1
|
Zhang K, Wang S, Wang Z, Jiang Y, Huang M, Liu N, Wang B, Meng X, Wu Z, Yan X, Zhang X. Critical roles of PU.1/cathepsin S activation in regulating inflammatory responses of macrophages in periodontitis. J Periodontal Res 2023; 58:939-947. [PMID: 37334752 DOI: 10.1111/jre.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE To determine the critical roles of PU.1/cathepsin S activation in regulating inflammatory responses of macrophages during periodontitis. BACKGROUND Cathepsin S (CatS) is a cysteine protease and exerts important roles in the immune response. Elevated CatS has been found in the gingival tissues of periodontitis patients and is involved in alveolar bone destruction. However, the underlying mechanism of CatS-driven IL-6 production in periodontitis remains unclear. METHODS Western blot was applied to measure mature cathepsin S(mCatS) and IL-6 expression in gingival tissues from periodontitis patients and RAW264.7 cells exposed to lipopolysaccharide from Porphyromonas gingivalis (P.g. LPS). Immunofluorescence was applied to confirm the localization of PU.1, and CatS in the gingival tissues of periodontitis patients. ELISA was performed to determine IL-6 production by the P.g. LPS-exposed RAW264.7 cells. Knockdown by shRNA was used to determine the effects of PU.1 on p38/ nuclear factor (NF)-κB activation, mCatS expression and IL-6 production in RAW264.7 cells. RESULTS The expressions mCatS and IL-6 were significantly upregulated in gingival macrophages. In cultured RAW264.7 cells, increased mCatS and IL-6 protein paralleled the activation of p38 and NF-κB after exposure to P.g. LPS. CatS knockdown by shRNA significantly decreased P.g. LPS-induced IL-6 expression and p38/NF-κB activation. PU.1 was significantly increased in P.g. LPS-exposed RAW264.7 cells, and PU.1 knockdown dramatically abolished the P.g. LPS-induced upregulation of mCatS and IL-6 and the activation of p38 and NF-κB. Furthermore, PU.1 and CatS colocalized in macrophages within the gingival tissues of periodontitis patients. CONCLUSION PU.1-dependent CatS drives IL-6 production in macrophages by activating p38 and NF-κB in periodontitis.
Collapse
Affiliation(s)
- Kaige Zhang
- Department of Oral Implantology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Sijian Wang
- Department of Oral Implantology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zihan Wang
- Department of Oral Implantology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yiming Jiang
- The VIP Department, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Minghao Huang
- Department of Oral Implantology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xu Yan
- The VIP Department, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xinwen Zhang
- Department of Oral Implantology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Laboratory Animal Centre, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Li Y, Hashikawa K, Ebisawa K, Kambe M, Higuchi S, Kamei Y. <Editors' Choice> Supernatant from activated omentum accelerates wound healing in diabetic mice wound model. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:528-541. [PMID: 37829482 PMCID: PMC10565575 DOI: 10.18999/nagjms.85.3.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 10/14/2023]
Abstract
Diabetic wounds are considered one of the most frequent and severe complications of diabetes mellitus. Recently, the omentum has been used in diabetic wound healing because of its tissue repair properties. The activated omentum is richer in growth factors than the inactivated, thereby contributing to the wound healing process. To further investigate the effect of activated omentum conditioned medium (aOCM) on diabetic wound healing, we injected supernatant from aOCM, saline-OCM (sOCM), inactivated-OCM (iOCM), and medium (M) subcutaneously upon creation of a cutaneous wound healing model in diabetic mice. Wound area (%) was evaluated on days 0, 3, 5, 7, 9, 11, 14, 21, and 28 post-operation. At 9 and 28 d post-operation, skin tissue was harvested and assessed for gross observation, neovascularization, peripheral nerve fiber regeneration, and collagen deposition. We observed that aOCM enhanced the wound repair process, with significant acceleration of epidermal and collagen deposition in the surgical lesion on day 9. Additionally, aOCM displayed marked efficiency in neovascularization and peripheral nerve regeneration during wound healing. Thus, aOCM administration exerts a positive influence on the diabetic mouse model, which can be employed as a new therapy for diabetic wounds.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunobu Hashikawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsumi Ebisawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Kambe
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Higuchi
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuzuru Kamei
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
5
|
