1
|
Zhu L, Bao Y, Liu Z, Liu J, Li Z, Sun X, Zhou A, Wu H. Gualou-Xiebai herb pair ameliorate atherosclerosis in HFD-induced ApoE -/- mice and inhibit the ox-LDL-induced injury of HUVECs by regulating the Nrf2-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117892. [PMID: 38350505 DOI: 10.1016/j.jep.2024.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Youli Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zijian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jiahui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xin Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Wang WL, Chen Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Mechanism of Gualou Xiebai Banxia Decoction against Myocardial Infarction. Genes (Basel) 2024; 15:392. [PMID: 38674327 PMCID: PMC11048873 DOI: 10.3390/genes15040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate targets through which Gualou Xiebai Banxia decoction aids in treating myocardial infarction (MI) using network pharmacology in combination with molecular docking. The principal active ingredients of Gualou Xiebai Banxia decoction were identified from the TCMSP database using the criteria of drug-likeness ≥30% and oral bioavailability ≥0.18. Interactions and pathway enrichment were investigated using protein-protein interaction (PPI) networks and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, respectively. Active component structures were docked with those of potential protein targets using AutoDock molecular docking relative softwares. HIF1A was of particular interest as it was identified by the PPI network, GO and KEGG pathway enrichment analyses. In conclusion, the use of network pharmacology prediction and molecular docking assessments provides further information on the active components and mechanisms of action Gualou Xiebai Banxia decoction.
Collapse
Affiliation(s)
| | - Yan Chen
- Faculty of Medicine, Macau University of Science and Technology, Praia Park Block R Coloane Macau, Macau 999078, China;
| |
Collapse
|
3
|
Liu Y, Wang T, Ding L, Li Z, Zhang Y, Dai M, Wu H. Extract of Gualou-Xiebai Herb Pair Improves Lipid Metabolism Disorders by Enhancing the Reverse Cholesterol Transport in Atherosclerosis Mice. Curr Neurovasc Res 2024; 21:214-227. [PMID: 38629368 DOI: 10.2174/0115672026308438240405055719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Allium macrostemon Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated. METHODS The extract of Gualou-Xiebai herb pair (GXE) was prepared from Gualou (80 g) and Xiebai (40 g) by continuous refluxing with 50% ethanol for 2 h at 80°C. In vivo, ApoE-/- mice were fed a high-fat diet (HFD) for 10 weeks to induce an AS model, and then the mice were treated with GXE (3, 6, 12 g/kg) or atorvastatin (10 mg/kg) via oral gavage. Besides, RAW264.7 macrophages were stimulated by ox-LDL to establish a foam cell model in vitro. RESULTS GXE suppressed plaque formation, regulated plasma lipids, and promoted liver lipid clearance in AS mice. In addition, 0.5, 1, and 2 mg/mL GXE significantly reduced the TC and FC levels in ox-LDL (50 μg/mL)-stimulated foam cells. GXE increased cholesterol efflux from the foam cells to ApoA-1 and HDL, and enhanced the protein expressions of ABCA1, ABCG1, and SR-BI, which were reversed by the PPARγ inhibitor. Meanwhile, GXE increased the LCAT levels, decreased the lipid levels and increased the TBA levels in the liver of AS mice. Molecular docking indicated that some compounds in GXE showed favorable binding energy with PPARγ, LCAT and CYP7A1 proteins, especially apigenin-7-O-β-D-glucoside and quercetin. CONCLUSION In summary, our results suggested that GXE improved lipid metabolism disorders by enhancing RCT, providing a scientific basis for the clinical use of GXE in AS treatment.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Tian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yexiang Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| |
Collapse
|
4
|
