1
|
Singer L, Karačić S, Bierbaum G, Palmer B, Kirschneck C, Bourauel C. A novel stable biomimetic adhesive coating for functionalization of orthodontic brackets against bacterial colonization and white spot lesions. BMC Oral Health 2025; 25:23. [PMID: 39755607 DOI: 10.1186/s12903-024-05313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy of polydopamine (PDA) functionalization on orthodontic brackets in inhibiting biofilm formation and promoting surface bioactivity to buffer the acidity of caries-causing bacteria around orthodontic brackets and prevent demineralization. The stability of the coating in artificial saliva (AS) and distilled water was evaluated, along with its effect on pH changes in simulated body fluid (SBF) and distilled water. METHODS Maxillary incisor orthodontic brackets underwent PDA functionalization using a dopamine hydrochloride solution following a specific protocol. Biofilm formation on both control (Br-0) and coated (Br-PDA) brackets was assessed immediately after coating and after two months of aging (Aged Br-PDA) in artificial saliva. The adherent biofilm bacteria on brackets were quantified with colony count assessment and optical density. Surface morphology, Bioactivity, and coating stability were analyzed using Scanning Electron Microscopy (SEM). Coated and uncoated samples were immersed in SBF and deionized water, and pH changes were monitored over 7 days using a pH meter. RESULTS PDA-functionalized brackets, both freshly coated (1.08 OD) and aged for two months (1.6 OD), showed significantly reduced biofilm formation compared to non-functionalized control brackets (2.07 OD), with p-value < 0.05. This reduction was confirmed through optical density measurements and colony-forming unit (CFU) counts (1.63E + 06, 4.53E + 07, and 7.56E + 07 respectively, p-value < 0.05). SEM analysis revealed alterations in surface morphology and composition, suggesting enhanced biointeraction in the coated brackets. Stability assessments in artificial saliva and deionized water demonstrated the durability of the coating. pH measurements indicated minimal changes in SBF and water, with PDA-functionalized brackets showing slight alterations. CONCLUSIONS Our research findings suggest that PDA-functionalized brackets possess promising antimicrobial properties and stability, offering potential applications in orthodontic treatment to mitigate biofilm formation and prevent white spot lesions around orthodontic brackets. Further investigation is required to optimize the coating formulation and explore its long-term efficacy in clinical settings.
Collapse
Affiliation(s)
- Lamia Singer
- Oral Technology, University Hospital Bonn, 53111, Bonn, Germany.
- Department of Orthodontics, University Hospital Bonn, 53111, Bonn, Germany.
| | - Sabina Karačić
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127, Bonn, Germany
| | - Brianne Palmer
- Bonn Institute of Organismic Biology, Division of Palaeontology, University of Bonn, 53115, Bonn, Germany
| | | | | |
Collapse
|
2
|
Cruz Hondares T, Hao X, Zhao Y, Lin Y, Napierala D, Jackson JG, Zhang P. Antibacterial, biocompatible, and mineralization-inducing properties of calcium silicate-based cements. Int J Paediatr Dent 2024; 34:843-852. [PMID: 38605507 DOI: 10.1111/ipd.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Different pulp capping materials have different origins and compositions, require different preparations, and may vary in their bioactive properties. AIM The purpose of this study was to evaluate the antibacterial activity, biocompatibility, and mineralization-inducing potential of calcium silicate-based pulp capping materials. DESIGN Six contemporary calcium silicate-based cements, ProRoot MTA, MTA Angelus, Biodentine, EndoSequence, NeoMTA 2, and NeoPutty, were evaluated. The antibacterial effects of these materials against Streptococcus mutans UA159 and Enterococcus faecalis ATCC 29212 were determined by the agar diffusion assay and the direct culture test. The biocompatibility and mineralization-inducing potential of these materials in preodontoblastic 17IIA11 cells were evaluated by the MTT assay and by Alizarin Red S staining, respectively. RESULTS AND CONCLUSION In agar diffusion test, only Biodentine showed distinct antibacterial effects against S. mutans. All the tested materials, however, showed antibacterial effects against S. mutans and E. faecalis in the direct culture test, with Biodentine showing the strongest growth inhibition against both S. mutans and E. faecalis. All the tested materials showed acceptable biocompatibility and mineralization-supporting potential in our experimental conditions. In summary, ProRoot MTA, MTA Angelus, Biodentine, EndoSequence, NeoMTA 2, and NeoPutty demonstrated acceptable in vitro antimicrobial, biocompatible, and mineralization-supporting properties.
Collapse
Affiliation(s)
- Taimy Cruz Hondares
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaoxiao Hao
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanfang Zhao
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuyin Lin
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dobrawa Napierala
- Department of Oral and Craniofacial Sciences and Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Janice G Jackson
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Yalin FA, Tabibi M, Majidi A, Kabiri F, Rasouli A, Aghaali M. Evaluation and comparison of four types of bio-ceramic materials AGM MTA, Ortho MTA, pro root MTA and Cem cement in oral and dental health. BMC Oral Health 2024; 24:1052. [PMID: 39245758 PMCID: PMC11382373 DOI: 10.1186/s12903-024-04820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Mineral Trioxide Aggregate (MTA) is one of the main retrograde filling materials that is used today as a root end filling material and perforation repair material. This study was conducted with the aim of investigating the antibacterial and antifungal properties of four types of bio-ceramic materials, AGM MTA, Ortho MTA, Pro root MTA and Cem cement for oral and dental health. METHODS In this study, the antibacterial activity of four types of bio-ceramic materials against two bacterial strains of Enterococcus faecalis (ATTC 29212), Escherichia coli (ATTC 35318) and antifungal activity against Candida albicans (ATTC 10231) were investigated using the well diffusion method. RESULTS In the context of the relationship between the type of microorganism and the diameter of the growth inhibitory zone for each type of bio-ceramic material, there was no significant difference for Enterococcus faecalis, and a significant difference was observed for Escherichia coli and Candida albicans (p < 0.05). CONCLUSION The results show that each of the bio-ceramic materials AGM, Pro root, Cem cement and Ortho have antibacterial and antifungal properties. AGM MTA bio-ceramic material on Candida albicans fungus and Ortho MTA bio-ceramic material had the most effect on Escherichia coli bacteria. Therefore, the mentioned bio-ceramic materials can play a significant role in oral and dental health by providing a suitable material for restoration.
Collapse
Affiliation(s)
| | - Maryam Tabibi
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Alireza Majidi
- Department of Endodontics, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Faezeh Kabiri
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Alireza Rasouli
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Aghaali
- Department of Family and Community Medicine, School of Medicine, Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
4
|
Lee MY, Yoon HW, Lee SY, Kim KM, Shin SJ, Kwon JS. Mineral trioxide aggregate in membrane form as a barrier membrane in guided bone regeneration. J Dent Sci 2024; 19:1653-1666. [PMID: 39035317 PMCID: PMC11259731 DOI: 10.1016/j.jds.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Indexed: 07/23/2024] Open
Abstract
Background/purpose In the field of conservative dentistry and endodontics, mineral trioxide aggregate (MTA), commonly used, possesses advantages such as biocompatibility, antimicrobial properties and osteogenic potential. This study investigated the feasibility of utilizing membrane form mineral trioxide aggregate (MTA) as a barrier membrane in guided bone regeneration (GBR) procedures. Materials and methods Membranes were electrospun from three different formulations: 15 w/v% Polycaprolactone (PCL), 13 w/v% PCL + 2 w/v% MTA (2MTA), and 11 w/v% PCL + 4 w/v% MTA (4MTA). Physicochemical and mechanical properties of the electrospun membrane were compared, encompassing parameters such as surface morphology, fiber diameter distribution, chemical composition, phase identification, tensile stress, pH variation, and water contact angle. Moreover, the antimicrobial properties against of the electrospun membranes were assessed through direct exposure to streptococcus aureus (S. aureus) and candida albicans (C. albicans). Additionally, on the 7th day, biocompatibility and cell attachment were investigated with respect to L929 (fibroblast) and MC3T3 (pre-osteoblast) cells. Inhibition of L929 cell infiltration and the expression of osteogenic related genes including osteocalcin (OCN), alkaline phosphatase (ALP), and runt related transcription factor 2 (RUNX2) in MC3T3 cells on 7th and 14th days were also investigated. Results PCL, 2MTA, and 4MTA exhibited no statistically differences in fiber diameter distribution and tensile stress. However, as the MTA content increased, wettability and pH also increased. Due to the elevated pH, 4MTA demonstrated the lowest viability S.aureus and C.albicans. All membranes were highly biocompatibility and promoted cell attachment, while effectively preventing L929 cell infiltration. Lastly 4MTA showed increase in OCN, ALP, and RUNX2 expression on both 7th and 14th day. Conclusion The membrane form MTA possessed characteristics essential for a novel barrier membrane.
