1
|
Ansari J, Dodamani G, Nagral S, Ronad S, Pawar P. Topical Oxygen Therapy for Promoting Healing After Implant Placement Using Blue® M Gel: A Report of Two Cases. Cureus 2024; 16:e65258. [PMID: 39184738 PMCID: PMC11342578 DOI: 10.7759/cureus.65258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Peri-implant diseases, such as peri-implant mucositis and peri-implantitis, are distinguished by a gradual onset of inflammation within the peri-implant mucosa, resulting in bone resorption and, ultimately, implant failure. Topical oxygen therapy is recognized for its ability to decrease inflammation, enhance blood flow, and provide a bacteriostatic effect. Utilizing oxygen-based therapy products as a local treatment for peri-implant mucositis and peri-implantitis may lead to comparable clinical results as traditional local adjuncts such as chlorhexidine, antibiotics, and antibacterial agents. This article discusses two case reports in which the Blue® M gel was utilized. In the first case, a 50-year-old female patient with a decade-long history of betel quid chewing and missing upper right first and second molars was treated with Blue® M gel to reduce the chances of peri-implantitis and promote healing following a first-stage surgical procedure for implant placement. In the second case, Blue® M gel was applied to a 56-year-old female patient who experienced pain and inflammation one week after the initial surgical procedure for implant placement to restore the missing posterior teeth on the lower right side. The use of the Blue® M gel led to accelerated healing in both instances.
Collapse
Affiliation(s)
- Jaweria Ansari
- Department of Prosthodontics, Jawahar Medical Foundation's Annasaheb Chudaman Patil Memorial Dental College, Dhule, IND
| | - Girija Dodamani
- Department of Prosthodontics, Jawahar Medical Foundation's Annasaheb Chudaman Patil Memorial Dental College, Dhule, IND
| | - Suresh Nagral
- Department of Prosthodontics, Jawahar Medical Foundation's Annasaheb Chudaman Patil Memorial Dental College, Dhule, IND
| | - Sunil Ronad
- Department of Prosthodontics, Jawahar Medical Foundation's Annasaheb Chudaman Patil Memorial Dental College, Dhule, IND
| | - Priyadarshani Pawar
- Department of Prosthodontics, Jawahar Medical Foundation's Annasaheb Chudaman Patil Memorial Dental College, Dhule, IND
| |
Collapse
|
2
|
Morra M, Iviglia G, Cassinelli C, Sartori M, Cavazza L, Martini L, Fini M, Giavaresi G. Preliminary Evaluation of Bioactive Collagen-Polyphenol Surface Nanolayers on Titanium Implants: An X-ray Photoelectron Spectroscopy and Bone Implant Study. J Funct Biomater 2024; 15:170. [PMID: 39057292 PMCID: PMC11278435 DOI: 10.3390/jfb15070170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
To endow an implant surface with enhanced properties to ensure an appropriate seal with the host tissue for inflammation/infection resistance, next-generation bone implant collagen-polyphenol nanolayers were built on conventional titanium surfaces through a multilayer approach. X-ray Photoelectron Spectroscopy (XPS) analysis was performed to investigate the chemical arrangement of molecules within the surface layer and to provide an estimate of their thickness. A short-term (2 and 4 weeks) in vivo test of bone implants in a healthy rabbit model was performed to check possible side effects of the soft surface layer on early phases of osteointegration, leading to secondary stability. Results show the building up of the different nanolayers on top of titanium, resulting in a final composite collagen-polyphenol surface and a layer thickness of about 10 nm. In vivo tests performed on machined and state-of-the-art microrough titanium implants do not show significant differences between coated and uncoated samples, as the surface microroughness remains the main driver of bone-to-implant contact. These results confirm that the surface nanolayer does not interfere with the onset and progression of implant osteointegration and prompt the green light for specific investigations of the potential merits of this bioactive coating as an enhancer of the device/tissue seal.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Giorgio Iviglia
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Clara Cassinelli
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Maria Sartori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Luca Cavazza
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Lucia Martini
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Milena Fini
- Direzione Scientifica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| |
Collapse
|
3
|
Bai X, Zhang X, Xiao J, Lin X, Lin R, Zhang R, Deng X, Zhang M, Wei W, Lan B, Weng S, Chen M. Endowing Polyetheretherketone with Anti-Infection and Immunomodulatory Properties through Guanidination Carbon Dots Modification to Promote Osseointegration in Diabetes with MRSA Infection. Adv Healthc Mater 2024; 13:e2302873. [PMID: 38041688 DOI: 10.1002/adhm.202302873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection and compromised immunity are the severe complications associated with implantation surgery in diabetes mellitus. Enhancing the antibacterial and immunomodulatory properties of implants represents an effective approach to improve the osseointegration of implant in diabetes mellitus. Herein, guanidination carbon dots (GCDs) with antibacterial and immunoregulatory functions are synthesized. The GCDs demonstrate killing effect on MRSA without detectable induced resistance. Additionally, they promote the polarization of macrophages from the M1 to M2 subtype, with the inhibiting pro-inflammatory cytokines and promoting anti-inflammatory factors. Correspondingly, GCDs are immobilized onto sulfonated polyether ether ketone (SP@GCDs) using a polyvinyl butyraldehyde (PVB) coating layer through soaking-drying technique. SP@GCDs maintain stable antibacterial efficacy against MRSA for six consecutive days and retain the immunomodulatory function, while also possessing the long-term storage stability and biocompatibility of more than 6 months. Moreover, SP@GCDs significantly promote the proliferation and mineralization of osteoblasts. SP@GCDs facilitate osteogenesis through immunoregulatory. Additionally, SP@GCDs exert stable antibacterial and immune regulatory functions in implantation site of a diabetes rat, effectively promoting implant osseointegration regardless of the MRSA infection. These findings provide valuable insights into implant modification through designing nanomaterials with multifunction for enhancing osseointegration of diabetes mellitus, suggesting the promising clinical application prospects.