Impact of glycine and erythritol/chlorhexidine air-polishing powders on human gingival fibroblasts: an in vitro study. Ann Anat 2022; 243:151949. [PMID: 35523398 DOI: 10.1016/j.aanat.2022.151949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Supra- and subgingival air-polishing has been used in periodontitis and gingivitis therapy for years. Low-abrasive types of powders have facilitated the application in subgingival areas. In this study, the cellular effects of a glycine powder and an erythritol/chlorhexidine (CHX) powder on human gingival fibroblasts (HGF) were investigated. METHODS HGF were obtained from sound gingiva of three healthy donors. After 12hours and 24hours of incubation time, cell viability testing and, after 24hours and 48hours, a cell proliferation assay was conducted. Additionally, the individual components erythritol and CHX were investigated for cell viability. In vitro wound healing was monitored for 48hours and scanning electron microscopy (SEM) analysis was performed after 24hours. Statistical analysis was accomplished by ANOVA and post hoc Dunnett's and Tukey's tests (p < 0.05) were performed. RESULTS Erythritol/CHX powder and in a lower extent, glycine powder decreased cell viability and cell proliferation. The negative effect of erythritol/CHX was mainly based on the CHX component. In vitro wound healing was negatively influenced in both types of powders compared to control. Cell size was altered in both test groups, whereas cell morphology was affected only in the erythritol/CHX group. CONCLUSIONS The investigated powders for subgingival air-polishing can influence cell viability, morphology, and proliferation, as well as wound closure in vitro. These actions on fibroblasts are discernible, with the cytotoxic effect of erythritol/CHX powder being very clear and mainly due to the CHX component. Our results suggest that subgingivally applied powders can exert direct effects on gingival fibroblasts.
Collapse
|
6
|
Non-Invasive Physical Plasma Treatment after Tooth Extraction in a Patient on Antiresorptive Medication Promotes Tissue Regeneration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postoperative tissue regeneration can be negatively affected by bisphosphonate administration, especially in patients with oncologic diseases. A serious complication of bisphosphonate therapy is the medication-related osteonecrosis of the jaw (MRONJ), which can be observed mainly after dental surgery. MRONJ is a progressive destruction of the bone that requires patients to stay in hospital for extended periods of time. For this reason, primary wound closure is particularly important in surgical procedures. In the case of wound dehiscence, there is a very high risk for MRONJ. In recent years, non-invasive physical plasma (NIPP) has become known for improving wound healing on the one hand, but also for its promising efficacy in cancer therapy on the other hand. We report on a 63-year-old patient with a history of multiple myeloma and receiving zoledronate, who developed wound dehiscence after tooth extraction. NIPP treatment resulted in complete epithelialization of the entire wound dehiscence. In conclusion, the use of NIPP in patients receiving antiresorptive drugs seems to support tissue regeneration and thus could be an important tool for the prevention of MRONJ.
Collapse
|
7
|
Effect of Bacterial Infection on Ghrelin Receptor Regulation in Periodontal Cells and Tissues. Int J Mol Sci 2022; 23:ijms23063039. [PMID: 35328456 PMCID: PMC8950409 DOI: 10.3390/ijms23063039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of bacterial infection on the expression of growth hormone secretagogue receptor (GHS-R) was investigated in periodontal cells and tissues, and the actions of ghrelin were evaluated. GHS-R was assessed in periodontal tissues of rats with and without periodontitis. Human gingival fibroblasts (HGFs) were exposed to Fusobacterium nucleatum in the presence and absence of ghrelin. GHS-R expression was determined by real-time PCR and immunocytochemistry. Furthermore, wound healing, cell viability, proliferation, and migration were evaluated. GHS-R expression was significantly higher at periodontitis sites as compared to healthy sites in rat tissues. F. nucleatum significantly increased the GHS-R expression and protein level in HGFs. Moreover, ghrelin significantly abrogated the stimulatory effects of F. nucleatum on CCL2 and IL-6 expressions in HGFs and did not affect cell viability and proliferation significantly. Ghrelin stimulated while F. nucleatum decreased wound closure, probably due to reduced cell migration. Our results show original evidence that bacterial infection upregulates GHS-R in rat periodontal tissues and HGFs. Moreover, our study shows that ghrelin inhibited the proinflammatory actions of F. nucleatum on HGFs without interfering with cell viability and proliferation, suggesting that ghrelin and its receptor may act as a protective molecule during bacterial infection on periodontal cells.