Wang YY, Liu YY, Li J, Zhang YY, Ding YF, Peng YR. Gualou xiebai decoction ameliorates cardiorenal syndrome type II by regulation of PI3K/AKT/NF-κB signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155172. [PMID: 37976694 DOI: 10.1016/j.phymed.2023.155172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/08/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cardiorenal syndromes type II (CRS2) is a multi-organ ailment that manifests as a combination of cardiac and renal dysfunction, resulting in chronic kidney disease due to chronic cardiac insufficiency. It affects at least 26 million people worldwide, and its prevalence is increasing. Gualou Xiebai Decoction (GXD), a traditional Chinese medicine (TCM) with a rich history of application in the management of coronary artery disease, has been explored for its potential therapeutic benefits in CRS2. Nevertheless, the mechanism by which GXD alleviates CRS2 remains obscure, necessitating further investigation. PURPOSE The aim of this study was to assess the effects of the ethanolic extract of GXD on CRS2 and to elucidate the underlying mechanism in a rat model of myocardial infarction, offering a potential target for clinical treatment for CRS2. STUDY DESIGN AND METHODS A rat model of CRS2 was induced by surgical myocardial infarction and treated with GXD for 10 weeks. Cardiac function was assessed using echocardiography, while serum and urine biochemistry were analyzed to evaluate potential cardiac and renal damage. Furthermore, tissue samples were obtained for histological, protein, and genetic investigations. In addition, network pharmacology analysis and molecular docking were utilized to predict the primary active compounds, potential therapeutic targets, and interventional pathways through which GXD could potentially exert its effects on CRS2. Subsequently, these predictions were confirmed in vivo and vitro through various analyses. RESULTS The current investigation employed echocardiography to exhibit the apparent cardiac remodeling following the induction of myocardial infarction. Damage to the heart and kidneys of CRS2 rats was effectively ameliorated by administration of GXD. The outcomes derived from the analyses of HE and Masson staining indicated that the pathological damage to the heart and kidney tissues of rats in the GXD groups was considerably alleviated. Using network pharmacology analysis, AKT1, IL-6, and TNF-α were identified as plausible therapeutic targets for the treatment of CRS with GXD. Subsequent functional and pathway enrichment analysis of the underlying targets disclosed that the PI3K/AKT/NF-κB signaling pathway may be involved in the mechanism of GXD in the treatment of CRS2. Immunohistochemical, western blot, RT-PCR and immunofluorescence staining were employed to demonstrate that GXD can regulate the PI3K/AKT/NF-κB signaling pathway in the CRS2 rat model. Ultimately, administration of the PI3K/AKT agonist 740Y-P counteracted the effect of diosmetin, which was one of the potential active components of GXD analysed by compound-target-disease network, on p-PI3K and p-AKT in vitro. CONCLUSIONS The findings of this study suggest that GXD improves cardiac and renal function in CRS2 rats and that the underlying mechanism involves inhibition of the PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Ying-Yu Wang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yang-Yang Liu
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jie Li
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yun-Yun Zhang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yong-Fang Ding
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Yun-Ru Peng
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| |
Collapse
|
5
|
Zhang Z, Chen F, Wan J, Liu X. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction. Chin Med 2023; 18:28. [PMID: 36932409 PMCID: PMC10022008 DOI: 10.1186/s13020-023-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammation plays an important role in the development of heart failure (HF) after myocardial infarction (MI). Suppression of post-infarction inflammatory cascade has become a new strategy to delay or block the progression of HF. At present, there are no approved anti-inflammatory drugs used to prevent HF following MI. Traditional Chinese medicine (TCM) has been used clinically for cardiovascular disease for a long time. Here, we summarized the recent progress about some TCM which could both improve cardiac function and inhibit inflammation in patients or experimental models with MI or HF, in order to provide evidence for their potential application in reducing the onset of HF following MI. Among them, single Chinese medicinal herbs (eg. Astragalus and Salvia miltiorrhiza) and Chinese herbal formulas (eg. Gualou Xiebai Decoction and Sini Tang) are discussed separately. The main targets for their anti-inflammation effect are mainly involved the TLR4/NF-κB signaling, as well as pro-inflammatory cytokines IL-1β, IL-6 or TNF-α. It is worthy of further evaluating their potential, experimentally or clinically, in the prevention or delay of HF following MI.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| |