Collapse
Affiliation(s)
- Xinxin Bai
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Jiecheng Xiao
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Wenqin Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Bin Lan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| |
Collapse
|
4
|
Struckmann VF, Allouch-Fey S, Kneser U, Harhaus L, Schulte M. Indication-Specific Effect of a Phytotherapeutic Remedy on Human Fetal Osteoblastic Cells: An in vitro Analysis. Complement Med Res 2024; 31:222-233. [PMID: 38387452 DOI: 10.1159/000535845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Impaired fracture healing is a recurring interdisciplinary medical challenge. Alternative treatment concepts, apart from conventional medicine, are popular, but scientific evidence on their effects is still lacking. Plant-derived substances are widely assumed to support bone homeostasis. To clarify the effects on bone healing mechanisms, a commercially available, homeopathic-spagyric remedy, containing inter alia two herbal substances with assumed osteogenic potential, equisetum arvense and bellis perennis, was analyzed. METHODS Human fetal osteoblastic (hFOB) 1.19 cells were incubated with the test substance in serial dilutions from 10 to 0.00001%. Cell viability has been evaluated through ATP level (CTG assay) and MTT tetrazolium reduction. Cell proliferation was analyzed by BrdU incorporation and cell migration by wound healing assay (WHA) via image analysis. Additionally, determination of the expression of key genes via real-time PCR and proteins via proteome array for inflammation, cell proliferation, and angiogenesis were performed. RESULTS An incubation of hFOB 1.19 cells with the test substance for 24/72 h showed no reduction in cell number, viability, or proliferation. Cell migration was unimpaired. The test substance induced inflammatory genes and growth factors along with genes of osseous regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Increased protein expression was found in multiple cytokines, chemokines, and acute phase proteins. CONCLUSION The test substance did not impair cell vitality parameters (MTT, CTG, BrdU, and WHA). A tendency to activate growth factors, bone regeneration genes, and proteins was shown for osteoblasts, indicating a possible positive effect on osteogenic processes. Hintergrund Störungen des komplexen Prozesses der Knochenheilung stellen auch heutzutage noch eine interdisziplinäre Herausforderung dar. Es existieren zahlreiche alternative Therapiekonzepte, deren Evidenz jedoch häufig nicht belegt ist. Es wird davon ausgegangen, dass pflanzliche Substanzen die Knochenheilung unterstützen können. Wir analysierten die Wirkung eines kommerziellen, homeopathisch-spagyrischen Heilmittels, welches unter anderen zwei Pflanzenstoffe enthält, denen ein osteogenes Potential zugeschrieben wird ( Equisetum arvense und Bellis perennis). Methoden Es erfolgte eine Inkubation humaner fetaler Osteoblastenzellen (hFOB 1.19) mit der Testsubstanz in absteigender Verdünnung von 10 bis 0.00001%. Die Zellvitalität wurde anhand der Zellzahlbestimmung durch ATP-abhängige metabolische Aktivität mittels CellTiter-Glo® (CTG) Test sowie durch Tetrazolium Reduktion (MTT) evaluiert. Die Zellproliferation wurde durch Inkorporation von Bromdesoxyuridin (BrdU) in die DNA aktiver Zellen analysiert. Der Wound Healing Assay (WHA) diente der Quantifizierung der Zellmigration. Zusätzlich wurde die Expression bestimmter Schlüsselgene mittels real-time PCR und die Proteinexpression via proteom array für Inflammation, Zellproliferation und Angiogenese erhoben. Ergebnisse Die Inkubation von hFOB 1.19 mit der Testsubstanz für 24/72 Stunden führte zu keiner Reduktion von Zellzahl, -vitalität oder -proliferation. Auch die Zellmigration war unbeeinträchtigt. Es zeigte sich eine Induktion inflammatorischer Gene, Wachstumsfaktoren sowie Genen der knöchernen Regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Verschiedene Zytokine, Chemokine und Akute Phase Proteine wurden vermehrt exprimiert. Schlussfolgerung Die Testsubstanz hatte keine negativen Auswirkungen auf die gemessenen Zellvitalitätsparameter (MTT, CTG, BrdU and WHA). Es zeigte sich eine Aktivierungstendenz für Wachstumsfaktoren, Gene und Proteine der Knochenregeneration, die auf einen möglichen positiven Effekt der Substanz auf den Prozess des Knochenheilung hinweisen.
