1
|
Jeppesen PB, Dorner A, Yue Y, Poulsen N, Andersen SK, Aalykke FB, Lambert MNT. Beneficial Effects of a Freeze-Dried Kale Bar on Type 2 Diabetes Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:3641. [PMID: 39519473 PMCID: PMC11547987 DOI: 10.3390/nu16213641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is one of the most common global diseases, with an ever-growing need for prevention and treatment solutions. Kale (Brassica oleracea L. var. acephala) offers a good source of fiber, minerals, bioavailable calcium, unsaturated fatty acids, prebiotic carbohydrates, vitamins, health-promoting secondary plant metabolites, as well as higher amounts of proteins and essential amino acids compared to other vegetables. The objective of this study was to investigate whether daily intake of freeze-dried kale powder can provide health benefits for T2D patients vs. placebo. METHODS This study was designed as a 12-week, blinded, randomized, controlled trial. Thirty T2D patients were randomly assigned to either a placebo bar (control) or a kale bar (intervention). Participants in the intervention group were instructed to consume three bars/day, each containing 26.25 g of freeze-dried kale (corresponding to approx. 341 g fresh kale/day). At baseline and 12 weeks, all participants underwent an oral glucose tolerance test (OGTT), 24 h blood pressure measurements, DEXA scans, and fasted blood samples were taken. RESULTS A significant reduction in HbA1c, insulin resistance, body weight, and calorie intake was observed in the intervention group compared to control. Positive trends were detected in fasted blood glucose and LDL-cholesterol for those in the kale intervention group. No significant differences were found in total body fat mass and area under the curve glucose 240 min OGTT. CONCLUSIONS Given the positive effects of high daily kale intake observed in this study, further research with a larger sample size is needed to better understand the health benefits of kale bars. This could potentially lead to new dietary recommendations for patients with T2D.
Collapse
Affiliation(s)
- Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Amanda Dorner
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Yuan Yue
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark;
| | - Nikolaj Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Sofie Korsgaard Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Fie Breenfeldt Aalykke
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| |
Collapse
|
2
|
Pipitone RM, Zito R, Gambino G, Di Maria G, Javed A, Lupo G, Giglia G, Sardo P, Ferraro G, Rappa F, Carlisi D, Di Majo D, Grimaudo S. Red and golden tomato administration improves fat diet-induced hepatic steatosis in rats by modulating HNF4α, Lepr, and GK expression. Front Nutr 2023; 10:1221013. [PMID: 37727633 PMCID: PMC10505813 DOI: 10.3389/fnut.2023.1221013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD), characterized by lipid accumulation within hepatocytes exceeding 5% of liver weight, is strongly related to metabolic disorders, obesity, and diabetes and represents a health emergency worldwide. There is no standard therapy available for NAFLD. Lifestyle intervention, including phytonutrient intake, is key in preventing NAFLD development and progression. Methods We used a rat model of NAFLD to evaluate the effect of dietary supplementation with red tomato (RT) and golden tomato (GT)-a patented mix of fruit with varying degrees of ripeness and particularly rich in naringenin and chlorogenic acid-after steatosis development. We assessed the effects on body weight, metabolic profile, and hepatic steatosis. Results and discussion We found a correlation between the amelioration of all the parameters and the liver gene expression. Our results showed that, together with the reversion of steatosis, the consumption of RT and GT can cause a significant reduction in triglycerides, low-density lipoprotein-cholesterol, fasting glucose, and homeostasis model assessment index. Meanwhile, we observed an increase in high-density lipoprotein-cholesterol according to the amelioration of the general lipidic profile. Regarding hepatic gene expression, we found the upregulation of Gk and Hnf4α involved in metabolic homeostasis, Lepr involved in adipokine signaling, and Il6 and Tnf involved in inflammatory response. Taken together, our results suggest that dietary intake of red and golden tomatoes, as a nutraceutical approach, has potential in preventing and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Rossella Zito
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Ayesha Javed