Collapse
|
6
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
7
|
Liu Y, Zhong H, Xu P, Zhou A, Ding L, Qiu J, Wu H, Dai M. Deciphering the combination mechanisms of Gualou–Xiebai herb pair against atherosclerosis by network pharmacology and HPLC-Q-TOF-MS technology. Front Pharmacol 2022; 13:941400. [PMID: 36120369 PMCID: PMC9476847 DOI: 10.3389/fphar.2022.941400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Gualou (Trichosanthes kirilowii Maxim)–Xiebai (Allium macrostemon Bunge) (GLXB) is a well-known herb pair against atherosclerosis (AS). However, the combination mechanisms of GLXB herb pair against AS remain unclear. Objective: To compare the difference in efficacy between GLXB herb pair and the single herbs and to explore the combination mechanisms of GLXB against AS in terms of compounds, targets, and signaling pathways. Methods: The combined effects of GLXB were evaluated in AS mice. The main compounds of GLXB were identified via quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and UNIFI informatics platforms. The united mechanisms of GLXB in terms of nodes, key interactions, and functional clusters were realized by network pharmacology. At last, the anti-atherosclerotic mechanisms of GLXB were validated using enzyme-linked immunosorbent assay (ELISA) and Western blot in AS mice. Results: The anti-atherosclerotic effects of the GLXB herb pair (6 g/kg) were more significant than those of Gualou (4 g/kg) and Xiebai (2 g/kg) alone. From the GLXB herb pair, 48 main components were identified. In addition, the GLXB herb pair handled more anti-atherosclerotic targets and more signaling pathways than Gualou or Xiebai alone, whereas 10 key targets of GLXB were found using topological analysis. Furthermore, the GLXB herb pair (6 g/kg) could suppress the inflammatory target levels of IL-6, IL-1β, TNF-α, ALOX5, PTGS2, and p-p38 in AS mice. GLXB herb pair (6 g/kg) could also ameliorate endothelial growth and function by regulating the levels of VEGFA, eNOS, p-AKT, VCAM-1, and ICAM-1 and reducing macrophage adhesion to vascular wall in AS mice. GLXB herb pair (6 g/kg) could improve the blood lipid levels in AS mice. In addition, the regulating effects of GLXB herb pair (6 g/kg) on levels of IL-1β, TNF-α, ALOX5, VEGFA, eNOS, VCAM-1, ICAM-1, and blood lipids were more significant than those of Gualou (4 g/kg) or Xiebai alone (2 g/kg). Conclusion: The combination mechanisms of the GLXB herb pair were elucidated in terms of components, targets, and signaling pathways, which may be related to suppressing inflammation, regulating vascular endothelial growth/function, and improving blood lipid levels.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hua Zhong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Molecular mechanism of Chuanxiong Rhizoma in treating coronary artery diseases. CHINESE HERBAL MEDICINES 2021; 13:396-402. [PMID: 36118926 PMCID: PMC9476474 DOI: 10.1016/j.chmed.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Most of the studies on the herb Chuanxiong Rhizoma (CR) have focused on the l-arginine-nitric oxide (NO) pathway, but the nitrate-nitrite-NO (NO3−–NO2−–NO) pathway was rarely investigated. Therefore, the aim of this study was to evaluate the effects and mechanisms of action of CR in coronary artery disease (CAD). Methods The NO3−, NO2− and NO levels were examined in the NO3−–NO2−–NO pathway. High-performance ion chromatography was used to quantify NO3− and NO2− levels. Then, NO was quantified using a multifunctional enzyme marker with a fluorescent probe. The tension of aortic rings was measured using a multi myograph system. Results High content of NO3− and low content of NO2− was found in CR, and which could potently convert NO3− to NO2− in the presence of endogenous reductase enzyme. Incubating human coronary artery endothelial cells (HCAECs) with CR-containing serum showed that CR significantly decreased the NO3− content and increased the levels of NO2− and NO in the cells under hypoxic conditions. In addition, CR significantly relaxed isolated aortic rings when the l-arginine –NO pathway was blocked. The optimal concentration of CR for relaxation was 200 mg/mL. Conclusion CR supplements large amounts of NO in cells and vessels to achieve relaxation via the NO3−–NO2−–NO pathway, thereby making up for the deficiency caused by the lack of NO after the l-arginine-NO pathway is suppressed. This study also supports the potential use of a traditional Chinese herb for future drug development.
