1
|
Pizzimenti C, Fiorentino V, Ruggeri C, Franchina M, Ercoli A, Tuccari G, Ieni A. Autophagy Involvement in Non-Neoplastic and Neoplastic Endometrial Pathology: The State of the Art with a Focus on Carcinoma. Int J Mol Sci 2024; 25:12118. [PMID: 39596186 PMCID: PMC11594225 DOI: 10.3390/ijms252212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy is a cellular process crucial for maintaining homeostasis by degrading damaged proteins and organelles. It is stimulated in response to stress, recycling nutrients and generating energy for cell survival. In normal endometrium, it suppresses tumorigenesis by preventing toxic accumulation and maintaining cellular homeostasis. It is involved in the cyclic remodelling of the endometrium during the menstrual cycle and contributes to decidualisation for successful pregnancy. Such a process is regulated by various signalling pathways, including PI3K/AKT/mTOR, AMPK/mTOR, and p53. Dysregulation of autophagy has been associated with benign conditions like endometriosis and endometrial hyperplasia but also with malignant neoplasms such as endometrial carcinoma. In fact, it has emerged as a crucial player in endometrial carcinoma biology, exhibiting a dual role in both tumour suppression and tumour promotion, providing nutrients during metabolic stress and allowing cancer cell survival. It also regulates cancer stem cells, metastasis and therapy resistance. Targeting autophagy is therefore a promising therapeutic strategy in endometrial carcinoma and potential for overcoming resistance to standard treatments. The aim of this review is to delve into the intricate details of autophagy's role in endometrial pathology, exploring its mechanisms, signalling pathways and potential therapeutic implications.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Vincenzo Fiorentino
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Chiara Ruggeri
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Mariausilia Franchina
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Alfredo Ercoli
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Giovanni Tuccari
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Antonio Ieni
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| |
Collapse
|
2
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Role of autophagy and ferroptosis in the development of endometriotic cysts (Review). Int J Mol Med 2024; 54:78. [PMID: 38994772 PMCID: PMC11265838 DOI: 10.3892/ijmm.2024.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
It is considered that the etiology of endometriosis is retrograde menstruation of endometrial tissue. Although shed endometrial cells are constantly exposed to a challenging environment with iron overload, oxidative stress and hypoxia, a few cells are able to survive and continue to proliferate and invade. Ferroptosis, an iron‑dependent form of non‑apoptotic cell death, is known to play a major role in the development and course of endometriosis. However, few papers have concentrated on the dynamic interaction between autophagy and ferroptosis throughout the progression of diseases. The present review summarized the current understanding of the mechanisms underlying autophagy and ferroptosis in endometriosis and discuss their role in disease development and progression. For the present narrative review electronic databases including PubMed and Google Scholar were searched for literature published up to the October 31, 2023. Autophagy and ferroptosis may be activated at early stages in endometriosis development. On the other hand, excessive activation of intrinsic pathways (e.g., estrogen and mechanistic target of rapamycin) may promote disease progression through autophagy inhibition. Furthermore, suppression of ferroptosis may cause further progression of endometriotic lesions. In conclusion, the autophagy and ferroptosis pathways may play a dual role in disease initiation and progression. The present review discussed the temporal transition of non‑apoptotic cell death regulation during disease progression from retrograde endometrium to early lesions to established lesions.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Hyōgo 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara 634-0001, Japan
| |
Collapse
|
3
|
Meng F, Li J, Dong K, Bai R, Liu Q, Lu S, Liu Y, Wu D, Jiang C, Li W. Juan-tong-yin potentially impacts endometriosis pathophysiology by enhancing autophagy of endometrial stromal cells via unfolded protein reaction-triggered endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117859. [PMID: 38316218 DOI: 10.1016/j.jep.2024.117859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMs) is characterized by inflammatory lesions, dysmenorrhea, infertility, and chronic pelvic pain. Single-target medications often fail to provide systemic therapeutic results owing to the complex mechanism underlying endometriosis. Although traditional Chinese medicines-such as Juan-Tong-Yin (JTY)-have shown promising results, their mechanisms of action remain largely unknown. AIM OF THE STUDY To elucidate the therapeutic mechanism of JTY in EMs, focusing on endoplasmic reticulum (ER) stress-induced autophagy. MATERIALS AND METHODS The major components of JTY were detected using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The potential mechanism of JTY in EMs treatment was predicted using network pharmacological analysis. Finally, the pathogenesis of EMs was validated in a clinical case-control study and the molecular mechanism of JTY was validated in vitro using endometrial stromal cells (ESCs). RESULTS In total, 241 compounds were analyzed and identified from JTY using UPLC-MS. Network pharmacology revealed 288 targets between the JTY components and EMs. Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses indicated that regulating autophagy, migration, apoptosis, and inflammation were the key mechanisms of JTY in treating EMs. Meanwhile, we found that protein kinase R-like endoplasmic reticulum kinase (PERK), Beclin-1, and microtubule-associated protein light chain 3 B (LC3B) expressions were lower in endometria of patients with EMs than in those with normal eutopic endometria (p < 0.05). Additionally, during in vitro experiments, treatment with 20% JTY-containing serum significantly suppressed ESC proliferation, achieving optimal effects after 48 h. Electron microscopy revealed significantly increased autophagy flux in the JTY group compared with the control group. Moreover, JTY treatment significantly reduced the migratory and invasive abilities of ESCs and upregulated protein expression of PERK, eukaryotic initiation factor 2α (eIF2α)/phospho-eukaryotic initiation factor 2α (p-eIF2α), activating Transcription Factor-4 (ATF4), Beclin-1, and LC3BII/I, while subsequently downregulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin 18 (IL-18) expression. However, administration of GSK2656157-a highly selective PERK inhibitor-reversed these changes. CONCLUSION JTY ameliorates EMs by activating PERK associated with unfolded protein reaction, enhancing cell ER stress and autophagy, improving the inflammatory microenvironment, and decreasing the migration and invasion of ESCs.
Collapse
Affiliation(s)
- Fengyun Meng
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Kun Dong
- Department of Organ Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rui Bai
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiyu Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Shijin Lu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Liu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dekun Wu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chen Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weihong Li
- Department of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Xie W, Chen HG, Chen RH, Zhao C, Gong XJ, Zhou X. Intervention effect of Lycium barbarum polysaccharide on lead-induced kidney injury mice and its mechanism: A study based on the PI3K/Akt/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117197. [PMID: 37722516 DOI: 10.1016/j.jep.2023.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal application of Lycium barbarum is centered on the improvement of eyesight, as well as the nourishment of liver and kidney functions. Lycium barbarum polysaccharide (LBP), serving as the principal active constituent of Lycium barbarum, has been identified as the main contributor to these beneficial effects. Previous studies have indicated that Lycium barbarum polysaccharide exhibits a renoprotective effect against lead-induced injury, but its mechanism and efficacy remain unclear. AIM OF THE STUDY The objective of this study was to examine the effectiveness of LBP in preventing lead-induced renal injury and investigate both the toxic mechanism of lead-induced renal injury and the efficacy mechanism of LBP against it, with a focus on the PI3K/AKT/mTOR signaling pathway. MATERIALS AND METHODS The drug effect and mechanism of LBP on lead-induced kidney injury were investigated by administering positive drugs and LBP to mice with established lead-induced kidney injury. RESULTS The renal function of mice with lead-induced renal injury was significantly restored, renal tissue lesions and renal mitochondrial damage were delayed, a disorder of hematological parameters induced by lead was improved, the increase of lead-induced renal index was reduced, and the body weight of mice with lead-induced renal injury was increased by the LBP intervention, as revealed by the results of pharmacodynamic experiments. Based on PI3K /AKT /mTOR signaling pathway, the toxic mechanism of lead-induced kidney injury and the pharmacodynamic mechanism of LBP against lead-induced kidney injury were studied. The results showed that lead could activate the TLR4 receptor, and then activate PI3K /AKT /mTOR signaling pathway, inhibit autophagy of kidney tissue cells, and enhance apoptosis of kidney tissue cells to induce kidney injury; LBP inhibits the activation of TLR4 receptor, which in turn inhibits the PI3K/AKT/mTOR signaling pathway, enhances the autophagy of kidney tissue cells, reduces the apoptosis of kidney tissues, and delays lead-induced kidney injury.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ru-Hai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xiao-Jian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
5
|
Yaribeygi H, Maleki M, Santos RD, Jamialahmadi T, Sahebkar A. Glp-1 Mimetics and Autophagy in Diabetic Milieu: State-of-the-Art. Curr Diabetes Rev 2024; 20:e250124226181. [PMID: 38299271 DOI: 10.2174/0115733998276570231222105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