Collapse
Affiliation(s)
- Min-Yong Lee
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hi-Won Yoon
- Department of Conservative Dentistry, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Si-Yoon Lee
- Department of Biology, New York University, New York, NY, USA
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
5
|
Shehab NF, Hasan NH, Ismail HK. Investigating the Alkaline Potential of Mineral Trioxide Aggregate Repair Using Selenium Nanoparticles. Braz Dent J 2024; 35:e245760. [PMID: 38922250 PMCID: PMC11197393 DOI: 10.1590/0103-6440202405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/23/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to determine the effect of adding selenium nanoparticles (SeNPs) to mineral trioxide aggregate (MTA HP) concerning alkalinizing potential. Additionally, it examined the set material after SeNPs incorporation using Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray analysis (FE-SEM/EDX) for characterizing the elemental composition and morphological alterations resulting from the integration of SeNPs. Cement samples, both before and after SeNPs incorporation, were examined using FE-SEM/EDX. The pH level was also measured with a pH-meter previously calibrated with solutions of known pH, to evaluate the alkalinizing activity of the integrated substance at different concentrations of nanoparticles: Group 1 (control): 0% w/w SeNPs, Group 2: 0.5% w/w SeNPs, Group 3: 1% w/w SeNPs, Group 4: 1.5% w/w SeNPs and Group 5: 2% w/w SeNPs after 1, 7, 14, and 30 days in distal water. The data were analyzed by one-way ANOVA and Tukey tests (P≤0.05). According to FE-SEM/EDX, the morphological characteristics indicate that SeNPs were successfully dispersed and integrated into the MTA repair matrix. EDX examination validates the presence of Selenium, confirming successful integration. The findings confirmed that the MTAHP showed a high pH level with a discernible reduction in the alkalinizing activity with each incorporated concentration of (SeNPs) that significantly differed from the control group across various periods at (P≤ 0.05). Consequently, the findings indicate that the addition of SeNPs to MTA HP has a notable impact on the pH of the storage solution, leading to a significant decrease in pH values for all concentrations and periods when compared to the control group. The alkalinizing action of MTA HP is highly affected by the incorporated SeNPs, making it more suitable for application in pulpal tissue. This study contributes to our understanding of the morphological alterations and elemental composition of SeNP-incorporated MTA HP, enhancing its potential applications in dental and tissue regeneration.
Collapse
Affiliation(s)
- Njwan Fadhel Shehab
- Department of Conservative Dentistry/ College of Dentistry/University of Mosul Iraq
| | - Nadia Hameed Hasan
- Department of Conservative Dentistry/ College of Dentistry/University of Mosul Iraq
| | - Hana Khaleel Ismail
- Department of pathology and poultry disease/College of Veterinary medicine/University of Mosul Iraq
| |
Collapse
|
6
|
Son G, Seon GM, Choi SH, Yang HC. Effects of vehicles on the physical properties and biocompatibility of premixed calcium silicate cements. Dent Mater J 2024; 43:276-285. [PMID: 38447980 DOI: 10.4012/dmj.2023-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.
Collapse
Affiliation(s)
- Gitae Son
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University
| |
Collapse
|
7
|
Ortega MA, Rios L, Fraile-Martinez O, Liviu Boaru D, De Leon-Oliva D, Barrena-Blázquez S, Pereda-Cerquella C, Garrido-Gil MJ, Manteca L, Buján J, García-Honduvilla N, García-Montero C, Rios-Parra A. Bioceramic versus traditional biomaterials for endodontic sealers according to the ideal properties. Histol Histopathol 2024; 39:279-292. [PMID: 37747049 DOI: 10.14670/hh-18-664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Odontology, as a scientific discipline, continuously collaborates with biomaterials engineering to enhance treatment characteristics and patients' satisfaction. Endodontics, a specialized field of dentistry, focuses on the study, diagnosis, prevention, and treatment of dental disorders affecting the dental pulp, root, and surrounding tissues. A critical aspect of endodontic treatment involves the careful selection of an appropriate endodontic sealer for clinical use, as it significantly influences treatment outcomes. Traditional sealers, such as zinc oxide-eugenol, fatty acid, salicylate, epoxy resin, silicone, and methacrylate resin systems, have been extensively used for decades. However, advancements in endodontics have given rise to bioceramic-based sealers, offering improved properties and addressing new challenges in endodontic therapy. In this review, a classification of these materials and their ideal properties are presented to provide evidence-based guidance to clinicians. Physicochemical properties, including sealing ability, stability over time and space, as well as biological properties such as biocompatibility and antibacterial characteristics, along with cost-effectiveness, are essential factors influencing clinicians' decisions based on individual patient evaluations.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| | - Laura Rios
- Universidad San Pablo CEU, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Claude Pereda-Cerquella
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | | | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| |
Collapse
|
8
|
Ahmed B, Wafaie RA, Hamama HH, Mahmoud SH. 3-year randomized clinical trial to evaluate the performance of posterior composite restorations lined with ion-releasing materials. Sci Rep 2024; 14:4942. [PMID: 38418863 PMCID: PMC10902344 DOI: 10.1038/s41598-024-55329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
To evaluate the impact of using ion-releasing liners on the 3-year clinical performance of posterior resin composite restorations after selective caries excavation with polymer burs. 20 patients were enrolled in this trial. Each patient had two deep carious lesions, one on each side of the mouth. After selective caries removal using polymer bur (PolyBur P1, Komet, Brasseler GmbH Co. KG, Lemgo, Germany), cavities were lined with bioactive ionic resin composite (Activa Bioactive Base/Liner, Pulpdent, Watertown, MA, USA) or resin-modified glass ionomer liner (Riva Light Cure, SDI, Bayswater, Victoria, Australia). All cavities were then restored with nanofilled resin composite (Filtek Z350XT, 3M Oral Care, St. Paul, MN, USA). All the tested materials were placed according to the manufacturers' instructions. Clinical evaluation was accomplished using World Dental Federation (FDI) criteria at baseline and after 6 months, 1, 2, and 3 years. Data were analyzed using Mann-whitney U and Friedman tests (p < 0.05). The success rates were 100% for all resin composite restorations either lined with ion-releasing resin composite or resin-modified glass ionomer liner. Mann-whitney U test revealed that there were no statistically significant differences between both ion-releasing lining material groups for all criteria during the follow-up periods (p > 0.05). Resin composite restorations showed acceptable clinical performance over 3 years either lined with bioactive ionic or resin-modified glass ionomer liners after selective caries excavation preserving pulp vitality. After the 3-year follow-up period, Activa Bioactive and Riva Light Cure liners were clinically effective and they exhibited with the overlying composite restorations successful clinical performance.Trial registration number: NCT05470959. Date of registration: 22/7/2022. Retrospectively registered.
Collapse
Affiliation(s)
- Basma Ahmed
- Conservative Dentistry Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Ramy Ahmed Wafaie
- Conservative Dentistry Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Hamdi H Hamama
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt.
- Faculty of Dentistry, New-Mansoura University, New-Mansoura, Egypt.
| | - Salah Hasab Mahmoud
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Wang H, Chen X, Zhang L, Han Z, Zheng J, Qi Y, Zhao W, Xu X, Li T, Zhou Y, Bao P, Xue X. Dual-Fuel Propelled Nanomotors with Two-Stage Permeation for Deep Bacterial Infection in the Treatment of Pulpitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305063. [PMID: 38044274 PMCID: PMC10837366 DOI: 10.1002/advs.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Indexed: 12/05/2023]
Abstract
Bacterial infection-induced inflammatory response could cause irreversible death of pulp tissue in the absence of timely and effective therapy. Given that, the narrow structure of root canal limits the therapeutic effects of passive diffusion-drugs, considerable attention has been drawn to the development of nanomotors, which have high tissue penetration abilities but generally face the problem of insufficient fuel concentration. To address this drawback, dual-fuel propelled nanomotors (DPNMs) by encapsulating L-arginine (L-Arg), calcium peroxide (CaO2 ) in metal-organic framework is developed. Under pathological environment, L-Arg could release nitric oxide (NO) by reacting with reactive oxygen species (ROS) to provide the driving force for movement. Remarkably, the depleted ROS could be supplemented through the reaction between CaO2 with acids abundant in the inflammatory microenvironment. Owing to high diffusivity, NO achieves further tissue penetration based on the first-stage propulsion of nanomotors, thereby removing deep-seated bacterial infection. Results indicate that the nanomotors effectively eliminate bacterial infection based on antibacterial activity of NO, thereby blocking inflammatory response and oxidative damage, forming reparative dentine layer to avoid further exposure and infection. Thus, this work provides a propagable strategy to overcome fuel shortage and facilitates the therapy of deep lesions.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
- Present address:
Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical SciencesTianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Lulu Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
- School of MedicineNankai UniversityTianjin300071P. R. China
| | - Ziwei Han
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Jinxin Zheng
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Weitao Zhao
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Xihan Xu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Tianqi Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Yutong Zhou
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Pingping Bao
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| |
Collapse
|
10
|
Ma X, Xu H, Chen X, Zou Q, Wang J, Da Y, Yin H. Modern methods and materials used to treat root perforation: effectiveness comparison. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:1. [PMID: 38206373 PMCID: PMC10784354 DOI: 10.1007/s10856-023-06770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
This study aims to experimentally compare the efficacy of different endodontic materials (iRoot BP Plus, Biodentine, MTA, Rootdent, and Trioxide) in the treatment of pulpitis and perforations on extracted tooth specimens. Additionally, the study aims to investigate the influence of iRoot BP Plus endodontic material on the regenerative processes following pulp amputation in laboratory animals. The secondary goal is to evaluate the effect of iRoot BP Plus on the restoration process in laboratory animals after pulp removal. The study presents a micropermeability analysis of the selected biomaterials performed on a sample of 50 single-rooted apical teeth in 2022. All teeth underwent endodontic treatment. Changes in molar morphology were investigated with eight laboratory animals (rabbits, 3 months old, all males) after simulated pulp removal and subsequent treatment with the iRoot BP Plus biomaterials. iRoot BP Plus appeared to be more effective in retrograde apical root filling than other biomaterials, as evidenced by its higher sealing effect. An experiment involving animal participants revealed the presence of protective adaptive mechanisms, which manifested in the form of an inflammatory process within 6 weeks after the dental pulp was removed. The connective tissue replaced the necrosis, and new capillaries began to form intensively. These dental outcomes suggest that iRoot BP Plus enables hermetical sealing in tooth restoration with good adhesion. Thus, it may have the ability to promote more active tissue regeneration after pulp removal.