Collapse
|
9
|
Liguori TTA, Liguori GR, van Dongen JA, Moreira LFP, Harmsen MC. Bioactive decellularized cardiac extracellular matrix-based hydrogel as a sustained-release platform for human adipose tissue-derived stromal cell-secreted factors. Biomed Mater 2021; 16:025022. [PMID: 33264764 DOI: 10.1088/1748-605x/abcff9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The administration of trophic factors (TFs) released by mesenchymal stromal cells (MSCs) as therapy for cardiovascular diseases requires a delivery vehicle capable of binding and releasing the TF in a sustained manner. We hypothesized that hydrogels derived from cardiac decellularized extracellular matrix (cardiac dECM) bind MSC secretome-derived TF and release these in a sustained fashion. Pig-derived ventricular tissue was decellularized, milled to powder, digested, and assembled as a hydrogel upon warming at 37 °C. The conditioned medium (CMed) of adipose tissue-derived stromal cells (ASC) was collected, concentrated, and incorporated into the hydrogel at 1×, 10×, and 100× the original concentration. The release of 11 ASC-secreted factors (angiopoietin-1, angiopoietin-2, fibroblast growth factor-1, hepatocyte growth factor, platelet-derived growth factor-AA, vascular endothelial growth factor, interleukin-1β, interleukin-6, interleukin-8, CCL2, and matrix metalloproteinase-1) from hydrogels was immune assessed. Bioactivity was determined by endothelial cell proliferation, function, and assessment of endothelial mesenchymal transition. We showed that dECM hydrogels could be loaded with human ASC-secreted TFs, which are released in a sustained manner for several days subsequently. Different trophic factors had different release kinetics, which correlates with the initial concentration of CMed in the hydrogel. We observed that the more concentrated was the hydrogel, the more inflammation-related cytokines, and the less pro-regenerative TFs were released. Finally, we showed that the factors secreted by the hydrogel are biologically active as these influence cell behavior. The use of dECM hydrogels as a platform to bind and release paracrine factors secreted by (mesenchymal) cells is a potential alternative in the context of cardiovascular regeneration.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands. These authors equally contributed to the manuscript
| | | | | | | | | |
Collapse
|
10
|
BaiJiu Increases Nitric Oxide Bioactivity of Chinese Herbs Used to Treat Coronary Artery Disease Through the NO3--NO2--NO Pathway. J Cardiovasc Pharmacol 2020; 74:348-354. [PMID: 31498236 DOI: 10.1097/fjc.0000000000000715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BaiJiu (BJ) is a type of Chinese rice wine combined with the traditional Chinese herbs GuaLou (GL) and XieBai (XB), which have been used to treat and prevent coronary artery disease for nearly 2000 years in China. However, the mechanisms behind the compatibility of the components of this compound (GLXBBJ) have not been deeply investigated. In this study, the compatibility of the GLXBBJ compounds with nitric oxide (NO) bioactivity was evaluated in herbs, cells, and isolated aortic rings. Nitrate (NO3) and nitrite (NO2) concentrations were quantified by the Griess method. Nitric oxide (NO) was quantified by a multifunctional enzyme marker using a fluorescent probe. Qualitative analysis of L-arginine-endothelial NO synthase (eNOS) was performed by Western blotting. The tension of aortic rings was measured by multimyograph system. The ability of BJ to reduce NO3 to NO2 and NO2 to NO was strongest under hypoxic conditions and was not affected by temperature. BJ-containing serum significantly decreased the NO3 content and increased the NO2 content in hypoxic cells. Combining BJ with GL, XB, or GLXB resulted in stronger vasodilation effects. These results demonstrate that BJ effectively reduces NO3/NO2, although only a small amount of NO3 is present. Once combined with GL, XB, or GLXB, which are rich in NO3/NO2, robust NO bioactivity was generated through the NO3-NO2-NO pathway. Therefore, this study supports the potential of using traditional Chinese herbs for promoting medical innovation and for future drug development.
Collapse
|
11
|
Yu J, Qiu LX, Qing GP, Zhao BW, Wang H. Modified Cortex Mori Capsules improving the successful rate of functional filtering blebs after reclinical glaucoma filtering surgery. World J Clin Cases 2019; 7:3436-3445. [PMID: 31750327 PMCID: PMC6854417 DOI: 10.12998/wjcc.v7.i21.3436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The major reason for filtering bleb failure or scarring of the bleb site is due to excessive scarring after glaucoma filtration surgery in the clinic. Traditional Chinese medicine has preeminence in the prevention of fibrosis formation through the regulation of systemic circulation and improvement of the properties of the inflammatory cells in the blood.
