacio Garrido
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Université Laval, Québec, QC, Canada
| | - Paulina Bruning
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Université Laval, Québec, QC, Canada
| | - Andrea Piñones
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Luis Miguel Pardo
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| |
Collapse
|