Collapse
Affiliation(s)
- XiaoLan Ma
- Department of Oral Medicine, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Hua Xu
- Department of Oral Medicine, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Xuefang Chen
- Department of Oral Medicine, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Qian Zou
- Department of Oral Medicine, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Junrong Wang
- Department of Oral and Maxillofacial Surgery, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Yunmeng Da
- Department of Prosthodontics, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China
| | - Huisu Yin
- Department of Science and Education, Hebei Eye Hospital, 399 East Quanbei Street, Xingtai, 054001, China.
| |
Collapse
|
11
|
Yang N, Yang W, Shen R, Zhang S, Ma T, Liu Y. In vitro and in vivo evaluation of iRoot BP Plus as a coronal sealing material for regenerative endodontic procedures. Clin Oral Investig 2024; 28:70. [PMID: 38170260 PMCID: PMC10764398 DOI: 10.1007/s00784-023-05468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES To investigate in vitro effects of a nanoparticle bioceramic material, iRoot BP Plus, on stem cells from apical papilla (SCAP) and in vivo capacity to induce pulp-dentin complex formation. MATERIALS AND METHODS The sealing ability of iRoot BP Plus was measured via scanning electron microscopy (SEM). SCAP were isolated and treated in vitro by iRoot BP Plus conditioned medium, with mineral trioxide aggregate (MTA) conditioned medium and regular medium used as controls, respectively. Cell proliferation was assessed by BrdU labeling and MTT assay and cell migration was evaluated with wound healing and transwell assays. Osteo/odontogenic potential was evaluated by Alizarin red S staining and qPCR. Pulp-dentin complex formation in vivo was assessed by a tooth slice subcutaneous implantation model. RESULTS iRoot BP Plus was more tightly bonded with the dentin. There was no difference in SCAP proliferation between iRoot BP Plus and control groups (P > 0.05). iRoot BP Plus had a greater capacity to elevated cell migration (P < 0.05) and osteo/odontogenic marker expression and mineralization nodule formation of SCAP compared with MTA groups (P < 0.05). Furthermore, the new continuous dentine layer and pulp-like tissue was observed in the iRoot BP Plus group in vivo. CONCLUSIONS iRoot BP Plus showed excellent sealing ability, promoted the migration and osteo/odontogenesis of SCAP and induced pulp-dentin complex formation without affecting the cell proliferation, which indicated iRoot BP Plus was a promising coronal sealing material in REPs. CLINICAL RELEVANCE The coronal sealing materials play crucial roles for the outcomes of REPs. This study showed that iRoot BP Plus has good coronal sealing and promote pulp-dentin complex formation compared with MTA, providing experimental evidences for the clinical application of iRoot BP Plus as a promising coronal seal material in REPs.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxiao Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Rou Shen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shengcai Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Tianchi Ma
- Department of Orthodontics, Shenyang Stomatology Hospital, 138 Zhongshan Road, Shenyang, 110004, China.
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
12
|
Hamdy TM. Evaluation of compressive strength, surface microhardness, solubility and antimicrobial effect of glass ionomer dental cement reinforced with silver doped carbon nanotube fillers. BMC Oral Health 2023; 23:777. [PMID: 37872523 PMCID: PMC10591371 DOI: 10.1186/s12903-023-03542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Conventional glass ionomer cements (GICs) are currently the most widely used dental cements due to their chemical bonding into tooth structure, release of fluoride, and ease of manipulation and usage. One of their drawbacks is their low mechanical properties and high solubility. Carbon nanotubes (CNTs) could be utilized in dentistry due to their several potential applications. CNTs can be used as fillers to reinforce polymers or other materials. Additionally, silver (Ag) nanoparticles are highly effective at preventing dental biofilm and enhancing mechanical properties. OBJECTIVES The aim of the present in vitro study is to evaluate the compressive strength, surface microhardness, solubility, and antimicrobial effect of the conventional GIC reinforced with manual blending of 0.01 wt.% Ag doped CNT fillers. METHODS The control group was prepared by mixing dental GIC powder with their liquid. The innovatively reinforced dental GIC group was prepared by incorporating 0.01 wt.% Ag doped CNT fillers into the GIC powder prior to liquid mixing. Chemical characterization was performed by XRF. While, physical characterization was done by measuring film thickness and initial setting time. The compressive strength, surface microhardness, solubility, and antimicrobial effect against Streptococcus mutans bacteria using an agar diffusion test were measured. The data was statistically analyzed using independent sample t-tests to compare mean values of compressive strength, surface microhardness, solubility, and antimicrobial activity (p ≤ 0.05). RESULTS The results revealed that innovative reinforced GIC with 0.01 wt.% Ag doped CNT fillers showed higher mean compressive strength, surface microhardness, and antimicrobial effect values than the conventional GIC control group; there was no significant difference between different groups in relation to the solubility test (P ≤ 0.05). CONCLUSION The innovatively reinforced GIC with 0.01 wt.% Ag doped CNT fillers had the opportunity to be used as an alternative to conventional GIC dental cements.
Collapse
Affiliation(s)
- Tamer M Hamdy
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza, 12622, Dokki, Egypt.
| |
Collapse
|
13
|
ElReash AA, Grawish M, Abdo W, Abdelghany AM, Junsi L, Xiaoli X, Hamama H. Intramedullary bone tissue reaction of ion-releasing resin-modified glass-ionomer restoration versus two calcium silicate-based cements: an animal study. Sci Rep 2023; 13:9812. [PMID: 37330550 PMCID: PMC10276832 DOI: 10.1038/s41598-023-36949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
This comparative study was conducted to assess the intramedullary bone tissue reaction of an ion-releasing resin modified glass-ionomer cement with claimed bioactivity (ACTIVA bioactive resin) restorative material versus Mineral Trioxide Aggregate High Plasticity (MTA HP) and bioceramic putty iRoot BP Plus. Fifty-six adult male Wistar rats were assigned into 4 equal groups (14 rats each). A surgical intramedullary bi-lateral tibial bone defects were performed in rats of the control group I (GI) and left without any treatment to be considered as controls (n = 28). The rats of groups II, III and IV were handled as group I except that the tibial bone defects were filled with ACTIVA, MTA HP and iRoot BP, respectively. In all groups, rats were euthanized after one month and specimens were processed to histological investigation, SEM examination and EDX elemental analysis. In addition, semi-quantitative histomorphometric scoring system was conducted for the following parameters; new bone formation, inflammatory response, angiogenesis, granulation tissue, osteoblasts and osteoclasts. The clinical follow-up outcome of this study revealed the recovery of rats after 4 days post-surgical procedure. It was observed that the animal subjects returned to their routine activities, e.g., walking, grooming and eating. The rats showed normal chewing efficiency without any weight loss or postoperative complications. Histologically, the control group sections showed scanty, very thin, new bone trabeculae of immature woven type located mostly at the peripheral part of the tibial bone defects. These defects exhibited greater amount of thick bands of typically organized granulation tissue with central and peripheral orientation. Meanwhile, bone defects of ACTIVA group showed an empty space surrounded by thick, newly formed, immature woven bone trabeculae. Moreover, bone defects of MTA HP group were partially filled with thick newly formed woven bone trabeculae with wide marrow spaces presented centrally and at the periphery with little amount of mature granulation tissue at the central part. The iRoot BP Plus group section exhibited an observable woven bone formation of normal trabecular structures with narrow marrow spaces presented centrally and at the periphery showed lesser amount of well-organized/mature granulation tissue formation. Kruskal Wallis test revealed total significant differences between the control, ACTIVA, MTAHP and iRoot BP Plus groups (p < 0.05). Meanwhile, Mann-Whitney U test showed significant difference between control and ACTIVA groups, Control and MTA HP groups, control and iRoot BP Plus groups. ACTIVA and MTA HP groups, ACTIVA and iRoot BP Plus (p ˂ 0.05) with no significant difference between MTA HP and iRoot BP Plus (p > 0.05). The elemental analysis outcome showed that the lesions of the control group specimens were filled with recently created trabecular bone with limited marrow spaces. EDX tests (Ca and P analysis) indicated a lower degree of mineralization. Lower amounts of Ca and P was expressed in the mapping analysis compared with other test groups. Calcium silicate-based cements induce more bone formation when compared to an ion-releasing resin modified glass-ionomer restoration with claimed bioactivity. Moreover, the bio-inductive properties of the three tested materials are likely the same. Clinical significance: bioactive resin composite can be used as a retrograde filling.