Collapse
|
8
|
Jia Z, Liu L, Zhang S, Zhao X, Luo L, Tang Y, Shen B, Chen M. Proteomics changes after negative pressure wound therapy in diabetic foot ulcers. Mol Med Rep 2021; 24:834. [PMID: 34608502 PMCID: PMC8503750 DOI: 10.3892/mmr.2021.12474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
Label-free quantitative mass spectrometry was used to analyze the differences in the granulation tissue protein expression profiles of patients with diabetic foot ulcers (DFUs) before and after negative-pressure wound therapy (NPWT) to understand how NPWT promotes the healing of diabetic foot wounds. A total of three patients with DFUs hospitalized for Wagner grade 3 were enrolled. The patients received NPWT for one week. The granulation tissue samples of the patients prior to and following NPWT for one week were collected. The protein expression profiles were analyzed with label-free quantitative mass spectrometry and the differentially expressed proteins (DEPs) in the DFU patients prior to and following NPWT for one week were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to annotate the DEPs and DEP-associated signaling pathways. Western blotting and ELISA were performed to validate the results. By comparing the differences in the protein profiles of granulation tissue samples prior to and following NPWT for one week, 36 proteins with significant differences were identified (P<0.05); 33 of these proteins were upregulated and three proteins were downregulated. NPWT altered proteins mainly associated with antioxidation and detoxification, the cytoskeleton, regulation of the inflammatory response, complement and coagulation cascades and lipid metabolism. The functional validation of the DEPs demonstrated that the levels of cathepsin S in peripheral blood and granulation tissue were significantly lower than those prior to NPWT (P<0.05), while the levels of protein S isoform 1, inter α-trypsin inhibitor heavy chain H4 and peroxiredoxin-2 in peripheral blood and granulation tissue were significantly higher than those prior to NPWT (P<0.05). The present study identified multiple novel proteins altered by NPWT and laid a foundation for further studies investigating the mechanism of action of NPWT.
Collapse
Affiliation(s)
- Zeguo Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shiqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int J Mol Sci 2021; 22:ijms22105280. [PMID: 34067898 PMCID: PMC8156616 DOI: 10.3390/ijms22105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.
Collapse
|
10
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Gürsoy UK, Fteita D, Bikker FJ, Grande MA, Nazmi K, Gürsoy M, Könönen E, Belstrøm D. Elevated Baseline Salivary Protease Activity May Predict the Steadiness of Gingival Inflammation During Periodontal Healing: A 12-Week Follow-Up Study on Adults. Pathogens 2020; 9:pathogens9090751. [PMID: 32942694 PMCID: PMC7558121 DOI: 10.3390/pathogens9090751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Aim was to profile salivary total protease, Porphyromonas gingivalis gingipain, and neutrophil elastase activities in relation to the resolution of periodontal inflammation, salivary macrophage-derived chemokine (MDC), and macrophage inflammatory protein-1α concentrations. Nonsurgical periodontal treatment was performed in 24 periodontitis patients in a prospective interventional study design. Periodontal clinical parameters were recorded, and stimulated saliva samples were collected at baseline and 2, 6, and 12 weeks after treatment. Salivary total protease and gingipain activities were determined using fluorogenic substrates, elastase activity by chromogenic substrates, and cytokine concentrations by Luminex immunoassay. For statistical analyses, generalized linear mixed models for repeated measures were used. Salivary total protease activity elevated, while gingival inflammation and plaque accumulation decreased 2 and 6 weeks after periodontal therapy. Salivary MDC concentration was elevated 12 weeks after periodontal treatment. Patients with elevated protease activities at baseline in comparison to patients with low baseline total protease activities, had higher levels of gingival inflammation before and after periodontal treatment. In conclusion, elevations in salivary total protease activity seem to be part of periodontal healing at its early phases. Higher levels of salivary total protease activities before periodontal treatment may predict the severity and steadiness of unresolved gingival inflammation.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
- Correspondence:
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Maria Anastasia Grande
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| |
Collapse
|
12
|
Deciphering the secretome of leukocyte-platelet rich fibrin: towards a better understanding of its wound healing properties. Sci Rep 2020; 10:14571. [PMID: 32884030 PMCID: PMC7471699 DOI: 10.1038/s41598-020-71419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Leukocyte-platelet rich fibrin (L-PRF) is extensively used in the dentistry field and other clinical scenarios due to its regeneration properties. The goal of the present study was to depict the L-PRF secretome and how it changes over time. We obtained L-PRF membranes and cultured them in DMEM. The secretome was collected at days 3, 7 and 21. The secretome at day 3 was analysed by LC–MS/MS and differences over time were analysed by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH). Overall, 705 proteins were identified in the secretome of L-PRF membranes after 3 days of culture, including growth factors (EGF, PDGFA) and proteins related to platelet and neutrophil degranulation. A total of 202 differentially secreted proteins were quantified by SWATH when comparing secretomes at days 3, 7 and 21. Most of them were enriched at day 3 such as MMP9, TSP1 and CO3. On the contrary, fibrinogen and CATS were found down-regulated at day 3. Growth factor and western blotting analysis corroborated the proteomic results. This is the most detailed proteome analysis of the L-PRF secretome to date. Proteins and growth factors identified, and their kinetics, provide novel information to further understand the wound healing properties of L-PRF.