Collapse
Affiliation(s)
- Victoria Franziska Struckmann
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Stephanie Allouch-Fey
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, Department of Hand and Plastic Surgery of Heidelberg University, BG Clinic Ludwigshafen, Ludwigshafen, Germany
- Andreas Wentzensen Research Institute, BG Clinic Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
5
|
Choukroun E, Parnot M, Surmenian J, Gruber R, Cohen N, Davido N, Simonpieri A, Savoldelli C, Afota F, El Mjabber H, Choukroun J. Bone Formation and Maintenance in Oral Surgery: The Decisive Role of the Immune System-A Narrative Review of Mechanisms and Solutions. Bioengineering (Basel) 2024; 11:191. [PMID: 38391677 PMCID: PMC10886049 DOI: 10.3390/bioengineering11020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Based on the evidence of a significant communication and connection pathway between the bone and immune systems, a new science has emerged: osteoimmunology. Indeed, the immune system has a considerable impact on bone health and diseases, as well as on bone formation during grafts and its stability over time. Chronic inflammation induces the excessive production of oxidants. An imbalance between the levels of oxidants and antioxidants is called oxidative stress. This physio-pathological state causes both molecular and cellular damage, which leads to DNA alterations, genetic mutations and cell apoptosis, and thus, impaired immunity followed by delayed or compromised wound healing. Oxidative stress levels experienced by the body affect bone regeneration and maintenance around teeth and dental implants. As the immune system and bone remodeling are interconnected, bone loss is a consequence of immune dysregulation. Therefore, oral tissue deficiencies such as periodontitis and peri-implantitis should be regarded as immune diseases. Bone management strategies should include both biological and surgical solutions. These protocols tend to improve immunity through antioxidant production to enhance bone formation and prevent bone loss. This narrative review aims to highlight the relationship between inflammation, oxidation, immunity and bone health in the oral cavity. It intends to help clinicians to detect high-risk situations in oral surgery and to propose biological and clinical solutions that will enhance patients' immune responses and surgical treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Franck Afota
- Private Practice, 06000 Nice, France
- Head and Neck Institute, CHU, 06000 Nice, France
| | | | | |
Collapse
|
6
|
Yilihamujiang H, Ni X, Yu M, Dong S, Mei L, Zheng Y, Cheng L, Pang N. Serum TNF-α level and probing depth as a combined indicator for peri-implant disease. Braz J Med Biol Res 2024; 57:e12989. [PMID: 38265340 PMCID: PMC10802234 DOI: 10.1590/1414-431x2023e12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024] Open
Abstract
Peri-implant disease (PID) is a general term for inflammatory diseases of soft and hard tissues that occur around implants, including peri-implant mucositis and peri-implantitis. Cytokines are a class of small molecule proteins, which have various functions such as regulating innate immunity, adaptive immunity, and repairing damaged tissues. In order to explore the characteristics and clinical significance of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and tumor growth factor (TGF)-β1 expression levels in serum of patients with peri-implant disease, 31 patients with PID and 31 patients without PID were enrolled. The modified plaque index (mPLI), modified sulcus bleeding index (mSBI), and peri-implant probing depth (PD) were recorded. The levels of serum TNF-α, IL-6, IL-10, and TGF-β1 were detected by ELISA. TNF-α, mPLI, mSBI, and PD levels were significantly higher in the PID group. TGF-β1 levels were significantly higher in the control group. There was a significant positive correlation between TNF-α and mPLI, mSBI, and PD. TGF-β1 was negatively associated with TNF-α, mPLI, mSBI, and PD. Multiple logistic regression analysis showed that TNF-α and PD were risk factors for the severity of PID. The receiver operating curve analysis showed that high TNF-α levels (cut-off value of 140 pg/mL) and greater PD values (cut-off value of 4 mm) were good predictors of PID severity with an area under the curve of 0.922. These results indicated that TNF-α and PD can be used as a biological indicator for diagnosing the occurrence and progression of PID.
Collapse
Affiliation(s)
- Huerxidai Yilihamujiang
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Xiaofeng Ni
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Mingkai Yu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuya Dong
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Long Mei
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Yuxiang Zheng
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Lujin Cheng
- Department of Prosthodontics and Dental Implant, Xinjiang Medical University Affiliated First Hospital, School of Stomatology, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Nannan Pang
- Department of Pathology, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|