Collapse
Affiliation(s)
- Ashraf Abou ElReash
- Department of Conservative Dentistry. Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Mohamed Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El Sheikh, Egypt
| | - Amr M Abdelghany
- Department of Spectroscopy, Physics Research Institute, National Research Centre, Giza, Egypt
| | - Luo Junsi
- Department of Endodontic. Xiangya School of Stomatology. Central, South University, Changsha, Hunan Province, China
| | - Xie Xiaoli
- Department of Endodontic. Xiangya School of Stomatology. Central, South University, Changsha, Hunan Province, China
| | - Hamdi Hamama
- Department of Conservative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt.
- Faculty of Dentistry, New-Mansoura University, New-Mansoura, Egypt.
| |
Collapse
|
14
|
Jang YJ, Kim YJ, Vu HT, Park JH, Shin SJ, Dashnyam K, Knowles JC, Lee HH, Jun SK, Han MR, Lee JH, Kim JS, Kim JB, Lee JH, Shin JS. Physicochemical, Biological, and Antibacterial Properties of Four Bioactive Calcium Silicate-Based Cements. Pharmaceutics 2023; 15:1701. [PMID: 37376149 DOI: 10.3390/pharmaceutics15061701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium silicate-based cement (CSC) is a pharmaceutical agent that is widely used in dentistry. This bioactive material is used for vital pulp treatment due to its excellent biocompatibility, sealing ability, and antibacterial activity. Its drawbacks include a long setting time and poor maneuverability. Hence, the clinical properties of CSC have recently been improved to decrease its setting time. Despite the widespread clinical usage of CSC, there is no research comparing recently developed CSCs. Therefore, the purpose of this study is to compare the physicochemical, biological, and antibacterial properties of four commercial CSCs: two powder-liquid mix types (RetroMTA® [RETM]; Endocem® MTA Zr [ECZR]) and two premixed types (Well-Root™ PT [WRPT]; Endocem® MTA premixed [ECPR]). Each sample was prepared using circular Teflon molds, and tests were conducted after 24 h of setting. The premixed CSCs exhibited a more uniform and less rough surface, higher flowability, and lower film thickness than the powder-liquid mix CSCs. In the pH test, all CSCs showed values between 11.5 and 12.5. In the biological test, cells exposed to ECZR at a concentration of 25% showed greater cell viability, but none of the samples showed a significant difference at low concentration (p > 0.05). Alkaline phosphatase staining revealed that cells exposed to ECZR underwent more odontoblast differentiation than the cells exposed to the other materials; however, no significant difference was observed at a concentration of 12.5% (p > 0.05). In the antibacterial test, the premixed CSCs showed better results than the powder-liquid mix CSCs, and ECPR yielded the best results, followed by WRPT. In conclusion, the premixed CSCs showed improved physical properties, and of the premixed types, ECPR exhibited the highest antibacterial properties. For biological properties, none of these materials showed significant differences at 12.5% dilution. Therefore, ECPR may be a promising material with high antibacterial activity among the four CSCs, but further investigation is needed for clinical situations.
Collapse
Affiliation(s)
- Yu-Ji Jang
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Huong Thu Vu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
- Department of Dental Hygiene, Hanseo University, 46 Hanseo 1ro, Seosan 31962, Republic of Korea
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Soo-Kyung Jun
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Joon-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
| |
Collapse
|
15
|
Conti G, Veneri F, Amadori F, Garzoni A, Majorana A, Bardellini E. Evaluation of Antibacterial Activity of a Bioactive Restorative Material Versus a Glass-Ionomer Cement on Streptococcus Mutans: In-Vitro Study. Dent J (Basel) 2023; 11:149. [PMID: 37366672 DOI: 10.3390/dj11060149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dental caries management consists of both preventive and restorative approaches. Pediatric dentists can rely on many techniques and materials to restore decayed teeth, but a high failure rate is still observed, mainly due to secondary caries. New restorative bioactive materials combine the mechanical and aesthetic characteristics of resinous materials with the capability to remineralize and the antimicrobial properties of glass ionomers, thus counteracting the occurrence of secondary caries. The aim of this study was to assess the antimicrobial activity against Streptococcus mutans of a bioactive restorative material (ACTIVA™ BioActive-Restorative™-Pulpdent©) and a glass ionomer cement with silver particles added (Ketac™ Silver-3M©), using agar diffusion assay. METHODS Each material was formed into disks of 4 mm in diameter, and four discs of each material were placed on nine agar plates. The analysis was repeated seven times. RESULTS Both materials showed statistically significant growth inhibition properties against S. mutans (p < 0.05). The difference in the effectiveness of the two materials was not statistically significant. CONCLUSION Both ACTIVA™ and Ketac™ Silver can be recommended since both are similarly effective against S. mutans. However ACTIVA™, given its bioactivity and better aesthetics and mechanical properties compared to GICs, may provide better clinical performance.
Collapse
Affiliation(s)
- Giulio Conti
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Via del Pozzo, 41124 Modena, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alba Garzoni
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
16
|
Maher YA, Rajeh MT, Hamooda FA, Zerain GO, Habis RM, Sulaimani RH, Albar ST, H Ali FM, Abdelaleem NA. Evaluation of the clinical impact and In Vitro antibacterial activities of two bioactive restoratives against S. mutans ATCC 25175 in class II carious restorations. Niger J Clin Pract 2023; 26:404-411. [PMID: 37203103 DOI: 10.4103/njcp.njcp_406_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Background Streptococcus mutans is a Gram-positive opportunistic bacterial pathogen and that causes dental caries and then restorative treatment remains the best clinical practice approach to repair and prevent dental caries. Aims This study compared the antimicrobial performance of resin modified glass ionomer cement (RM-GIC) and ACTIVA restoratives by evaluating the S. mutans count, pH levels, and plaque index (PI) scores before and on the 7th day of restoration, and then determined the antimicrobial activities against S. mutans ATCC 25175 in both restoratives in vitro. Materials and Methods Seventy-eight eligible Saudi female participants, with class II carious lesions, were randomly distributed into RM-GIC and ACTIVA restorative groups. We evaluated the S. mutans count by the serial dilution technique and salivary pH by using a portable pH meter. The PI scores were determined by Silness-Löe method and the antibacterial activity by the agar well diffusion method. Statistical analysis of normality distribution was performed with the Kolmogorov-Smirnov and the difference between groups was an analysis by paired t-test. In addition, the independent sample was compared with the independent samples t-test. Results Both groups reduced the S. mutans count, pH acidity, and PI scores, and this reduction was statistically significant on the 7th day of restoration (P < 0.05), preference for ACTIVA. The in vitro antibacterial activity against S. mutans ATCC 25175 showed a non-significant difference between both bioactive restorative materials (P < 0.05). Conclusion The novel application of ACTIVA restorative material is a promising option for patients at risk of caries.
