1
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Zheng C, Jiang P, Hu S, Tang Y, Dou L. Characterization of cells in blood evoked from periapical tissues in immature teeth with pulp necrosis and their potential for autologous cell therapy in Regenerative Endodontics. Arch Oral Biol 2024; 162:105957. [PMID: 38471313 DOI: 10.1016/j.archoralbio.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE The objectives of this study were to isolate, characterize progenitor cells from blood in the root canals of necrotic immature permanent teeth evoked from periapical tissues and evaluate the applicable potential of these isolated cells in Regenerative Endodontics. DESIGN Ten necrotic immature permanent teeth from seven patients were included. Evoked bleeding from periapical tissues was induced after chemical instrumentation of the root canals. Cells were isolated from the canal blood and evaluated for cell surface marker expression, multilineage differentiation potential, proliferation ability, and target protein expression. Cell sheets formed from these cells were transferred into human root segments, and then transplanted into nude mice. Histological examination was performed after eight weeks. Data analysis was conducted using one-way ANOVA followed by Tukey's post-hoc comparison, considering p < 0.05 as statistically significant. RESULTS The isolated cells exhibited characteristics typical of fibroblastic cells with colony-forming efficiency, and displayed Ki67 positivity and robust proliferation. Flow cytometry data demonstrated that at passage 3, these cells were positive for CD73, CD90, CD105, CD146, and negative for CD34 and CD45. Vimentin expression indicated a mesenchymal origin. Under differentiation media specific differentiation media, the cells demonstrated osteogenic, adipogenic, and chondrogenic differentiation potential. Subcutaneous root canals with cell sheets of isolated cells in nude mice showed the formation of pulp-like tissues. CONCLUSIONS This study confirmed the presence of progenitor cells in root canals following evoked bleeding from periapical tissues of necrotic immature teeth. Isolated cells exhibited similar immunophenotype and regenerative potential with dental mesenchymal stromal cells in regenerative endodontic therapy.
Collapse
Affiliation(s)
- Chengxiang Zheng
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Peiru Jiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shan Hu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Tang
- School of Dental Medicine Western University of Health Sciences, Pomona, CA, USA
| | - Lei Dou
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
3
|
Heitzer M, Modabber A, Zhang X, Winnand P, Zhao Q, Bläsius FM, Buhl EM, Wolf M, Neuss S, Hölzle F, Hildebrand F, Greven J. In vitro comparison of the osteogenic capability of human pulp stem cells on alloplastic, allogeneic, and xenogeneic bone scaffolds. BMC Oral Health 2023; 23:56. [PMID: 36721114 PMCID: PMC9890824 DOI: 10.1186/s12903-023-02726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts. METHODS Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation. RESULTS Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds. CONCLUSION DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.
Collapse
Affiliation(s)
- Marius Heitzer
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ali Modabber
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Philipp Winnand
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Qun Zhao
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Felix Marius Bläsius
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Wolf
- grid.412301.50000 0000 8653 1507Department of Orthodontics, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XHelmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Frank Hölzle
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Xian J, Liang D, Zhao C, Chen Y, Zhu Q. TRIM21 inhibits the osteogenic differentiation of mesenchymal stem cells by facilitating K48 ubiquitination-mediated degradation of Akt. Exp Cell Res 2022; 412:113034. [DOI: 10.1016/j.yexcr.2022.113034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/18/2023]
|
5
|
Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study. NANOMATERIALS 2021; 11:nano11020303. [PMID: 33503931 PMCID: PMC7912080 DOI: 10.3390/nano11020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022]
Abstract
This study was performed to examine the applicability of the newly developed nano-biocomposite, β-tricalcium phosphate (β-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., β-TCP/PDLLA, β-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague–Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with β-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of β-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, β-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.
Collapse
|
6
|
Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci 2020; 62:349-356. [PMID: 32835781 DOI: 10.1016/j.job.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bone marrow derived mesenchymal stem cells (BMSCs) are an irresistible choice for use in stem cell therapy and regenerative medicine. BMSCs osteoblastic differentiation is also important in bone development, diseases, malignancies, and cancers studies. Wnt signaling pathway antagonists, Dickkopf-1 (Dkk 1), Secreted Frizzled-Related Proteins (sFRPs), and Wnt Inhibitory Factor 1 (Wif1) play important roles in inducing osteoblastic differentiation. This study is the first to investigate the association between DNA methylation and gene expression of Dkk1, sFRP2, sFRP4, and Wif1 during BMSCs osteoblastic differentiation. METHODS Human BMSCs were isolated and characterized using flow cytometry. Then, cells were treated with osteo-differentiation medium for three weeks. Alizarin red S staining and polymerase chain reaction (PCR) (alkaline phosphatase/osteocalcin) were performed for confirmation. The expression of Dkk 1, sFRP2, sFRP4, and Wif1 genes was evaluated at days 7, 14, and 21 using real-time PCR. Methylation-specific PCR (MSP) was performed to detect the methylation status of the promoters of the genes. RESULTS Data showed significant decreases (P < 0.05) during various days of BMSCs differentiation, while the promoters of the genes remained mostly un-methylated. CONCLUSIONS The down-regulation of Dkk 1, sFRP2, sFRP4, and Wif1 regulates various stages of human BMSCs during osteoblastic differentiation. DNA methylation does not interfere in the down-regulation of these genes, except for Wif1. We propose that the Wnt antagonist gene promoters should remain un-methylated during osteoblastic differentiation of BMSCs and that the down-regulation of these genes may contribute to other epigenetic mechanisms, other than DNA methylation, which implicitly indicates the role of DNA methylation in osteogenic cancers.
Collapse
Affiliation(s)
- Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamidreza Kheiri
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
| | - Ali Dehghanifard
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|