The diabetic milieu is associated with cascades of pathophysiological pathways that culminate in diabetic complications and tissue injuries. Autophagy is an essential process mandatory for cell survival and tissue homeostasis by degrading damaged organelles and removing injured cells. However, it may turn into a pathological process in an aberrant mode in the diabetic and/or malignant milieu. Moreover, autophagy could serve as a promising therapeutic target for many complications related to tissue injury. Glp-1 mimetics are a class of newer antidiabetic agents that reduce blood glucose through several pathways. However, some evidence suggests that they can provide extra glycemic benefits by modulating autophagy, although there is no complete understanding of this mechanism and its underlying molecular pathways. Hence, in the current review, we aimed to provide new insights on the possible impact of Glp-1 mimetics on autophagy and consequent benefits as well as mediating pathways.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Tannaz Jamialahmadi
- Medical Toxicolgy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Medical Toxicolgy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yotova I, Proestling K, Haslinger I, Witzmann-Stern M, Widmar B, Kuessel L, Husslein H, Wenzl R, Hudson QJ. DIRAS3 regulates autophagy in an endometriosis epithelial cell line. Reprod Biomed Online 2023; 47:103251. [PMID: 37598541 DOI: 10.1016/j.rbmo.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023]
Abstract
RESEARCH QUESTION What is the role of DIRAS3 in endometriosis pathogenesis? DESIGN Prospective patient cohort study combined with experiments in the 12Z human endometriosis epithelial cell line model to determine the role of DIRAS3 in endometriosis. Endometrium and endometriosis lesion samples were collected from premenopausal women from 24 control and 40 endometriosis patients by laparoscopic surgery. The role of DIRAS3 in endometriosis was assessed by siRNA knockdown in 12Z cells followed by proliferation, apoptosis, invasion and autophagy assays. Autophagy was induced by serum starvation and the levels of autophagy determined by assessing changes in the expression levels and localization of autophagy marker proteins, such as LC3. RESULTS DIRAS3 mRNA showed a large increase in expression in ectopic endometriosis lesions compared with endometrium from control patients, with expression largely localized to the epithelium. DIRAS3 knockdown in 12Z endometriosis epithelial cells caused a significant reduction in the number of proliferating cells (1.6-fold, adjusted P = 0.0007) and increased apoptosis (AnnexinV/7AAD double-positive cells +48%, P = 0.01), indicating an effect on cell proliferation. Induction of autophagy by serum starvation caused significant upregulation in DIRAS3 expression after 24 h (mRNA +2.4-fold [adjusted P = 0.017], protein +8.1-fold (adjusted P = 0.029), reduced LC3I/LC3II ratio (-2.2-fold, adjusted P = 0.044) and an increase in the number of double positive LC3/DIRAS3 puncta (+2.3-fold, P = 0.02). Knockdown of DIRAS3 in serum-starved cells led to a reduction in autophagy, indicated by an overall decrease in LC3 expression and significant increase in LC3I/LC3II ratio. CONCLUSIONS DIRAS3 is highly upregulated in endometriosis lesions. Studies in an endometriosis epithelial cell line indicate that DIRAS3 facilitates cell survival in this context by inducing autophagy.
Collapse
Affiliation(s)
- Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria..
| | - Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Isabella Haslinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Matthias Witzmann-Stern
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Barbara Widmar
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
8
|
Bıtgen N, Onder GO, Baran M, Yay A. Cytotoxicity screening of Thymus vulgaris L. in breast cancer: in vitro study. Toxicol Res (Camb) 2023; 12:584-590. [PMID: 37663807 PMCID: PMC10470352 DOI: 10.1093/toxres/tfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 09/05/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths due to its aggressive course. There is an increasing need for alternative therapy strategies, including herbal medications, to treat the disease because of its high incidence. Medicinal plants, such as Thymus vulgaris L. (T. vulgaris), have recently attracted great interest due to the antitumor properties of their extracts. The purpose of this investigation was to ascertain whether T. vulgaris had any cytotoxic effects on two different breast cancer cell lines. MTT test was applied to evaluate the effect of T. vulgaris on cell viability. TUNEL method was used to determine its apoptotic effect. LC3 and Beclin-1 expression levels were determined by immunofluorescence staining method and its autophagic effect was evaluated. Our findings demonstrate that T. vulgaris greately lowers proliferation, both in terms of concentration and duration. Consistent with decreased proliferation, an increase in apoptotic and autophagic cell death were also observed. The migration capacity of MCF-7 and MDA-MB-231 breast cancer cells was greatly suppressed by T. vulgaris, while significantly reducing colony formation. This study is the first to look into how T. vulgaris methanol extract affects breast cancer cells. All of these findings demonstrate that T. vulgaris prevents breast cancer cells from developing a malignant phenotype. It is possible to say that the methanol extract of T. vulgaris is suitable for the treatment of breast cancer, including aggressive types. However, in vivo research should support these results.
Collapse
Affiliation(s)
- Nazmiye Bıtgen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Gozde Ozge Onder
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Arzu Yay
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| |
Collapse
|