Collapse
Affiliation(s)
- Y A Maher
- Department of Basic Oral Sciences, College of Dentistry - Umm Al-Qura University, Makkah, Saudi Arabia; Department of Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - M T Rajeh
- Department of Dental Public Health, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F A Hamooda
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - G O Zerain
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R M Habis
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R H Sulaimani
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - S T Albar
- Dental Intern, Collage of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - F M H Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N A Abdelaleem
- Department of Conservative and Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
da Silva AR, Bortoluzzi EA, Vitali FC, Bolan M, Cardoso M. Evaluation of pH and calcium ions release of two tricalcium silicate-based sealers through roots of primary teeth. J Conserv Dent 2023; 26:42-46. [PMID: 36908737 PMCID: PMC10003284 DOI: 10.4103/jcd.jcd_355_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022] Open
Abstract
Background This study aimed to evaluate the pH and calcium ions (Ca2+) release from two tricalcium silicate-based sealers (Sealer Plus BC and Bio-C Pulpecto) through roots of primary teeth. Methods Forty root canals of primary incisors were prepared and distributed into four groups according to the filling material: GPlusBC (Sealer Plus BC); GBioC (Bio-C Pulpecto); GUltra (Ultracal); and GC (no filled). pH measurement was performed with a digital pH meter, and the Ca2+ release was measured in an atomic absorption spectrophotometer at baseline, 24 h and 1, 2, 3, and 4 weeks later. The data were analyzed using two-way ANOVA and Tukey's post hoc tests. Results The results did not reveal significant differences between the groups in terms of pH in 24 h, 1-, and 2-weeks' periods. After 4 weeks, there was a significant difference, with the highest mean pH values in GUltra, followed, respectively, by GPlusBC and GBioC. Regarding the Ca2+ release, the GUltra showed greatest mean values at all evaluated times, and the other groups showed no difference between them. Conclusion Both sealers were able to promote the elevation of the pH and Ca2+ release through roots of primary teeth, which brings favorable properties for their use as a filling material.
Collapse
Affiliation(s)
- Apoliana Reis da Silva
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Filipe Colombo Vitali
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Michele Bolan
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Mariane Cardoso
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Camel ( Camelus spp.) Urine Bioactivity and Metabolome: A Systematic Review of Knowledge Gaps, Advances, and Directions for Future Research. Int J Mol Sci 2022; 23:ijms232315024. [PMID: 36499353 PMCID: PMC9740287 DOI: 10.3390/ijms232315024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.
Collapse
|
19
|
An in vitro evaluation of antimicrobial activity of a fast-setting endodontic material. Sci Rep 2022; 12:16021. [PMID: 36163407 PMCID: PMC9513078 DOI: 10.1038/s41598-022-20454-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is to evaluate the antimicrobial activity of the fast-setting iRoot Fast Set Root Repair Material (iRoot FS), Mineral trioxide aggregate (MTA) and Biodentine. The materials were freshly mixed or set for 1 and 7 days to conduct the agar diffusion test, direct contact test and carry-over effect test against E. faecalis and P. gingivalis, and the pH values were also measured. The data were analyzed by an analysis of variance and one-way ANOVA or Dunnett's T3 test, and the Tukey's post hoc test for multiple comparisons (α = 0.05). In the direct contact test, all three materials showed good antibacterial activity after setting for 20 min. The antibacterial properties of the three materials decreased with the increase of setting time (p < 0.05). The suspension of all the three materials showed high pH values (11-12) and no significant difference was observed (p > 0.05). With the extension of setting time, the pH of iRoot FS and Biodentine slightly decreased (p < 0.05). Fresh iRoot FS, Biodentine, and MTA killed E. faecalis and P. gingivalis effectively, but their antimicrobial effect decreased after 24 h, and distinctly decreased after 7 days after mixing. iRoot FS, Biodentine, and MTA showed a tendency of alkalinity during this 7-day experiment.
Collapse
|
20
|
Abu Hasna A, de Paula Ramos L, Campos TMB, de Castro Lopes SLP, Rachi MA, de Oliveira LD, Carvalho CAT. Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: an in vitro study. Sci Rep 2022; 12:14123. [PMID: 35986029 PMCID: PMC9391469 DOI: 10.1038/s41598-022-17854-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/02/2022] [Indexed: 12/31/2022] Open
Abstract
Calcium silicate-based cements have diverse applications in endodontics. This study aimed to evaluate the antibiofilm action, biocompatibility, morphological structure, chemical composition and radiopacity of Five Mineral Oxides (5MO), Mineral Trioxide Aggregate Repair High Plasticity (MTA Repair HP), and Mineral Trioxide Aggregate (MTA) cements. MTT analysis was used to test the antibiofilm action of these cements against five anaerobic microorganisms, and test their biocompatibility with mouse macrophage (RAW 264.7) and osteoblasts (MG-63) cultures. Their morphological structure and chemical composition were evaluated by scanning electron microscopy (SEM) coupled to energy dispersion X-ray spectroscopy (EDX), and the phase analysis was performed by X-ray diffraction (XRD). Conventional radiography was used to assess the radiopacity of the cements. 5MO, MTA Repair HP and MTA were effective against Porphyromonas gingivalis, Parvimonas micra, Fusobacterium nucleatum and Prevotella intermedia, they were biocompatible with macrophages and osteoblasts after 5 min of contact, and they had adequate radiopacity to be used clinically. Bismuth oxide (Bi2O3) is used as a radiopacifier in MTA and 5MO, and calcium tungstate, in MTA Repair HP. Titanium dioxide (TiO2) (ANATASE) is responsible for the antimicrobial action and biocompatibility of 5MO.
Collapse
Affiliation(s)
- Amjad Abu Hasna
- grid.410543.70000 0001 2188 478XDepartment of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University – UNESP, Av. Eng. Francisco José Longo Avenue 777, São José dos Campos, São Paulo CEP 12245-000 Brazil
| | - Lucas de Paula Ramos
- grid.410543.70000 0001 2188 478XDepartment of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University – UNESP, São José dos Campos, São Paulo Brazil
| | - Tiago Moreira Bastos Campos
- grid.419270.90000 0004 0643 8732Physics Department, Aeronautics Technological Institute (ITA), São José dos Campos, São Paulo Brazil
| | - Sergio Lucio Pereira de Castro Lopes
- grid.410543.70000 0001 2188 478XDepartment of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University – UNESP, São José dos Campos, São Paulo Brazil
| | - Maisour Ala Rachi
- grid.449576.d0000 0004 5895 8692Department of Operative Dentistry, Syrian Private University (S.P.U), Damascus, Syria
| | - Luciane Dias de Oliveira
- grid.410543.70000 0001 2188 478XDepartment of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University – UNESP, São José dos Campos, São Paulo Brazil
| | - Cláudio Antonio Talge Carvalho
- grid.410543.70000 0001 2188 478XDepartment of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University – UNESP, Av. Eng. Francisco José Longo Avenue 777, São José dos Campos, São Paulo CEP 12245-000 Brazil
| |
Collapse
|
21
|
Investigating the Cytotoxicity of Dual-Cure Bulk-Fill Resin Materials on L929 Cells. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this in vitro study was to investigate cytotoxic effects of dual-cure bulk-fill resin materials polymerized with a third-generation LED light-curing unit (LCU) on L929 fibroblast cells in terms of morphology and viability. Three novel dual-cure, flowable bulk-fill materials (Fill-Up!™), a bioactive material (ACTIVA™ BioACTIVE-RESTORATIVE™), and a dual-cure bulk-fill composite material (HyperFIL® HAp) polymerized by LED LCU (VALO™ Cordless) were tested. Each material was placed in plastic rings (4 mm × 5 mm) in a single layer. Unpolymerized rings filled with each material were placed in direct contact with cells and then polymerized. After polymerization, the removed medium was readded to wells. In this study, four control groups were performed: the medium-free control group, medium control group, physical control group, and light applied control group. Three samples were prepared from each group. After 24 h, the morphology of cells was examined and a WST-1 test was performed. The percentage of cell viability (PCV) of each group was calculated. The experiment was repeated three times. Data were analyzed by a Kruskal–Wallis Test and a Mann–Whitney U test. p < 0.05 was considered significant. The PCV of all groups were found to be significantly lower than the medium control group (p < 0.05). The lowest PCV was obtained in HyperFIL® Hap, while highest was in the Fill-Up!™. In the morphology of cells related to the experimental groups, it was observed that the spindle structures of cells were disrupted due to cytotoxicity; cells became rounded and intercellular space increased. There were no significant differences between the control groups (p > 0.05). All control groups showed acceptable PCV (>70%) and cells were spindle-like, similar to the original fibroblast cells. It can be suggested that clinicians should pay attention when applying dual-cure bulk-fill materials in deep cavities, or they should use a liner material under these materials.