Collapse
|
13
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
14
|
Liu J, Lu Y, Liu J, Jin C, Meng Y, Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health 2019; 19:73. [PMID: 31046751 PMCID: PMC6498622 DOI: 10.1186/s12903-019-0768-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) was recently proposed to have the potential to regulate bone metabolism, however, its influence on osteogenesis remains controversial. The present study aimed to investigate the effects of EGCG on the proliferation and osteogenesis of human periodontal ligament cells (hPDLCs). METHODS Cells were cultured in osteogenic medium and treated with EGCG at various concentrations. Cell proliferation was analyzed using a CCK-8 assay and acridine orange (AO)/ethidium bromide (EB) staining. Flow cytometry was used to measure the intracellular reactive oxygen species (ROS) potential of hPDLCs. The expression levels of osteogenic marker genes and proteins in hPDLCs, including type I collagen (COL1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osterix (OSX), were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. In addition, alkaline phosphatase (ALP) activity was monitored both quantitatively and qualitatively. Extracellular matrix mineralization was further analyzed by alizarin red S staining. RESULTS The results showed that EGCG concentrations from 6 to 10 μM increased the ROS level and inhibited the cell proliferation of hPDLCs. EGCG concentrations from 2 to 8 μM effectively increased extracellular matrix mineralization, in which 4 and 6 μM EGCG generated the most mineralizing nodules. The ALP activity and the mRNA and protein expression levels of the tested osteogenic markers were most strongly up-regulated by treatment with 4 and 6 μM EGCG. CONCLUSIONS The present study demonstrated that EGCG might promote the osteogenesis of hPDLCs in a dose-dependent manner, with concentrations of 4 and 6 μM EGCG showing the strongest osteogenic enhancement without cytotoxicity, indicating a promising role for EGCG in periodontal regeneration in patients with deficient alveolar bone in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jin Liu
- Department of Periodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Changxiong Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
15
|
Kleineidam B, Nokhbehsaim M, Deschner J, Wahl G. Effect of cold plasma on periodontal wound healing-an in vitro study. Clin Oral Investig 2018; 23:1941-1950. [PMID: 30232626 DOI: 10.1007/s00784-018-2643-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/11/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Cold atmospheric plasma (CAP), a room temperate ionized gas, seems to be a possible way to enhance tissue recovery. An in vitro study was conducted to investigate the influence of medical CAP on the regenerative capacity of human periodontal ligament (PDL) cells. MATERIAL AND METHODS Human PDL cells were subjected to CAP at various intensities, distances, and durations. The effects of CAP on a number of specific markers were studied at transcriptional level using real-time PCR. Additionally, an in vitro wound healing assay was applied to PDL cell monolayers either in the presence or absence of CAP by using JuLI™ Br Live Cell Analyzer and software. Finally, cell viability of CAP-treated cells was analyzed by an XTT assay. RESULTS CAP treatment enhanced significantly the expression of the cytokines tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, interleukin (IL)-1β, IL-6, IL-8, collagen (COL)1α, and matrix metalloproteinase (MMP)1, as well as the proliferation markers Ki67 and proliferating cell nuclear antigen (PCNA), but downregulated apoptotic markers Apaf1 and p53. Additionally, the in vitro wound healing rate was significantly enhanced after CAP application. Moreover, CAP treatment resulted in a significantly increased cell viability in the XTT assay. CONCLUSION This in vitro study shows that CAP has regulatable effects on markers of periodontal wound healing thereby underlining the potential use of CAP as a benefit treatment strategy. CLINICAL RELEVANCE Our study demonstrates the application of CAP in the treatment of oral pathologies suggesting a promising future treatment approach.
Collapse
Affiliation(s)
- Benedikt Kleineidam
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - M Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - J Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| | - G Wahl
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| |
Collapse
|