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Lupo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology- I.E.ME.S.T., Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Gambino G, Giglia G, Allegra M, Di Liberto V, Zummo FP, Rappa F, Restivo I, Vetrano F, Saiano F, Palazzolo E, Avellone G, Ferraro G, Sardo P, Di Majo D. "Golden" Tomato Consumption Ameliorates Metabolic Syndrome: A Focus on the Redox Balance in the High-Fat-Diet-Fed Rat. Antioxidants (Basel) 2023; 12:antiox12051121. [PMID: 37237987 DOI: 10.3390/antiox12051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Tomato fruits defined as "golden" refer to a food product harvested at an incomplete ripening stage with respect to red tomatoes at full maturation. The aim of this study is to explore the putative influence of "golden tomato" (GT) on Metabolic Syndrome (MetS), especially focusing on the effects on redox homeostasis. Firstly, the differential chemical properties of the GT food matrix were characterized in terms of phytonutrient composition and antioxidant capacities with respect to red tomato (RT). Later, we assessed the biochemical, nutraceutical and eventually disease-modifying potential of GT in vivo in the high-fat-diet rat model of MetS. Our data revealed that GT oral supplementation is able to counterbalance MetS-induced biometric and metabolic modifications. Noteworthy is that this nutritional supplementation proved to reduce plasma oxidant status and improve the endogenous antioxidant barriers, assessed by strong systemic biomarkers. Furthermore, consistently with the reduction of hepatic reactive oxygen and nitrogen species (RONS) levels, treatment with GT markedly reduced the HFD-induced increase in hepatic lipid peroxidation and hepatic steatosis. This research elucidates the importance of food supplementation with GT in the prevention and management of MetS.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Vetrano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Filippo Saiano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Eristanna Palazzolo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
4
|
Khalil HE, Abdelwahab MF, Ibrahim HIM, AlYahya KA, Altaweel AA, Alasoom AJ, Burshed HA, Alshawush MM, Waz S. Cichoriin, a Biocoumarin, Mitigates Oxidative Stress and Associated Adverse Dysfunctions on High-Fat Diet-Induced Obesity in Rats. Life (Basel) 2022; 12:1731. [PMID: 36362887 PMCID: PMC9694194 DOI: 10.3390/life12111731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolic dysfunctions linked to obesity carry the risk of co-morbidities such as diabetes, hepatorenal, and cardiovascular diseases. Coumarins are believed to display several biological effects on diverse adverse health conditions. This study was conducted to uncover the impact of cichoriin on high-fat diet (HFD)-induced obese rats. Methods: Obesity was induced in twenty rats by exposure to an HFD for six weeks. The rats were randomly divided into five groups; group I comprised five healthy rats and was considered the control one. On the other hand, the HFD-induced rats were divided into the following (five per each group): group II (the HFD group), groups III (cichoriin 50 mg/kg) and IV (cichoriin 100 mg/kg) as the treatment groups, and group V received atorvastatin (10 mg/kg) (as a standard). Triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), aspartate transaminase (AST), creatine kinase MB (CK-MB), urea, creatinine, the hepatic and renal malondialdehyde (MDA) as well as reduced glutathione (GSH) levels were assessed. Histopathological analysis of the heart, kidney, and liver tissues was investigated. mRNA and protein expressions of the peroxisome proliferator-activated receptor gamma (PPAR-γ) were estimated. Results: The administration of cichoriin alleviated HFD-induced metabolic dysfunctions and improved the histopathological characteristics of the heart, kidney, and liver. Additionally, the treatment improved the lipid profile and hepatic and renal functions, as well as the oxidative balance state. Cichoriin demonstrated an upregulation of the mRNA and protein expressions of PPAR-γ. Taken together, these findings are the first report on the beneficial role of cichoriin in alleviating adverse metabolic effects in HFD-induced obesity and adapting it into an innovative obesity management strategy.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| | - Khalid A. AlYahya
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 36363, Saudi Arabia
| | - Abdullah Abdulhamid Altaweel
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdullah Jalal Alasoom
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hussein Ali Burshed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Marwan Mohamed Alshawush
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
5
|
Ma S, Tian S, Sun J, Pang X, Hu Q, Li X, Lu Y. Broccoli microgreens have hypoglycemic effect by improving blood lipid and inflammatory factors while modulating gut microbiota in mice with type 2 diabetes. J Food Biochem 2022; 46:e14145. [DOI: 10.1111/jfbc.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Shaotong Ma
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Shuhua Tian
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Jing Sun
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Xinyi Pang
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Qiaobin Hu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Xiangfei Li
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Yingjian Lu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| |
Collapse
|
6
|