Collapse
|
22
|
Abu Hasna A, Theodoro AL, Pereira LM, Ramos LDP, Campos TMB, Ala Rachi M, Al-Nahalwi T, de Oliveira LD, Carvalho CAT. Antimicrobial Action, Genotoxicity, and Morphological Analysis of Three Calcium Silicate-Based Cements. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2155226. [PMID: 35592523 PMCID: PMC9113872 DOI: 10.1155/2022/2155226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
Abstract
This study is aimed at evaluating five mineral oxides (5MO), mineral trioxide aggregate repair high plasticity (MTA HP), and mineral trioxide aggregate (MTA) in relation to the antimicrobial action over Porphyromonas gingivalis, Porphyromonas endodontalis, Parvimonas micra, Fusobacterium nucleatum, and Prevotella intermedia; the genotoxicity over mouse macrophage (RAW 264.7) and osteoblast (Mg-63) cultures; and the morphological analysis using scanning electron microscopy (SEM) analysis (50 k and ×100 k). Sodium hypochlorite (NaOCl), calcium hydroxide, and saline solution were used as control groups in the different analysis. All data were submitted to a normality test and then analyzed with one-way ANOVA, Tukey, and Kruskal-Wallis and Dunn tests, considering α ≤ 0.05 significance level. It was found that over P. gingivalis and P. endodontalis, there was no a significant difference between the calcium silicate-based cements (CSC) and the control group of saline solution, and only 5MO was similar to the NaOCl group. However, over P. micra, all groups were effective and showed a statistically significant difference compared to the saline solution group. Conversely, none of the groups were effective over F. nucleatum and P. intermedia, except of the NaOCl group. There was a significant difference between 5MO and MTA groups in comparison with NaOCl and MTA HP over osteoblasts and macrophages after 24 hours. SEM images showed small irregular particles interspersed with some elongated needle-like particles and small irregular particles with some larger particles as well as elongated particles. It was concluded that 5MO, MTA, and MTA HP have effective antimicrobial action over P. micra. However, only 5MO is effective over P. gingivalis and P. endodontalis. Besides, 5MO and MTA are not genotoxic over mouse macrophage (RAW 264.7) and osteoblast (Mg-63) cultures.
Collapse
Affiliation(s)
- Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| | - Ana Luisa Theodoro
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| | - Larissa Marques Pereira
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| | | | - Maisour Ala Rachi
- Department of Operative Dentistry, Syrian Private University (S.P.U), Damascus, Syria
| | - Talal Al-Nahalwi
- Department of Operative Dentistry, Syrian Private University (S.P.U), Damascus, Syria
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| | - Cláudio Antonio Talge Carvalho
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University-UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
23
|
钱 锟, 潘 洁, 朱 文, 赵 晓, 刘 畅, 雍 颹. [Evaluation of bioceramic putty repairmen iRoot and mineral trioxide aggregate in mature permanent teeth pulpotomy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:113-118. [PMID: 35165477 PMCID: PMC8860637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/06/2023]
Abstract
OBJECTIVE To evaluate the clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot and mineral trioxide aggregate (MTA). METHODS Pulpotomy was performed on mature permanent premolars and molars with carious exposures at the Department of General Dentistry of Peking University School and Hospital of Stomatology, from November 2017 to September 2019. The patients were randomly divided into 2 groups, Group iRoot (n=22) and Group MTA (n=21). In Group iRoot, bioceramic putty repairmen iRoot was used as pulp capping agent, while in Group MTA, mineral trioxide aggregate was used as pulp capping agent. All the patients had signed informed consent forms. The clinical efficacy was evaluated by clinical examinations (temperature and electrical activity test) and imaging examinations 3, 6, and 12 months after surgery. Blinding was used for the patients and evaluators, but due to the obvious differences in the properties of the two pulp capping agents, the blinding method was not used for the treatment provider (the attending physician). RESULTS There was no significant difference in gender, average age, dentition and tooth position distribution between the two groups (P>0.05). In the study, 7 cases were lost to follow-up 12 months after operation (4 cases in Group iRoot, and 3 cases in Group MTA). One case in each of the two groups had transient sensitivity at the end of the 3-month follow-up, and the pulp vitality was normal at the end of the 6-month follow-up. One case in Group iRoot showed sensitivity at the end of the 12-month follow-up. The success rates of the two groups at the end of 12-month follow-up were 100%, and the cure rates were 94.4% (Group iRoot) and 100% (Group MTA), respectively, and the difference was not statistically significant (P>0.05). No cases in Group iRoot had obvious crown discoloration, while 3 cases in Group MTA had. CONCLUSION The clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot were similar with MTA. Bioceramic putty repairmen iRoot is an acceptable material when used in pulpotomy of mature permanent teeth. Because it is not easy to cause tooth discoloration after treatment and is convenient to operate, bioceramic putty repairmen iRoot has a better clinical application prospect.
Collapse
Affiliation(s)
- 锟 钱
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 洁 潘
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 文昊 朱
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 晓一 赵
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 畅 刘
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 颹 雍
- />北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
24
|
[Evaluation of bioceramic putty repairmen iRoot and mineral trioxide aggregate in mature permanent teeth pulpotomy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022. [PMID: 35165477 PMCID: PMC8860637 DOI: 10.19723/j.issn.1671-167x.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate the clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot and mineral trioxide aggregate (MTA). METHODS Pulpotomy was performed on mature permanent premolars and molars with carious exposures at the Department of General Dentistry of Peking University School and Hospital of Stomatology, from November 2017 to September 2019. The patients were randomly divided into 2 groups, Group iRoot (n=22) and Group MTA (n=21). In Group iRoot, bioceramic putty repairmen iRoot was used as pulp capping agent, while in Group MTA, mineral trioxide aggregate was used as pulp capping agent. All the patients had signed informed consent forms. The clinical efficacy was evaluated by clinical examinations (temperature and electrical activity test) and imaging examinations 3, 6, and 12 months after surgery. Blinding was used for the patients and evaluators, but due to the obvious differences in the properties of the two pulp capping agents, the blinding method was not used for the treatment provider (the attending physician). RESULTS There was no significant difference in gender, average age, dentition and tooth position distribution between the two groups (P>0.05). In the study, 7 cases were lost to follow-up 12 months after operation (4 cases in Group iRoot, and 3 cases in Group MTA). One case in each of the two groups had transient sensitivity at the end of the 3-month follow-up, and the pulp vitality was normal at the end of the 6-month follow-up. One case in Group iRoot showed sensitivity at the end of the 12-month follow-up. The success rates of the two groups at the end of 12-month follow-up were 100%, and the cure rates were 94.4% (Group iRoot) and 100% (Group MTA), respectively, and the difference was not statistically significant (P>0.05). No cases in Group iRoot had obvious crown discoloration, while 3 cases in Group MTA had. CONCLUSION The clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot were similar with MTA. Bioceramic putty repairmen iRoot is an acceptable material when used in pulpotomy of mature permanent teeth. Because it is not easy to cause tooth discoloration after treatment and is convenient to operate, bioceramic putty repairmen iRoot has a better clinical application prospect.
Collapse
|
25
|
Abusrewil S, Brown JL, Delaney C, Butcher MC, Tiba M, Scott JA, Ramage G, McLean W. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics (Basel) 2021; 10:antibiotics10111317. [PMID: 34827255 PMCID: PMC8614659 DOI: 10.3390/antibiotics10111317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontic infection is a biofilm disease that is difficult to irradicate with current treatment protocols, and as such, persistent micro-organisms may lead to ongoing or recurrent disease. The potential for the use of enhanced filling materials to modify biofilm regrowth is a promising strategy. This current study aimed to evaluate the anti-biofilm efficacy of calcium silicate cements modified with chitosan. The development of mono-species and multi-species biofilms on ProRoot MTA, Biodentine and bovine dentine discs were explored using quantitative microbiology analysis. The effect on regrowth of biofilms was assessed following the addition of chitosan to each cement. In comparison to a dentine substrate, both materials did not show the ability to inhibit biofilm regrowth. Biodentine incorporated with chitosan displayed a dose-dependent reduction in multi-species biofilm regrowth, unlike MTA. Notably, interkingdom biofilms were shown to enhance bacterial tolerance in the presence of chitosan. This study demonstrates the potential to enhance the antimicrobial properties of Biodentine. The findings highlight the need for appropriate model systems when exploring antimicrobial properties of materials in vitro so that interspecies and interkingdom interactions that modify tolerance are not overlooked while still supporting the development of innovative materials.
Collapse
Affiliation(s)
- Sumaya Abusrewil
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Jason L. Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mark C. Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mohammed Tiba
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - J. Alun Scott
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Correspondence: ; Tel.: +44(0)141-956-0991
| |
Collapse
|
26
|
Mechanical and Tribological Characterization of a Bioactive Composite Resin. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite developments and advances in dental materials which allow for greater restorative performance, there are still challenges and questions regarding the formulation of new compositions and chemical reactions of materials used in restorative dentistry. The aim of this study was to assess and compare the mechanical and tribological characteristics of a bioactive resin, a composite resin, and a glass ionomer. Twenty specimens of each material were divided into two groups: one control group (n = 10), not subjected to thermocycling, and one test group (n = 10) submitted to thermocycling. The Vickers microhardness test was carried out and surface roughness was evaluated. The tribological sliding indentation test was chosen. The bioactive resin had the lowest hardness, followed by the composite resin, and the glass ionomer. The bioactive resin also showed greater resistance to fracture. For the tribological test, the wear rate was lower for the bioactive resin, followed by the composite resin, and the glass ionomer. The bioactive resin presented a smooth surface without visible cracks, while the other materials presented a brittle peeling of great portions of material. Thus, the bioactive resin performs better in relation to fracture toughness, wear rate and impact absorption than the composite resin and much better than the glass ionomer.