AIM To examine the clinical efficacy of using the Modified Cortex Mori Capsules (MCMC; Chinese name: Jiawei Sangbaipi Capsules) in the success rate of functional filtering blebs after glaucoma filtering surgery in clinical patients.
METHODS Sixty resurgery glaucoma patients were randomly divided into two groups: 30 patients in surgery with the placebo group and 30 patients in surgery with the MCMC group. Patients took either the placebo or the MCMC 2 wk before and after surgery. Postoperative morphology and function filtering bleb, visual acuity, intraocular pressure, postoperative complications, the success rate of filtration surgery and clinical efficacy were observed.
RESULTS Fifty patients completed the study. The percentage of functional filtering blebs in the surgery plus MCMC group was 84% at 6 mo after surgery, which was higher than surgery plus placebo group (64%, P < 0.05). The surgical success rate in the MCMC and placebo groups were 79% ± 8.3% and 57% ± 10.6% respectively (P < 0.05). The visual acuity, intraocular pressure and the postoperative complications in the two groups had no significant differences.
CONCLUSION Glaucoma filtering surgery while taking MCMC not only reduced excessive scar formation and increased the success rate of functional filtering blebs but also improved the success of glaucoma filtration operations.
Collapse
Affiliation(s)
- Jing Yu
- Beijing Tongren Eye Center, Laboratory of Ophthalmology and Visual Science in Beijing, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Xin Qiu
- Beijing Tongren Eye Center, Laboratory of Ophthalmology and Visual Science in Beijing, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guo-Ping Qing
- Beijing Tongren Eye Center, Laboratory of Ophthalmology and Visual Science in Beijing, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Bo-Wen Zhao
- Beijing Tongren Eye Center, Laboratory of Ophthalmology and Visual Science in Beijing, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Hui Wang
- Beijing Tongren Eye Center, Laboratory of Ophthalmology and Visual Science in Beijing, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
12
|
Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway. Molecules 2018; 23:molecules23102409. [PMID: 30241309 PMCID: PMC6222483 DOI: 10.3390/molecules23102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Trichosanthis Pericarpium (TP) is a traditional Chinese medicine for treating cardiovascular diseases. In this study, we investigated the effects of TP aqueous extract (TPAE) on hypoxia/reoxygenation (H/R) induced injury in H9c2 cardiomyocytes and explored the underlying mechanisms. H9c2 cells were cultured under the hypoxia condition induced by sodium hydrosulfite for 30 min and reoxygenated for 4 h. Cell viability was measured by MTT assay. The amounts of LDH, NO, eNOS, and iNOS were tested by ELISA kits. Apoptotic rate was detected by Annexin V-FITC/PI staining. QRT-PCR was performed to analyze the relative mRNA expression of Akt, Bcl-2, Bax, eNOS, and iNOS. Western blotting was used to detect the expression of key members in the PI3K/Akt pathway. Results showed that the pretreatment of TPAE remarkably enhanced cell viability and decreased apoptosis induced by H/R. Moreover, TPAE decreased the release of LDH and expression of iNOS. In addition, TPAE increased NO production and Bcl-2/Bax ratio. Furthermore, the mRNA and protein expression of p-Akt and eNOS were activated by TPAE pretreatment. On the contrary, a specific inhibitor of PI3K, LY294002 not only inhibited TPAE-induced p-Akt/eNOS upregulation but alleviated its anti-apoptotic effects. In conclusion, results indicated that TPAE protected against H/R injury in cardiomyocytes, which consequently activated the PI3K/Akt/NO signaling pathway.