Martins T, Oliveira PA, Pires MJ, Neuparth MJ, Lanzarin G, Félix L, Venâncio C, Pinto MDL, Ferreira J, Gaivão I, Barros AI, Rosa E, Antunes LM. Effect of a Sub-Chronic Oral Exposure of Broccoli ( Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods 2022; 11:foods11010120. [PMID: 35010245 PMCID: PMC8750293 DOI: 10.3390/foods11010120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Brassica by-products are a source of natural bioactive molecules such as glucosinolates and isothiocyanates, with potential applications in the nutraceutical and functional food industries. However, the effects of oral sub-chronic exposure to broccoli by-product flour (BF) have not yet been evaluated. The objective of this pilot study was to analyse the effects of BF intake in the physiological parameters of FVB/N mice fed a 6.7% BF-supplemented diet for 21 days. Glucosinolates and their derivatives were also quantified in plasma and urine. BF supplementation significantly decreased (p < 0.05) the accumulation of perirenal adipose tissue. Furthermore, mice supplemented with BF showed significantly lower (p < 0.01) microhematocrit values than control animals, but no impact on the general genotoxicological status nor relevant toxic effects on the liver and kidney were observed. Concerning hepatic and renal antioxidant response, BF supplementation induced a significant increase (p < 0.05) in the liver glutathione S-transferase (GST) levels. In BF-supplemented mice, plasma analysis revealed the presence of the glucosinolates glucobrassicin and glucoerucin, and the isothiocyanates sulforaphane and indole-3-carbinol. Overall, these results show that daily intake of a high dose of BF during three weeks is safe, and enables the bioavailability of beneficial glucosinolates and isothiocyanates. These results allow further testing of the benefits of this BF in animal models of disease, knowing that exposure of up to 6.7% BF does not present relevant toxicity.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Correspondence:
| | - Paula Alexandra Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria João Neuparth
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Germano Lanzarin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade do Porto (UP), 4200-135 Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria de Lurdes Pinto
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - João Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Isabel Gaivão
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Isabel Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Miguel Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (P.A.O.); (M.J.P.); (G.L.); (L.F.); (C.V.); (J.F.); (A.I.B.); (E.R.); (L.M.A.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
7
|
Zhang L, Li Y, Sun D, Bai F. Protective Effect of Nimbolide against High Fat Diet-induced Obesity in Rats via Nrf2/HO-1 Pathway. J Oleo Sci 2022; 71:709-720. [DOI: 10.5650/jos.ess21389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University
| | - Yujun Li
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University
| | - Daqing Sun
- Department of Pediatric, Xi’an NO.3 Hospital
| | - Feng Bai
- Department of Child Healthcare, Northwest Women’s and Children’s Hospital
| |
Collapse
|
8
|
de la Luz Cádiz-Gurrea M, Fernández-Ochoa Á, Del Carmen Villegas-Aguilar M, Arráez-Román D, Segura-Carretero A. Therapeutic Targets for Phenolic Compounds from Agro-industrial Byproducts against Obesity. Curr Med Chem 2021; 29:1083-1098. [PMID: 34544333 DOI: 10.2174/0929867328666210920103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is considered as a global epidemic worldwide. This disorder is associated to several health effects such as metabolic disturbances that need both prevention and treatment actions. In this sense, bioactive secondary metabolites can be obtained from cheap sources such as agro-industrial waste providing a sustainable alternative against obesity. Among these secondary metabolites, phenolic compounds present a common chemical structure core with different substitutions that provides them biological properties such as antioxidant, inflammatory, anti-aging capacities. OBJECTIVE The aim of this review is to compile anti-obesity therapeutic targets for phenolic compounds from agro-industrial byproducts. METHOD Scientific information has been obtained from different databases such as Scopus, PubMed and Google Scholar in order to select the available full text studies in last years. RESULTS This review shows that peel, seed, pomace and other byproducts from agro-industry have different effects inhibiting enzymes related to lipid or glucose metabolism and modulating biomarkers, genes and gut microbiota in animal models. CONCLUSION Revalorizing actions of agro-industrial byproducts in the prevention or treatment of obesity or associated disorders can be considered to develop new high value products that act on lipid, glucose and energy metabolisms, oxidative stress, inflammation, adipose tissue or gut microbiota. However, further human studies are need in order to stablish the optimal administration parameters.