Collapse
|
27
|
Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)-A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4573. [PMID: 34443098 PMCID: PMC8398617 DOI: 10.3390/ma14164573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Bioactive calcium silicate cement Mineral Trioxide Aggregate (MTA) has been used for years as a gold standard in intravital pulp treatment and specialist endodontic procedures. Owing to flaws of the material, the manufacturers have been trying to enhance and produce materials showing improved physical, chemical and biological parameters. One of the new calcium-silicate cements based on mineral trioxide aggregate, however without some flaws exhibited by the cement, is Mineral Trioxide Aggregate Repair High Plasticity (MTA HP). The aim of the present paper was a systematic literature review concerning the MTA HP material used nowadays in dentistry, as a review of its specific features. The present paper is the first article providing a systematic literature review on MTA HP. The aim of the present article is the better understanding of MTA HP properties, which can aid the decision-making process in endodontic treatment.
Collapse
Affiliation(s)
| | - Kinga Kaczor-Wiankowska
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.)
| | | |
Collapse
|
28
|
Jackson J, Dietrich C, Shademani A, Manso A. The Manufacture and Characterization of Silver Diammine Fluoride and Silver Salt Crosslinked Nanocrystalline Cellulose Films as Novel Antibacterial Materials. Gels 2021; 7:gels7030104. [PMID: 34449599 PMCID: PMC8395774 DOI: 10.3390/gels7030104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
There is an unmet need for biocompatible, anti-infective, and mechanically strong hydrogels. This study investigated the use of poly vinyl alcohol (PVA), polysaccharides, and nanocrystalline cellulose (CNC) to deliver silver in a controlled manner for possible use against oral or wound bacteria. Silver was included in solvent cast films as silver diammine fluoride (SDF) or as nitrate, sulphate, or acetate salts. Hydrogel formation was assessed by swelling determinations and silver release was measured using inductively coupled plasma methods. Antibacterial studies were performed using Gram-positive and negative bacteria turbidity assays. PVA formed homogenous, strong films with SDF and swelled gently (99% hydrolyzed) or vigorously with dissolution (88% hydrolyzed) and released silver slowly or quickly, respectively. CNC-SDF films swelled over a week and formed robust hydrogels whereas CNC alone (no silver) disintegrated after two days. SDF loaded CNC films released silver slowly over 9 days whereas films crosslinked with silver salts were less robust and swelled and released silver more quickly. All silver loaded films showed good antibacterial activity. CNC may be crosslinked with silver in the form of SDF (or any soluble silver salt) to form a robust hydrogel suitable for dental use such as for exposed periodontal debridement areas.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - Claudia Dietrich
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.D.); (A.M.)
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ali Shademani
- Department of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Adriana Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.D.); (A.M.)
| |
Collapse
|
29
|
Antimicrobial Activity of Calcium Silicate-Based Dental Materials: A Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10070865. [PMID: 34356786 PMCID: PMC8300656 DOI: 10.3390/antibiotics10070865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Endodontic biomaterials have significantly improved dental treatment techniques in several aspects now that they can be used for vital pulp treatments, as temporary intracanal medication, in definitive fillings, in apical surgeries, and for regenerative procedures. Calcium silicate-based cement is a class of dental material that is used in endodontics in direct contact with the dental structures, connective tissue, and bone. Because the material interacts with biological tissues and stimulates biomineralization processes, its properties are of major importance. The main challenge in endodontic treatments is the elimination of biofilms that are present in the root canal system anatomical complexities, as it remains even after chemical-mechanical preparation and disinfection procedures. Thus, an additional challenge for these biomaterials is to exert antimicrobial activity while maintaining their biological properties in parallel. This article reviews the literature for studies considering the antimicrobial properties of calcium silicate-based dental biomaterials used in endodontic practice. Considering the reviewed studies, it can be affirmed that the reduced antimicrobial effect exhibited by calcium silicate-based endodontic materials clearly emphasizes that all clinical procedures prior to their use must be carefully performed. Future studies for the evaluation of these materials, and especially newly proposed materials, under poly-microbial biofilms associated with endodontic diseases will be necessary.
Collapse
|
30
|
Murata K, Washio A, Morotomi T, Rojasawasthien T, Kokabu S, Kitamura C. Physicochemical Properties, Cytocompatibility, and Biocompatibility of a Bioactive Glass Based Retrograde Filling Material. NANOMATERIALS 2021; 11:nano11071828. [PMID: 34361212 PMCID: PMC8308453 DOI: 10.3390/nano11071828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023]
Abstract
The ideal retrograde filling material that is easy to handle, has good physicochemical properties, and is biocompatible has not yet been developed. The current study reports the development of a novel bioactive glass based powder for use as a retrograde filling material that is capable of altering the consistency and hardening rate of mixtures when mixed with existing bioactive glass based cement. Furthermore, its physicochemical properties, in vitro effects on human cementoblast-like cells, and in vivo effects on inflammatory responses were evaluated. The surface of the hardened cement showed the formation of hydroxyapatite-like precipitates and calcium and silicate ions were eluted from the cement when the pH level was stabilized at 10.5. Additionally, the cement was found to be insoluble and exhibited favorable handling properties. No adverse effects on viability, proliferation, and expression of differentiated markers were observed in the in vitro experiment, and the cement was capable of inducing calcium deposition in the cells. Moreover, the cement demonstrated a lower number of infiltrated inflammatory cells compared to the other materials used in the in vivo mouse subcutaneous implantation experiment. These findings suggest that the retrograde filling material composed of bioactive glass and the novel bioactive glass based powder exhibits favorable physicochemical properties, cytocompatibility, and biocompatibility.
Collapse
Affiliation(s)
- Kazumasa Murata
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan; (K.M.); (T.M.); (C.K.)
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan; (K.M.); (T.M.); (C.K.)
- Correspondence: ; Tel.: +81-93-582-1131
| | - Takahiko Morotomi
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan; (K.M.); (T.M.); (C.K.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.R.); (S.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.R.); (S.K.)
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan; (K.M.); (T.M.); (C.K.)
| |
Collapse
|
31
|
Experimental Dental Composites Containing a Novel Methacrylate-Functionalized Calcium Phosphate Component: Evaluation of Bioactivity and Physical Properties. Polymers (Basel) 2021; 13:polym13132095. [PMID: 34202144 PMCID: PMC8271644 DOI: 10.3390/polym13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to synthesize and characterize a novel methacrylate-functionalized calcium phosphate (MCP) to be used as a bioactive compound for innovative dental composites. The characterization was accomplished by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The incorporation of MCP as a bioactive filler in esthetic dental composite formulations and the ability of MCP containing dental composites to promote the precipitation of hydroxyapatite (HAp) on the surfaces of those dental composites was explored. The translucency parameter, depth of cure, degree of conversion, ion release profile, and other physical properties of the composites were studied with respect to the amount of MCP added to the composites. Composite with 3 wt.% MCP showed the highest flexural strength and translucency compared to the control composite and composites with 6 wt.% and 20 wt.% MCP. The progress of the surface precipitation of hydroxyapatite on the MCP containing dental composites was studied by systematically increasing the MCP content in the composite and the time of specimen storage in Dulbecco's phosphate-buffered solution with calcium and magnesium. The results suggested that good bioactivity properties are exhibited by MCP containing composites. A direct correlation between the percentage of MCP in a composite formulation, the amount of time the specimen was stored in PBS, and the deposition of hydroxyapatite on the composite's surface was observed.
Collapse
|
32
|
Phosphate Ion Release and Alkalizing Potential of Three Bioactive Dental Materials in Comparison with Composite Resin. Int J Dent 2021; 2021:5572569. [PMID: 34040643 PMCID: PMC8121605 DOI: 10.1155/2021/5572569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 01/23/2023] Open
Abstract
Aim Several new bioactive compounds were recently introduced to the market with favorable ion release, tooth remineralization, and alkalizing potential. This study sought to compare the phosphate ion release and alkalizing potential of three bioactive materials in comparison with composite resin. Methods Thirty-six discs (2 × 6 mm) were fabricated from Fuji II LC resin modified glass ionomer (RMGI), Activa BioActive, Cention N, and Z250 composite in plastic molds. The specimens were stored in distilled water for 24 and 48 h and 6 months. Half of the specimens were used to assess the phosphate ion release while the other half were used to assess the alkalizing potential 1 h after pH drop from 6.8 to 4. Phosphate ion release was quantified by a spectrophotometer while the pH value was measured by a pH meter. Data were analyzed using two-way ANOVA, one-way ANOVA, and Tukey's HSD test (for pairwise comparisons) at 0.05 level of significance. Results At 24 h, the maximum phosphate ion release in distilled water occurred in the Fuji II LC group followed by Cention N, Activa BioActive, and Z250. At 6 months, Cention N followed by Activa BioActive showed higher phosphate ion release than Fuji II LC and Z250. No significant difference was noted between Activa BioActive and Cention N at any time point. All materials, except for Z250, increased the pH of the environment. Fuji II LC had maximum alkalizing effect at all time points followed by Cention N and Activa BioActive. Conclusion Use of bioactive compounds is a promising method to ensure phosphate ion release, and can have a positive effect on tooth remineralization over time. Also, bioactive compounds can alkalize an acidic environment.