Collapse
|
13
|
Li RQ, Wang BY, Ding YW, Zhang R, Zhang JX, Lu XK. Serum containing drugs of Gua Lou Xie Bai decoction (GLXB-D) can inhibit TGF-β1-Induced Epithelial to Mesenchymal Transition (EMT) in A549 Cells. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The present study explores the mechanism of resistance to pulmonary fibrosis by observing the possible effects of serum containing drugs prepared from Gua Lou Xie Bai decoction (GLXB-D) on transforming growth factor beta 1 (TGF-β1) induced Epithelial-mesenchymal transition (EMT) of A549 human alveolar epithelial cells. The inhibition rate was observed with the help of thiazolyl blue tetrazolium bromide (MTT) in 24 h and 48 h treated cells. Inverted microscope and transmission electron microscope (TEM) were used to study the changes in the morphology and ultrastructure of the cells. The expressions of E-cadherin and Vimentin were comparatively analyzed by Western blotting, while the expressions of Collagen I and III were analyzed by ELISA. The data obtained indicated that the expression of epithelial marker E-cadherin was decreased, while the expressions of EMT markers such as Vimentin and Collagen I and III were increased in 24 h after TGF-β1 induction. However, the serum containing drugs of GLXB-D were found to inhibit the TGF-β1 induced proliferation of cells, increase the expression of E-cadherin and decrease the expression of Vimentin, collagen I and III. In conclusion, the serum containing drugs of GLXB-D effectively reduced pulmonary fibrosis, mainly via the reversal of EMT induction by TGF-β1. Thus, it can be considered as a potential candidate for the development of better treatment methods for pulmonary fibrosis.
Collapse
Affiliation(s)
- Rui-qin Li
- Scientific Research Pathological Experiment Center , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| | - Bai-yan Wang
- Key Discipline Laboratory of Basic Medicine , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| | - Yu-wen Ding
- Scientific Research Pathological Experiment Center , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| | - Rui Zhang
- Scientific Research Pathological Experiment Center , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| | - Jun-xia Zhang
- Scientific Research Pathological Experiment Center , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| | - Xiao-kang Lu
- Scientific Research Pathological Experiment Center , Henan University of Chinese Medicine , Zhengzhou , China , 450046
| |
Collapse
|
14
|
Lin P, Qin Z, Yao Z, Wang L, Zhang W, Yu Y, Dai Y, Zhou H, Yao X. Metabolites profile of Gualou Xiebai Baijiu decoction (a classical traditional Chinese medicine prescription) in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:72-88. [PMID: 29635208 DOI: 10.1016/j.jchromb.2018.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 11/15/2022]
Abstract
Gualou Xiebai Baijiu decoction (GLXB), a well-known classic traditional Chinese medicine prescription, has been widely used to treat coronary heart diseases for thousands of years in Eastern Asian countries due to its remarkable clinical effect. However, due to lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. In this work, a reliable "representative structure based homologous xenobiotics identification" (RSBHXI) strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) were applied to investigate the chemical components in GLXB extracts. As a result, 133 chemical components were characterized based on summarized fragmentation patterns, of which 41 components were confirmed unambiguously with authentic standards. Furthermore, a total of 138 GLXB-related xenobiotics were identified or tentatively characterized after oral administration of GLXB extracts. Moreover, to better understand the metabolic pathways of characteristic components in GLXB, metabolites profiles of five steroidal saponins and two flavonoids were performed, respectively. Since the metabolic pathways of five representative saponins had been finished in our previous study, we focused on the in vivo metabolism of two flavonoids. A total of 36 and 20 metabolites were detected in rat biological samples after oral administration of luteolin-7-O-β-D-glucopyranoside and rutin, respectively. The results indicated that dehydration, hydrolysis, hydroxylation, methylation, glucuronidation and sulfation were the main metabolic reactions, following the metabolic soft spots of GLXB-related flavonoids. Taken altogether, this study would be helpful for the further pharmacokinetics, pharmacological evaluation and quality control of GLXB.
Collapse
Affiliation(s)
- Pei Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Li Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Weiyang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Yang Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China.
| |
Collapse
|
15
|
Yan LL, Zhang WY, Wei XH, Yan L, Pan CS, Yu Y, Fan JY, Liu YY, Zhou H, Han JY, Yao XS. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol 2018; 9:296. [PMID: 29674972 PMCID: PMC5895855 DOI: 10.3389/fphys.2018.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Lu-Lu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Wei-Yang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Yu Fan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Sheng Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|