Collapse
Affiliation(s)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin. Germany
| | | | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Granada. Spain
| | | |
Collapse
|
9
|
Zandani G, Anavi-Cohen S, Tsybina-Shimshilashvili N, Sela N, Nyska A, Madar Z. Broccoli Florets Supplementation Improves Insulin Sensitivity and Alters Gut Microbiome Population-A Steatosis Mice Model Induced by High-Fat Diet. Front Nutr 2021; 8:680241. [PMID: 34395490 PMCID: PMC8355420 DOI: 10.3389/fnut.2021.680241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.
Collapse
Affiliation(s)
- Gil Zandani
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Noa Sela
- Department of Plant Pathology and Weed Research, Volcani Center, Rishon LeZion, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zecharia Madar
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Li X, Tian S, Wang Y, Liu J, Wang J, Lu Y. Broccoli microgreens juice reduces body weight by enhancing insulin sensitivity and modulating gut microbiota in high-fat diet-induced C57BL/6J obese mice. Eur J Nutr 2021; 60:3829-3839. [PMID: 33866422 DOI: 10.1007/s00394-021-02553-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to explore the protective effect of broccoli microgreens juice (BMJ) during C57BL/6J mice obesity development. METHODS The obese model mice, induced by feeding high-fat diet (HFD), were treated with BMJ by gavage for 10 weeks. Melbine was gavaged at 300 mg/(kg bw)/d, as a positive control group. RESULTS BMJ supplementation significantly reduced white adipose tissues (WAT) mass, the body weight and adipocyte size, and increased water intake in HFD-fed mice. Moreover, it improved glucose tolerance, reduced insulin level and HOMA-IR value, and alleviated insulin resistance. Compared with the HFD group, BMJ supplementation significantly increased the relative abundance of Bacteroidetes and decreased the ratio of Firmicutes to Bacteroidetes at the phylum level, and enriched Bacteroides_acidifaciens at the species level. These changes in the composition of gut microbiota are associated with the production of short-chain fatty acids (SCFAs), and reduced LPS levels, and had an obvious anti-inflammatory effect. CONCLUSIONS These findings suggested that the protective effects of BMJ on diet-induced obesity may be involved in gut microbiota-SCFAs-LPS-inflammatory axis. In addition, BMJ can enhance liver antioxidant capacity and reduce liver fat accumulation. Consequently, these results sustain BMJ as a novel functional food for obesity, on the basis of its opposing effects on HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
R M, Mani S, Sali VK, Bhardwaj M, Vasanthi HR. Macrotyloma uniflorum a plant food alleviates the metabolic syndrome through modulation of adipokines and PPARs. J Food Biochem 2020; 45:e13595. [PMID: 33368458 DOI: 10.1111/jfbc.13595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 11/27/2022]
Abstract
A sedentary lifestyle combined with the intake of high-calorie diet has been the paramount cause of metabolic syndrome (MS) which is now a serious concern of public health worldwide as it involves the coexistence of hypertension, hyperlipidemia, glucose intolerance, and obesity. Hence, identifying a suitable strategy to overcome the worldwide menace of MS is imperative. Macrotyloma uniflorum a lesser known legume is highly nutritious and notable for its ethano-medicinal potential. Herein, the influence of M. uniflorum in high-fat dietinduced metabolic changes in a rodent model of metabolic syndrome was evaluated. Serum levels of glucose, total cholesterol, triglycerides, VLDL-c, and bodyweight were decreased, whereas HDL-c was increased in M. uniflorum-treated MS rats. The protein expression (AMPK-α, PPAR-α, and PPAR-γ) and gene expression (leptin, adiponectin, resistin, UCP2, NF-κB, and IL-6) results are impressive to highlight that M. uniflorum modulates the pathological conditions of MS and proves to be cardioprotective. Furthermore, the histopathological analysis confirmed the pathological changes and substantiates the influence of M. uniflorum to overcome MS. The HPLC and GC (MS) profiling reveals the presence of an array of polyphenols such as rutin (694.61 μg/g), catechin (500.12 μg/g), epicatechin (158.10 μg/g), gallic acid (17.98 μg/g), ferulic acid (10.911 μg/g), daidzein (6.51 μg/g), and PUFA, respectively, which probably exhibits the therapeutic effect on MS and associated complications by modulating lipid metabolism and adipogenesis. PRACTICAL APPLICATIONS: Metabolic disorders like CVD and diabetes are leading cause of mortality and morbidity worldwide. With emerging issues on adverse effects of modern drugs, the emphasis on "Food is Medicine and Medicine as Food" has taken