Collapse
|
33
|
Liu M, He L, Wang H, Su W, Li H. Comparison of in vitro biocompatibility and antibacterial activity of two calcium silicate-based materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:52. [PMID: 33900464 PMCID: PMC8076131 DOI: 10.1007/s10856-021-06523-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study is aimed at comparing and evaluating the biocompatibility and antibacterial activities of mineral trioxide aggregate (MTA) and iRoot BP Plus as novel retro-filling materials. Discs of both materials were prepared and incubated for 72 h to obtain material extracts in medium. Flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to assess the rate of apoptosis and proliferation of human periodontal ligament stem cells (hPDLSCs) when exposed to eluates of both materials. The expression levels of alkaline phosphatase, collagen type I, osteocalcin, Runt-related transcription factor-2, and Osterix were tested for evaluating the osteogenic differentiation of hPDLSCs. The antibacterial activities of both materials were compared by the direct contact test. The hPDLSCs stimulated by MTA or iRoot BP Plus eluates showed significantly higher cell viability than that of the control group with no eluates. No significant differences were observed among the percentages of necrotic and apoptotic cells stimulated by MTA and iRoot BP Plus eluates and the control group. The expression of all osteogenic differentiation markers of hPDLSCs in both experimental groups were significantly higher than those of the control group, while the increment values in MTA group were significantly higher than those of the iRoot BP Plus group. The antibacterial activity against Enterococcus faecalis showed no significant difference between MTA and iRoot BP Plus. Therefore, both materials may be suitable for retro-filling applications.
Collapse
Affiliation(s)
- Mingxiang Liu
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Lu He
- Affiliated Stomatology Hospital of Guangzhou Medical University, School of Stomatology, Guangzhou Medical University, Guangdong, 510140, China
| | - Hongyuan Wang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenpei Su
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
34
|
Motwani N, Ikhar A, Nikhade P, Chandak M, Rathi S, Dugar M, Rajnekar R. Premixed bioceramics: A novel pulp capping agent. J Conserv Dent 2021; 24:124-129. [PMID: 34759576 PMCID: PMC8562841 DOI: 10.4103/jcd.jcd_202_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
The main aim of restorative dentistry is to protect the vitality of the Pulp tissue. The pin point carious expoure and iatrogenic errors warrant the need for various pulp capping procedures like Indirect Pulp Capping and Direct Pulp Capping. Pulp Capping is dressing of the dental pulp exposed due to mechanical procedure, carious lesion or traumatic injury to preserve its vitality and function. There has been constant evolution and research on materials used to cap the Pulp tissue. The different kind of chemical and biological materials has been used with varying degree of success. The prognosis based on the pulp capping material has dramatically improved with the introduction of bioactive cement. Though MTA and biodentine have shown a high success rate, their properties can be adversely affected with error in powder/liquid ratio and may present with difficulty in the handling characteristic. Premixed bioceramics have been introduced in the market and present with desirable properties as a pulp capping agent. Owing to good handling characteristics, biocompatibility, odontogenic property, and antibacterial action it is a potent pulp capping agent for clinical application. This review is aimed to discuss the introduction of premixed bioceramics, forms of premixed bioceramics available, and its physical, chemical, and biocompatible properties.
Collapse
Affiliation(s)
- Nidhi Motwani
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Anuja Ikhar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Pradnya Nikhade
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Manoj Chandak
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Saurabh Rathi
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Meghna Dugar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Rutuja Rajnekar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| |
Collapse
|
35
|
Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater 2021; 37:311-320. [DOI: 10.1016/j.dental.2020.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022]
|
36
|
Kucukyildiz EN, Dayi B, Altin S, Yigit O. In vitro comparison of physical, chemical, and mechanical properties of graphene nanoplatelet added Angelus mineral trioxide aggregate to pure Angelus mineral trioxide aggregate and calcium hydroxide. Microsc Res Tech 2021; 84:929-942. [PMID: 33410148 DOI: 10.1002/jemt.23654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022]
Abstract
It is important to cover the pulp surface with a biocompatible material that is physically, mechanically, and chemically adequate. Graphene has the potential to form hard tissue, but at high doses, it shows toxic effects. It can be added to biocompatible materials at low doses to enhance their hard tissue forming potential. The aim of this study was to compare the physical, chemical, and mechanical properties of graphene nanoplatelet (GNP) added Angelus mineral trioxide aggregate (A-MTA) to pure A-MTA and calcium hydroxide. Homogeneous mixtures (created by adding +0.1 weight[wt]% and 0.3 wt% GNP to A-MTA), pure A-MTA, and Dycal were used. Three disc-shaped samples of each material were prepared using Teflon mold. Scanning electron microscope-energy dispersive X-ray (SEM-EDX), particle size, microhardness, and Fourier transform infrared spectroscopy (FTIR) analysis of the materials were performed in vitro. Data were analyzed using Kruskal-Wallis test followed by Conover test (p < .001). A-MTA and GNP added samples showed similar peaks in FTIR analysis. In the EDX analysis, the amount of carbon was observed with a higher increase at A-MTA + 0.3 wt% GNP than A-MTA + 0.1 wt% GNP. In the SEM image, hollow structure and particle size decreased as the amount of GNP increased; particle size was smaller at A-MTA + 0.3 wt% GNP than A-MTA + 0.1 wt% GNP (p < .001). A-MTA + 0.3 wt% GNP showed the highest microhardness while Dycal showed the lowest microhardness. The addition of GNP, a material with high potential for forming hard tissue, to the structure of capping materials can also positively contribute to the microhardness of the capping materials.
Collapse
Affiliation(s)
- Elif Nihan Kucukyildiz
- Department of Restorative Dentistry, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Burak Dayi
- Department of Restorative Dentistry, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Serdar Altin
- Department of Physics, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - Oktay Yigit
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Firat University, Elazig, Turkey
| |
Collapse
|
37
|
Jacob VP, Paião LI, da Silva ACG, Magario MKW, Kaneko TY, Martins CM, Monteiro DR, Mori GG. Antimicrobial action of NeoMTA Plus on mono- and dual-species biofilms of Enterococcus faecalis and Candida albicans: An in vitro study. Arch Oral Biol 2020; 120:104925. [PMID: 33091665 DOI: 10.1016/j.archoralbio.2020.104925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the antimicrobial action of NeoMTA Plus on mono- and dual-species biofilms of Enterococcus faecalis and Candida albicans. MATERIAL AND METHODS A total of 171 sterile dentin blocks, measuring 4 mm × 4 mm × 1 mm, were incubated in media containing E. faecalis (3.1 × 108 cells/mL) and/or C. albicans (1 × 107 cells/mL) for 2 d. These blocks were randomly divided into three groups: the control (no treatment with biomaterials), MTA (treated with an MTA sample with width and thickness same as those of the dentin block after the material was set), and NeoMTA Plus (treated with NeoMTA Plus in a fashion similar to the treatment of the MTA group) groups. The biomaterials remained in contact with the biofilms for 24 h. Quantitative analyses of the number of colony-forming units (CFUs) and metabolic activity (XTT), were performed. Furthermore, qualitative analysis of biofilm structure was performed by scanning electron microscopy. Data were statistically analyzed considering a significance level of 5%. RESULTS XTT and the number of CFUs were similar among the groups (p > 0.05). The type of biofilm (mono- or dual-species) or the biomaterial used (MTA or NeoMTA Plus) did not affect the results. Biofilm structure exhibited a robust architecture composed of yeast and bacterial cell multilayers and was homogeneous among the groups. CONCLUSION NeoMTA Plus was not effective against mono- and dual-species biofilms of E. faecalis and C. albicans. Further research investigating biofilm removal methods including those involving the use of biomaterials with antiseptics and other supporting therapies is warranted.
Collapse
Affiliation(s)
- Vanessa Peret Jacob
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Luana Isabel Paião
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | | | | | - Taís Yukari Kaneko
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Christine Men Martins
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil; Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil; Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Graziela Garrido Mori
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil; Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| |
Collapse
|