dramatic dimensions in the healthcare sector. Therefore, nutraceuticals are in great demand in the developed world off late. Legumes, are potent elements in a balanced diet next to cereals. Exploring the medicinal properties of legumes could bring a revolution in public health and nutraceutical industries. This study scientifically validated the phytochemicals in M. uniflorum for its functional potential in the management of Metabolic Syndrome (MS). This study would help the nutraceutical industries to develop functional foods using M. uniflorum seeds to make porridges and soups or nutraceutical supplements with the bioflavonoids isolated from M. uniflorum for the management of metabolic disorders by mitigating hyperlipidemia, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Malarvizhi R
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Veeresh K Sali
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Meenakshi Bhardwaj
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
12
|
Kilany OE, Abdelrazek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J Biol Sci 2020; 27:2733-2746. [PMID: 32994733 PMCID: PMC7499387 DOI: 10.1016/j.sjbs.2020.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/17/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Present research explored the anti-obesity effect of Moringa olifera seed oil extract and lycopene (LYC). Forty eight male Sprauge Dawely rats were divided equally into 6 groups. Group Ι (C) served as control, group ΙΙ (MC) was given Moringa olifera seed oil extract (800 mg/kg b.wt) for 8 weeks, group ΙΙΙ (LC) was given (20 mg/kg b.wt) LYC for 8 weeks, group ΙV (O) received high fat diet (HFD) for 20 weeks, group Ѵ (MO), was given HFD for 20 weeks and received (800 mg/kg b.wt) Moringa olifera seed oil extract for last 8 weeks and group ѴΙ (LO), received HFD for 20 weeks and was given (20 mg/kg b.wt) LYC for last 8 weeks. Hematology, lipid peroxidation and antioxidants, non-esterified fatty acids (NEFA), glucose, lipid profile, serum liver and kidney biomarkers, inflammatory markers, leptin, resistin and heart fatty acid binding protein (HFABP) were determined. Also histopathology for liver, kidney and aorta were performed besides immunohistochemistry (IHC) for aortic inducible nitric oxide synthase (iNOS). Administration of Moringa olifera seed oil extract and LYC significantly ameliorated the HFD induced hematological and metabolic perturbations as well as reduced leptin and resistin. Both treatments exerted these effects through promotion of antioxidant enzymes and reducing lipid peroxidation as well as inflammatory cytokines along with reduced iNOS protein expression. Administration of Moringa olifera seed oil extract and LYC have anti-obesity potential in HFD induced obesity in male Sprauge Dawely rats.
Collapse
Affiliation(s)
- Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shimaa Abdo
- Suez Canal Authority Hospital, Ismailia, Egypt
| | - Manal M A Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
14
|
Aranaz P, Navarro-Herrera D, Romo-Hualde A, Zabala M, López-Yoldi M, González-Ferrero C, Gil AG, Alfredo Martinez J, Vizmanos JL, Milagro FI, González-Navarro CJ. Broccoli extract improves high fat diet-induced obesity, hepatic steatosis and glucose intolerance in Wistar rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 2019; 311:251-263. [PMID: 30806766 PMCID: PMC6469644 DOI: 10.1007/s00403-019-01893-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis is a multiorgan autoimmune disease characterized by vasculopathy and tissue fibrosis of unknown etiology. Recently, adipokines (cell signaling proteins secreted by adipose tissue) have attracted much attention as a cytokine family contributing to the various pathological processes of systemic sclerosis. Adipokines, such as leptin, adiponectin, resistin, adipsin, visfatin or chemerin are a heterogenic group of molecules. Adiponectin exhibits anti-fibrotic features and affects inflammatory reactions. Leptin promotes fibrosis and inflammation. Resistin was linked to vascular involvement in systemic sclerosis. Visfatin was associated with regression of skin lesions in late-stage systemic sclerosis. Chemerin appears as a marker of increased risk of impaired renal function and development of skin sclerosis in the early stage of systemic sclerosis. Vaspin was indicated to have a protective role in digital ulcers development. Novel adipokines-adipsin, apelin, omentin and CTRP-3-are emerging as molecules potentially involved in SSc pathogenesis. Serum adipokine levels may be used as predictive and diagnostic factors in systemic sclerosis. However, further investigations are required to establish firm correlations between distinct adipokines and systemic sclerosis.
Collapse
Affiliation(s)
- Jakub Żółkiewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland.
| |
Collapse
|
16
|
Aborehab NM, El Bishbishy MH, Refaiy A, Waly NE. A putative Chondroprotective role for IL-1β and MPO in herbal treatment of experimental osteoarthritis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:495. [PMID: 29166937 PMCID: PMC5700518 DOI: 10.1186/s12906-017-2002-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Herbal treatment may have a chondroprotective and therapeutic effect on Osteoarthritis (OA). We investigated the mechanism of action of ginger and curcumin rhizomes cultivated in Egypt in treatment of OA in rat model. METHODS Thirty-five albino rats were intra-articularly injected with Monosodium Iodoacetate in the knee joint. Ginger and curcumin was orally administered at doses of 200 and 400 mg/kg (F200 and F400). Serum levels of cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), malondialdehyde (MDA), myeloperoxidase (MPO), Interleukin-1 beta (IL-1β) and superoxide dismutase activity (SOD) were measured using ELISA. The composition of the herbal formula hydro-ethanolic extract was characterized using UPLC-ESI-MS. Histopathological changes in injected joints was examined using routine histopathology. Statistical analysis was performed using one-way ANOVA. RESULTS Serum levels of COMP, HA, MPO, MDA, and IL-1β were significantly decreased in F 200, F 400 and V groups when compared to OA group (P value <0.0001). On the other hand SOD levels were significantly elevated in treated groups compared to OA groups (P value <0.0001). CONCLUSIONS The ginger/curcumin at 1:1 had chondroprotective effect via anti-inflammatory and antioxidant effect in rat OA model. Further pharmacological and clinical studies are needed to evaluate this effect.
Collapse
Affiliation(s)
- Nora M. Aborehab
- Department of Biochemistry, Faculty of Pharmacy, MSA University, Giza, 11787 Egypt
| | | | - Abeer Refaiy
- Department of Pathology Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Nermien E. Waly
- Department of Physiology, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
17
|
da Costa GF, Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho LCRM, Ognibene DT, Resende AC, de Moura RS. The Beneficial Effect of Anthocyanidin-Rich Vitis vinifera L. Grape Skin Extract on Metabolic Changes Induced by High-Fat Diet in Mice Involves Antiinflammatory and Antioxidant Actions. Phytother Res 2017; 31:1621-1632. [PMID: 28840618 DOI: 10.1002/ptr.5898] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 12/25/2022]
Abstract
We hypothesized that a polyphenol-rich extract from Vitis vinifera L. grape skin (GSE) may exert beneficial effects on obesity and related metabolic disorders induced by a high-fat diet (HFD). C57/BL6 mice were fed a standard diet (10% fat, control, and GSE groups) or an HFD (60% fat, high fat (HF), and HF + GSE) with or without GSE (200 mg/kg/day) for 12 weeks. GSE prevented weight gain; dyslipidemia; insulin resistance; the alterations in plasma levels of leptin, adiponectin, and resistin; and the deregulation of leptin and adiponectin expression in adipose tissue. These beneficial effects of GSE may be related to a positive modulation of insulin signaling proteins (IR, pIRS, PI3K, pAKT), pAMPK/AMPK ratio, and GLUT4 expression in muscle and adipose tissue. In addition, GSE prevented the oxidative damage, evidenced by the restoration of antioxidant activity and decrease of malondialdehyde and carbonyl levels in muscle and adipose tissue. Finally, GSE showed an anti-inflammatory action, evidenced by the reduced plasma and adipose tissue inflammatory markers (TNF-α, IL-6). Our results suggest that GSE prevented the obesity and related metabolic disorders in HF-fed mice by regulating insulin sensitivity and GLUT4 expression as well as by preventing the oxidative stress and inflammation in skeletal muscle and adipose tissue. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gisele França da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Zhang Y, Jiang Z, Wang L, Xu L. Extraction optimization, antioxidant, and hypoglycemic activities in vitro of polysaccharides from broccoli byproducts. J Food Biochem 2017. [DOI: 10.1111/jfbc.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaojie Zhang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Zhenyu Jiang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lizhi Wang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lishan Xu
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| |
Collapse
|